Balancing Search and Estimation in Random Search Based Stochastic Simulation Optimization
Stochastic simulation optimization involves two fundamental steps: 1) searching the solution space to generate candidate solutions for comparison and 2) estimating the performance of each candidate solution via multiple simulations and selecting a solution as the best solution found. Comparisons of...
Saved in:
Published in | IEEE transactions on automatic control Vol. 61; no. 11; pp. 3593 - 3598 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2016.2522094 |
Cover
Loading…
Abstract | Stochastic simulation optimization involves two fundamental steps: 1) searching the solution space to generate candidate solutions for comparison and 2) estimating the performance of each candidate solution via multiple simulations and selecting a solution as the best solution found. Comparisons of solutions via simulation estimation are subject to error due to the stochastic noise in simulation output. While estimation errors can be reduced by increasing the number of simulation replications, it would in turn limit the number of candidate solutions that can be generated for comparison in a fixed computation budget. Under a random search framework, we derive an analytical formula to (approximately) optimally determine the number of candidate solutions generated in the search step and simulation replications in the estimation step to maximize the quality of the solution selected as the best by the random search algorithm. We then propose a practical method based on this formula and test the method on several common benchmark problems. Experiment results show that our method is quite effective and leads to significant improvement in the quality of the best solution found. |
---|---|
AbstractList | Stochastic simulation optimization involves two fundamental steps: 1) searching the solution space to generate candidate solutions for comparison and 2) estimating the performance of each candidate solution via multiple simulations and selecting a solution as the best solution found. Comparisons of solutions via simulation estimation are subject to error due to the stochastic noise in simulation output. While estimation errors can be reduced by increasing the number of simulation replications, it would in turn limit the number of candidate solutions that can be generated for comparison in a fixed computation budget. Under a random search framework, we derive an analytical formula to (approximately) optimally determine the number of candidate solutions generated in the search step and simulation replications in the estimation step to maximize the quality of the solution selected as the best by the random search algorithm. We then propose a practical method based on this formula and test the method on several common benchmark problems. Experiment results show that our method is quite effective and leads to significant improvement in the quality of the best solution found. |
Author | Chun-Hung Chen Chenbo Zhu Jie Xu Loo Hay Lee Jian-Qiang Hu |
Author_xml | – sequence: 1 givenname: Chenbo surname: Zhu fullname: Zhu, Chenbo – sequence: 2 givenname: Jie surname: Xu fullname: Xu, Jie – sequence: 3 givenname: Chun-Hung surname: Chen fullname: Chen, Chun-Hung – sequence: 4 givenname: Loo Hay surname: Lee fullname: Lee, Loo Hay – sequence: 5 givenname: Jian-Qiang surname: Hu fullname: Hu, Jian-Qiang |
BookMark | eNp9kL1PAjEYhxuDiYDuJi6XuLgc9vvaEQh-JCQmgoPTpVd6UnJ3xfYY9K-3cOjA4NT82ufXvO8zAL3GNQaAawRHCEF5vxxPRxgiPsIMYyjpGegjxkQaI-mBPoRIpBILfgEGIWxi5JSiPnifqEo12jYfycIor9eJalbJLLS2Vq11TWKb5DVeufr3faKCWSWL1um1iphOFrbeVR38so09-30Il-C8VFUwV8dzCN4eZsvpUzp_eXyejuepJpi2KSlIJhSWKFtlBhtZFpDhEitEZYYkKUoCucAi06yQBSNGZNBQpiljinKjKBmCu-7frXefOxPavLZBmyquZdwu5EgwRjLEuIjo7Qm6cTvfxOkiRQiSlEMWKd5R2rsQvClzbdvDSq1XtsoRzPfG82g83xvPj8ZjEZ4Utz5q9F__VW66ijXG_OEZkYRBSn4AK_SMDQ |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1109_TAC_2019_2942005 crossref_primary_10_1177_0021998317702000 crossref_primary_10_1007_s11276_019_02228_8 crossref_primary_10_1016_j_ejor_2022_06_028 crossref_primary_10_1109_TAES_2023_3241141 crossref_primary_10_1142_S021759592050044X crossref_primary_10_3390_s25051553 crossref_primary_10_3390_sym11101297 crossref_primary_10_1177_0967391119826650 crossref_primary_10_1109_TEVC_2022_3175517 |
Cites_doi | 10.1007/978-94-015-9086-0_28 10.1287/opre.49.6.950.10019 10.1002/0471722162 10.1109/WSC.2013.6721491 10.1109/9.855560 10.1145/858481.858485 10.1023/A:1010081212560 10.1007/s10514-009-9130-2 10.1023/A:1008306431147 10.1007/s11518-006-0195-6 10.1287/ijoc.1110.0481 10.1109/TR.2010.2055917 10.4310/CIS.2008.v8.n3.a4 10.1145/1667072.1667075 10.1287/opre.1050.0237 10.1109/TASE.2012.2214438 10.1109/TAC.2011.2158128 10.1109/TAC.2012.2208317 10.1109/TAC.2006.884993 10.1109/TAC.2014.2310052 10.1142/7437 10.1142/S0217595915500190 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
DOI | 10.1109/TAC.2016.2522094 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 3598 |
ExternalDocumentID | 4231563501 10_1109_TAC_2016_2522094 7393504 |
Genre | orig-research |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LQ16G010007 – fundername: National Science Foundation grantid: CMMI-1233376; CMMI-1462787 funderid: 10.13039/100000001 – fundername: Award for Excellent Doctoral Student granted by the ministry of Education of China 2010 – fundername: National Natural Science Foundation of China grantid: 71571048; 71071040; 71572184 funderid: 10.13039/501100001809 – fundername: Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institution of Higher Learning – fundername: Joint NSF/AFOSR grantid: ECCS-1462409 funderid: 10.13039/100000181 – fundername: Science and Technology Agency of Sichuan Province grantid: 2014GZX0002 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
ID | FETCH-LOGICAL-c324t-3b378a2917d7e2e9fb052f2a1497193bf3068287c5b9b53e870e45c455a46ea43 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Fri Jul 11 16:54:19 EDT 2025 Mon Jun 30 10:15:21 EDT 2025 Tue Jul 01 03:35:57 EDT 2025 Thu Apr 24 23:06:32 EDT 2025 Wed Aug 27 02:51:59 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-3b378a2917d7e2e9fb052f2a1497193bf3068287c5b9b53e870e45c455a46ea43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1833194605 |
PQPubID | 85475 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1109_TAC_2016_2522094 crossref_primary_10_1109_TAC_2016_2522094 proquest_miscellaneous_1855371568 proquest_journals_1833194605 ieee_primary_7393504 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Nov. 2016-11-00 20161101 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-Nov. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 law (ref20) 2000 ref2 ref1 ref17 ref18 bechhofer (ref19) 1995 hu (ref22) 2012; 57 xu (ref3) 2015 ref24 hu (ref5) 2008; 8 ref23 ref25 ref21 ref8 ref7 ref9 ref4 ref6 david (ref16) 2003 |
References_xml | – ident: ref17 doi: 10.1007/978-94-015-9086-0_28 – ident: ref11 doi: 10.1287/opre.49.6.950.10019 – year: 2003 ident: ref16 publication-title: Order Statistics doi: 10.1002/0471722162 – year: 2000 ident: ref20 publication-title: Simulation Modeling and Analysis – ident: ref18 doi: 10.1109/WSC.2013.6721491 – ident: ref12 doi: 10.1109/9.855560 – ident: ref8 doi: 10.1145/858481.858485 – ident: ref7 doi: 10.1023/A:1010081212560 – ident: ref24 doi: 10.1007/s10514-009-9130-2 – ident: ref25 doi: 10.1023/A:1008306431147 – ident: ref15 doi: 10.1007/s11518-006-0195-6 – ident: ref10 doi: 10.1287/ijoc.1110.0481 – year: 1995 ident: ref19 publication-title: Design and Analysis of Experiments for Statistical Selection Screening Multiple Comparisons – ident: ref1 doi: 10.1109/TR.2010.2055917 – volume: 8 start-page: 245 year: 2008 ident: ref5 article-title: A model reference adapative search method for stochastic global optimization publication-title: Commun Inform Syst doi: 10.4310/CIS.2008.v8.n3.a4 – ident: ref23 doi: 10.1145/1667072.1667075 – ident: ref9 doi: 10.1287/opre.1050.0237 – ident: ref2 doi: 10.1109/TASE.2012.2214438 – volume: 57 start-page: 165 year: 2012 ident: ref22 article-title: A stochastic approximation framework for a class of randomized optimization algorithms publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2011.2158128 – ident: ref14 doi: 10.1109/TAC.2012.2208317 – ident: ref13 doi: 10.1109/TAC.2006.884993 – ident: ref6 doi: 10.1109/TAC.2014.2310052 – ident: ref21 doi: 10.1142/7437 – year: 2015 ident: ref3 article-title: $\text{MO}^{2}\text{TOS}$: Multi-fidelity optimization via ordinal transformation and optimal sampling publication-title: Asia-Pacific J Oper Res – ident: ref4 doi: 10.1142/S0217595915500190 |
SSID | ssj0016441 |
Score | 2.2814426 |
Snippet | Stochastic simulation optimization involves two fundamental steps: 1) searching the solution space to generate candidate solutions for comparison and 2)... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3593 |
SubjectTerms | Algorithm design and analysis Computational modeling Computer simulation Errors Estimation Mathematical models Optimal number of replications optimal sampling set size Optimization Partitioning algorithms Replication Searching Simulation simulation optimization Stochastic processes Stochasticity Test procedures |
Title | Balancing Search and Estimation in Random Search Based Stochastic Simulation Optimization |
URI | https://ieeexplore.ieee.org/document/7393504 https://www.proquest.com/docview/1833194605 https://www.proquest.com/docview/1855371568 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3rwVcVqlRW8CKaNyW7THNtSKYIKtoV6CrubCRZtIppc_PXOJmnwhXhbkk2y7Oy8MjPfAJyRz8C5itDq2n5kcfSUpbhnW1x6kSvJBpY6z7a47Y5n_Hou5jW4qGphEDFPPsO2Geax_DDRmflV1jHobcKAf66R41bUalURA6PXC6lLDOz0qpCk7Xem_aHJ4eq2HTI2bJ9_UUF5T5UfgjjXLldbcLNaV5FU8tTOUtXW798gG_-78G3YLM1M1i_OxQ7UMN6FjU_ggw14GJisRk1jVuQcMxmHbEQsX1QzskXM7ulSslzdH5DGC9kkTfSjNPDObLJYlt2_2B2JnmVZ07kHs6vRdDi2ykYLliZ7KrVc5Xo96ZDnFnrooB8pWziRI8l78sjAUxH5FQYYXwvlK-Ei8ThyobkQkndRcncf6nES4wEwsj8iTR5ueKlCUv5K-YhkYio7cl3RU3YTOqu9D3SJQm6aYTwHuTdi-wFRKzDUCkpqNeG8euKlQOD4Y27DbH41r9z3JrRW5A1KFn0LSJaR-DFh4SacVreJuUzERMaYZGaOEK5HLm7v8Pc3H8G6-X5RnNiCevqa4TFZKak6yY_nB5Lb4gs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_GfFAf_JridGoEXwS7dW2yro8qytRtgk7Qp5KkVxy6VrR78a_30nbFL8S30KQl5HJfvbvfARyQz8C5itDq2H5kcfSUpbhnW1x6kSvJBpY6y7YYdnp3_PJe3FfgqKyFQcQs-QybZpjF8sNET82vspZBbxMG_HOO9L5o59VaZczAaPZc7hILO90yKGn7rdHxqcni6jQdMjdsn39RQllXlR-iONMv58swmO0sTyt5ak5T1dTv30Ab_7v1FVgqDE12nN-MVahgvAaLn-AHa_BwYvIaNY1ZnnXMZByyM2L6vJ6RjWN2Q4-SyWz-hHReyG7TRD9KA_DMbseTov8XuybhMymqOtfh7vxsdNqzilYLliaLKrVc5Xpd6ZDvFnrooB8pWziRI8l_8sjEUxF5FgYaXwvlK-EicTlyoYkKkndQcncDqnES4yYwskAiTT5u2FYhqX-lfEQyMpUdua7oKrsOrdnZB7rAITftMJ6DzB-x_YCoFRhqBQW16nBYvvGSY3D8sbZmDr9cV5x7HRoz8gYFk74FJM1IAJnAcB32y2liLxMzkTEmU7NGCNcjJ7e79fuX92C-Nxr0g_7F8GobFsxe8lLFBlTT1ynukM2Sqt3sqn4AhnTlVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+Search+and+Estimation+in+Random+Search+Based+Stochastic+Simulation+Optimization&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Chenbo+Zhu&rft.au=Jie+Xu&rft.au=Chun-Hung+Chen&rft.au=Loo+Hay+Lee&rft.date=2016-11-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=61&rft.issue=11&rft.spage=3593&rft.epage=3598&rft_id=info:doi/10.1109%2FTAC.2016.2522094&rft.externalDocID=7393504 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |