Balancing Search and Estimation in Random Search Based Stochastic Simulation Optimization

Stochastic simulation optimization involves two fundamental steps: 1) searching the solution space to generate candidate solutions for comparison and 2) estimating the performance of each candidate solution via multiple simulations and selecting a solution as the best solution found. Comparisons of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 61; no. 11; pp. 3593 - 3598
Main Authors Zhu, Chenbo, Xu, Jie, Chen, Chun-Hung, Lee, Loo Hay, Hu, Jian-Qiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2016.2522094

Cover

Loading…
Abstract Stochastic simulation optimization involves two fundamental steps: 1) searching the solution space to generate candidate solutions for comparison and 2) estimating the performance of each candidate solution via multiple simulations and selecting a solution as the best solution found. Comparisons of solutions via simulation estimation are subject to error due to the stochastic noise in simulation output. While estimation errors can be reduced by increasing the number of simulation replications, it would in turn limit the number of candidate solutions that can be generated for comparison in a fixed computation budget. Under a random search framework, we derive an analytical formula to (approximately) optimally determine the number of candidate solutions generated in the search step and simulation replications in the estimation step to maximize the quality of the solution selected as the best by the random search algorithm. We then propose a practical method based on this formula and test the method on several common benchmark problems. Experiment results show that our method is quite effective and leads to significant improvement in the quality of the best solution found.
AbstractList Stochastic simulation optimization involves two fundamental steps: 1) searching the solution space to generate candidate solutions for comparison and 2) estimating the performance of each candidate solution via multiple simulations and selecting a solution as the best solution found. Comparisons of solutions via simulation estimation are subject to error due to the stochastic noise in simulation output. While estimation errors can be reduced by increasing the number of simulation replications, it would in turn limit the number of candidate solutions that can be generated for comparison in a fixed computation budget. Under a random search framework, we derive an analytical formula to (approximately) optimally determine the number of candidate solutions generated in the search step and simulation replications in the estimation step to maximize the quality of the solution selected as the best by the random search algorithm. We then propose a practical method based on this formula and test the method on several common benchmark problems. Experiment results show that our method is quite effective and leads to significant improvement in the quality of the best solution found.
Author Chun-Hung Chen
Chenbo Zhu
Jie Xu
Loo Hay Lee
Jian-Qiang Hu
Author_xml – sequence: 1
  givenname: Chenbo
  surname: Zhu
  fullname: Zhu, Chenbo
– sequence: 2
  givenname: Jie
  surname: Xu
  fullname: Xu, Jie
– sequence: 3
  givenname: Chun-Hung
  surname: Chen
  fullname: Chen, Chun-Hung
– sequence: 4
  givenname: Loo Hay
  surname: Lee
  fullname: Lee, Loo Hay
– sequence: 5
  givenname: Jian-Qiang
  surname: Hu
  fullname: Hu, Jian-Qiang
BookMark eNp9kL1PAjEYhxuDiYDuJi6XuLgc9vvaEQh-JCQmgoPTpVd6UnJ3xfYY9K-3cOjA4NT82ufXvO8zAL3GNQaAawRHCEF5vxxPRxgiPsIMYyjpGegjxkQaI-mBPoRIpBILfgEGIWxi5JSiPnifqEo12jYfycIor9eJalbJLLS2Vq11TWKb5DVeufr3faKCWSWL1um1iphOFrbeVR38so09-30Il-C8VFUwV8dzCN4eZsvpUzp_eXyejuepJpi2KSlIJhSWKFtlBhtZFpDhEitEZYYkKUoCucAi06yQBSNGZNBQpiljinKjKBmCu-7frXefOxPavLZBmyquZdwu5EgwRjLEuIjo7Qm6cTvfxOkiRQiSlEMWKd5R2rsQvClzbdvDSq1XtsoRzPfG82g83xvPj8ZjEZ4Utz5q9F__VW66ijXG_OEZkYRBSn4AK_SMDQ
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_TAC_2019_2942005
crossref_primary_10_1177_0021998317702000
crossref_primary_10_1007_s11276_019_02228_8
crossref_primary_10_1016_j_ejor_2022_06_028
crossref_primary_10_1109_TAES_2023_3241141
crossref_primary_10_1142_S021759592050044X
crossref_primary_10_3390_s25051553
crossref_primary_10_3390_sym11101297
crossref_primary_10_1177_0967391119826650
crossref_primary_10_1109_TEVC_2022_3175517
Cites_doi 10.1007/978-94-015-9086-0_28
10.1287/opre.49.6.950.10019
10.1002/0471722162
10.1109/WSC.2013.6721491
10.1109/9.855560
10.1145/858481.858485
10.1023/A:1010081212560
10.1007/s10514-009-9130-2
10.1023/A:1008306431147
10.1007/s11518-006-0195-6
10.1287/ijoc.1110.0481
10.1109/TR.2010.2055917
10.4310/CIS.2008.v8.n3.a4
10.1145/1667072.1667075
10.1287/opre.1050.0237
10.1109/TASE.2012.2214438
10.1109/TAC.2011.2158128
10.1109/TAC.2012.2208317
10.1109/TAC.2006.884993
10.1109/TAC.2014.2310052
10.1142/7437
10.1142/S0217595915500190
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
DOI 10.1109/TAC.2016.2522094
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 3598
ExternalDocumentID 4231563501
10_1109_TAC_2016_2522094
7393504
Genre orig-research
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LQ16G010007
– fundername: National Science Foundation
  grantid: CMMI-1233376; CMMI-1462787
  funderid: 10.13039/100000001
– fundername: Award for Excellent Doctoral Student granted by the ministry of Education of China 2010
– fundername: National Natural Science Foundation of China
  grantid: 71571048; 71071040; 71572184
  funderid: 10.13039/501100001809
– fundername: Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institution of Higher Learning
– fundername: Joint NSF/AFOSR
  grantid: ECCS-1462409
  funderid: 10.13039/100000181
– fundername: Science and Technology Agency of Sichuan Province
  grantid: 2014GZX0002
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
ID FETCH-LOGICAL-c324t-3b378a2917d7e2e9fb052f2a1497193bf3068287c5b9b53e870e45c455a46ea43
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Fri Jul 11 16:54:19 EDT 2025
Mon Jun 30 10:15:21 EDT 2025
Tue Jul 01 03:35:57 EDT 2025
Thu Apr 24 23:06:32 EDT 2025
Wed Aug 27 02:51:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-3b378a2917d7e2e9fb052f2a1497193bf3068287c5b9b53e870e45c455a46ea43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1833194605
PQPubID 85475
PageCount 6
ParticipantIDs crossref_citationtrail_10_1109_TAC_2016_2522094
crossref_primary_10_1109_TAC_2016_2522094
proquest_miscellaneous_1855371568
proquest_journals_1833194605
ieee_primary_7393504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Nov.
2016-11-00
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
law (ref20) 2000
ref2
ref1
ref17
ref18
bechhofer (ref19) 1995
hu (ref22) 2012; 57
xu (ref3) 2015
ref24
hu (ref5) 2008; 8
ref23
ref25
ref21
ref8
ref7
ref9
ref4
ref6
david (ref16) 2003
References_xml – ident: ref17
  doi: 10.1007/978-94-015-9086-0_28
– ident: ref11
  doi: 10.1287/opre.49.6.950.10019
– year: 2003
  ident: ref16
  publication-title: Order Statistics
  doi: 10.1002/0471722162
– year: 2000
  ident: ref20
  publication-title: Simulation Modeling and Analysis
– ident: ref18
  doi: 10.1109/WSC.2013.6721491
– ident: ref12
  doi: 10.1109/9.855560
– ident: ref8
  doi: 10.1145/858481.858485
– ident: ref7
  doi: 10.1023/A:1010081212560
– ident: ref24
  doi: 10.1007/s10514-009-9130-2
– ident: ref25
  doi: 10.1023/A:1008306431147
– ident: ref15
  doi: 10.1007/s11518-006-0195-6
– ident: ref10
  doi: 10.1287/ijoc.1110.0481
– year: 1995
  ident: ref19
  publication-title: Design and Analysis of Experiments for Statistical Selection Screening Multiple Comparisons
– ident: ref1
  doi: 10.1109/TR.2010.2055917
– volume: 8
  start-page: 245
  year: 2008
  ident: ref5
  article-title: A model reference adapative search method for stochastic global optimization
  publication-title: Commun Inform Syst
  doi: 10.4310/CIS.2008.v8.n3.a4
– ident: ref23
  doi: 10.1145/1667072.1667075
– ident: ref9
  doi: 10.1287/opre.1050.0237
– ident: ref2
  doi: 10.1109/TASE.2012.2214438
– volume: 57
  start-page: 165
  year: 2012
  ident: ref22
  article-title: A stochastic approximation framework for a class of randomized optimization algorithms
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2011.2158128
– ident: ref14
  doi: 10.1109/TAC.2012.2208317
– ident: ref13
  doi: 10.1109/TAC.2006.884993
– ident: ref6
  doi: 10.1109/TAC.2014.2310052
– ident: ref21
  doi: 10.1142/7437
– year: 2015
  ident: ref3
  article-title: $\text{MO}^{2}\text{TOS}$: Multi-fidelity optimization via ordinal transformation and optimal sampling
  publication-title: Asia-Pacific J Oper Res
– ident: ref4
  doi: 10.1142/S0217595915500190
SSID ssj0016441
Score 2.2814426
Snippet Stochastic simulation optimization involves two fundamental steps: 1) searching the solution space to generate candidate solutions for comparison and 2)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3593
SubjectTerms Algorithm design and analysis
Computational modeling
Computer simulation
Errors
Estimation
Mathematical models
Optimal number of replications
optimal sampling set size
Optimization
Partitioning algorithms
Replication
Searching
Simulation
simulation optimization
Stochastic processes
Stochasticity
Test procedures
Title Balancing Search and Estimation in Random Search Based Stochastic Simulation Optimization
URI https://ieeexplore.ieee.org/document/7393504
https://www.proquest.com/docview/1833194605
https://www.proquest.com/docview/1855371568
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3rwVcVqlRW8CKaNyW7THNtSKYIKtoV6CrubCRZtIppc_PXOJmnwhXhbkk2y7Oy8MjPfAJyRz8C5itDq2n5kcfSUpbhnW1x6kSvJBpY6z7a47Y5n_Hou5jW4qGphEDFPPsO2Geax_DDRmflV1jHobcKAf66R41bUalURA6PXC6lLDOz0qpCk7Xem_aHJ4eq2HTI2bJ9_UUF5T5UfgjjXLldbcLNaV5FU8tTOUtXW798gG_-78G3YLM1M1i_OxQ7UMN6FjU_ggw14GJisRk1jVuQcMxmHbEQsX1QzskXM7ulSslzdH5DGC9kkTfSjNPDObLJYlt2_2B2JnmVZ07kHs6vRdDi2ykYLliZ7KrVc5Xo96ZDnFnrooB8pWziRI8l78sjAUxH5FQYYXwvlK-Ei8ThyobkQkndRcncf6nES4wEwsj8iTR5ueKlCUv5K-YhkYio7cl3RU3YTOqu9D3SJQm6aYTwHuTdi-wFRKzDUCkpqNeG8euKlQOD4Y27DbH41r9z3JrRW5A1KFn0LSJaR-DFh4SacVreJuUzERMaYZGaOEK5HLm7v8Pc3H8G6-X5RnNiCevqa4TFZKak6yY_nB5Lb4gs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_GfFAf_JridGoEXwS7dW2yro8qytRtgk7Qp5KkVxy6VrR78a_30nbFL8S30KQl5HJfvbvfARyQz8C5itDq2H5kcfSUpbhnW1x6kSvJBpY6y7YYdnp3_PJe3FfgqKyFQcQs-QybZpjF8sNET82vspZBbxMG_HOO9L5o59VaZczAaPZc7hILO90yKGn7rdHxqcni6jQdMjdsn39RQllXlR-iONMv58swmO0sTyt5ak5T1dTv30Ab_7v1FVgqDE12nN-MVahgvAaLn-AHa_BwYvIaNY1ZnnXMZByyM2L6vJ6RjWN2Q4-SyWz-hHReyG7TRD9KA_DMbseTov8XuybhMymqOtfh7vxsdNqzilYLliaLKrVc5Xpd6ZDvFnrooB8pWziRI8l_8sjEUxF5FgYaXwvlK-EicTlyoYkKkndQcncDqnES4yYwskAiTT5u2FYhqX-lfEQyMpUdua7oKrsOrdnZB7rAITftMJ6DzB-x_YCoFRhqBQW16nBYvvGSY3D8sbZmDr9cV5x7HRoz8gYFk74FJM1IAJnAcB32y2liLxMzkTEmU7NGCNcjJ7e79fuX92C-Nxr0g_7F8GobFsxe8lLFBlTT1ynukM2Sqt3sqn4AhnTlVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+Search+and+Estimation+in+Random+Search+Based+Stochastic+Simulation+Optimization&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Chenbo+Zhu&rft.au=Jie+Xu&rft.au=Chun-Hung+Chen&rft.au=Loo+Hay+Lee&rft.date=2016-11-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=61&rft.issue=11&rft.spage=3593&rft.epage=3598&rft_id=info:doi/10.1109%2FTAC.2016.2522094&rft.externalDocID=7393504
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon