Unstable buoyant flow in a vertical porous layer with convective boundary conditions

The instability of natural convection in a vertical porous layer is analysed. The plane parallel boundaries of the vertical layer are modelled as open and subject to Robin-type temperature conditions. The latter conditions describe heat transfer to the external environment, with a finite conductance...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of thermal sciences Vol. 120; pp. 427 - 436
Main Authors Barletta, A., Celli, M., Ouarzazi, M.N.
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.10.2017
Subjects
Online AccessGet full text
ISSN1290-0729
1778-4166
DOI10.1016/j.ijthermalsci.2017.05.028

Cover

Abstract The instability of natural convection in a vertical porous layer is analysed. The plane parallel boundaries of the vertical layer are modelled as open and subject to Robin-type temperature conditions. The latter conditions describe heat transfer to the external environment, with a finite conductance. The basic state is given by a stationary fully-developed flow with linear velocity and temperature profiles. Instability arises when the Darcy-Rayleigh number exceeds its critical value. This value depends on the Biot number associated with the temperature boundary conditions. The most unstable normal modes turn out to be transverse. By solving numerically the stability eigenvalue problem, it is shown that the critical Darcy-Rayleigh number is a decreasing function of the Biot number when the Biot number is sufficiently small. For larger Biot numbers, a minimum is attained, and then the critical Darcy-Rayleigh number becomes an increasing function of the Biot number.
AbstractList The instability of natural convection in a vertical porous layer is analysed. The plane parallel boundaries of the vertical layer are modelled as open and subject to Robin-type temperature conditions. The latter conditions describe heat transfer to the external environment, with a finite conductance. The basic state is given by a stationary fully-developed flow with linear velocity and temperature profiles. Instability arises when the Darcy-Rayleigh number exceeds its critical value. This value depends on the Biot number associated with the temperature boundary conditions. The most unstable normal modes turn out to be transverse. By solving numerically the stability eigenvalue problem, it is shown that the critical Darcy-Rayleigh number is a decreasing function of the Biot number when the Biot number is sufficiently small. For larger Biot numbers, a minimum is attained, and then the critical Darcy-Rayleigh number becomes an increasing function of the Biot number.
Author Celli, M.
Barletta, A.
Ouarzazi, M.N.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0002-6994-5585
  surname: Barletta
  fullname: Barletta, A.
  email: antonio.barletta@unibo.it
  organization: Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, Bologna 40136, Italy
– sequence: 2
  givenname: M.
  surname: Celli
  fullname: Celli, M.
  email: michele.celli3@unibo.it
  organization: Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, Bologna 40136, Italy
– sequence: 3
  givenname: M.N.
  orcidid: 0000-0002-6104-4336
  surname: Ouarzazi
  fullname: Ouarzazi, M.N.
  email: najib.ouarzazi@univ-lille1.fr
  organization: Laboratoire de Mécanique de Lille, UMR CNRS 8107, Université Lille I, Bld. Paul Langevin, 59655 Villeneuve d’Ascq Cedex, France
BookMark eNqNkEtrwzAQhEVJoUnb_yB6t7vyS3ZPLekTAr0kZ7GRZSLjSEFSEvLvK5MeSk857bLsDDPfjEyMNYqQBwYpA1Y99qnuw0a5LQ5e6jQDxlMoU8jqKzJlnNdJwapqEvesgQR41tyQmfc9APAGmilZrowPuB4UXe_tCU2g3WCPVBuK9KBc0BIHurPO7j0d8KQcPeqwodKag5JBH6LO7k2L7jTeWh20Nf6OXHcxkLr_nbdk9f62nH8mi--Pr_nLIpF5VoQkx1JJBa3kZcczXnQVZ4gADWuaLJd5x6t6LTuMRRGysmZlk0NRc8AOsc15fkuez77SWe-d6oTUAccIwaEeBAMxUhK9-EtJjJQElCJSihZP_yx2Tm9jncvEr2exiiUPWjkRP5SRqtUu0hGt1ZfY_AC8SI-A
CitedBy_id crossref_primary_10_1017_jfm_2022_919
crossref_primary_10_3390_fluids6110375
crossref_primary_10_1016_j_ijthermalsci_2019_04_014
crossref_primary_10_1063_5_0180217
crossref_primary_10_1016_j_ijthermalsci_2021_107311
crossref_primary_10_3390_en16134938
crossref_primary_10_1002_htj_23001
crossref_primary_10_1017_jfm_2022_411
crossref_primary_10_1063_1_5087037
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124904
crossref_primary_10_1016_j_ijthermalsci_2025_109764
crossref_primary_10_1016_j_ijthermalsci_2018_05_022
crossref_primary_10_1007_s11242_018_1163_6
crossref_primary_10_1063_1_5110484
Cites_doi 10.1016/j.ijheatmasstransfer.2013.05.071
10.1029/JZ071i020p04835
10.1017/jfm.2013.559
10.1007/s00231-005-0045-y
10.1017/S0022112069001273
10.1016/0017-9310(88)90260-8
10.1016/j.ijheatmasstransfer.2014.08.051
10.1017/jfm.2015.154
10.1080/03091928808213611
10.1063/1.866208
10.1016/S0017-9310(03)00168-6
10.1007/s00021-012-0109-y
10.1016/j.ijheatmasstransfer.2010.08.025
10.1007/s11242-010-9694-5
10.1063/1.4939287
ContentType Journal Article
Copyright 2017 Elsevier Masson SAS
Copyright_xml – notice: 2017 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ijthermalsci.2017.05.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1778-4166
EndPage 436
ExternalDocumentID 10_1016_j_ijthermalsci_2017_05_028
S1290072916309401
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c324t-3a5ece0dc75f7274f671aa00919923c3f768bcfa016a0258159304870afaad373
IEDL.DBID AIKHN
ISSN 1290-0729
IngestDate Thu Apr 24 23:12:51 EDT 2025
Tue Jul 01 02:46:20 EDT 2025
Fri Feb 23 02:28:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Linear stability
Natural convection
Eigenvalue problem
Porous layer
Biot number
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-3a5ece0dc75f7274f671aa00919923c3f768bcfa016a0258159304870afaad373
ORCID 0000-0002-6994-5585
0000-0002-6104-4336
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_ijthermalsci_2017_05_028
crossref_primary_10_1016_j_ijthermalsci_2017_05_028
elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2017_05_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationTitle International journal of thermal sciences
PublicationYear 2017
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Kubitschek, Weidman (bib10) 2003; 46
Straughan (bib5) 1988; 42
Barletta (bib9) 2016; 28
Hewitt, Neufeld, Lister (bib18) 2013; 737
Prats (bib19) 1966; 71
Rees (bib2) 1988; 31
Barletta, Alves (bib7) 2014; 79
Nield, Bejan (bib15) 2013
Lewis, Bassom, Rees (bib3) 1995; 14
Barletta (bib8) 2015; 770
Kubitschek, Weidman (bib11) 2006; 42
Gill (bib1) 1969; 35
Drazin, Reid (bib17) 2004
Rees (bib4) 2011; 87
Rees, Mojtabi (bib14) 2013; 65
Scott, Straughan (bib6) 2013; 15
Mojtabi, Rees (bib13) 2011; 54
Straughan (bib16) 2008
Chelghoum, Weidman, Kassoy (bib12) 1987; 30
Barletta (10.1016/j.ijthermalsci.2017.05.028_bib8) 2015; 770
Straughan (10.1016/j.ijthermalsci.2017.05.028_bib16) 2008
Kubitschek (10.1016/j.ijthermalsci.2017.05.028_bib11) 2006; 42
Chelghoum (10.1016/j.ijthermalsci.2017.05.028_bib12) 1987; 30
Scott (10.1016/j.ijthermalsci.2017.05.028_bib6) 2013; 15
Prats (10.1016/j.ijthermalsci.2017.05.028_bib19) 1966; 71
Rees (10.1016/j.ijthermalsci.2017.05.028_bib4) 2011; 87
Rees (10.1016/j.ijthermalsci.2017.05.028_bib14) 2013; 65
Barletta (10.1016/j.ijthermalsci.2017.05.028_bib9) 2016; 28
Drazin (10.1016/j.ijthermalsci.2017.05.028_bib17) 2004
Straughan (10.1016/j.ijthermalsci.2017.05.028_bib5) 1988; 42
Mojtabi (10.1016/j.ijthermalsci.2017.05.028_bib13) 2011; 54
Kubitschek (10.1016/j.ijthermalsci.2017.05.028_bib10) 2003; 46
Rees (10.1016/j.ijthermalsci.2017.05.028_bib2) 1988; 31
Lewis (10.1016/j.ijthermalsci.2017.05.028_bib3) 1995; 14
Gill (10.1016/j.ijthermalsci.2017.05.028_bib1) 1969; 35
Barletta (10.1016/j.ijthermalsci.2017.05.028_bib7) 2014; 79
Nield (10.1016/j.ijthermalsci.2017.05.028_bib15) 2013
Hewitt (10.1016/j.ijthermalsci.2017.05.028_bib18) 2013; 737
References_xml – volume: 46
  start-page: 3697
  year: 2003
  end-page: 3705
  ident: bib10
  article-title: Stability of a fluid-saturated porous medium heated from below by forced convection
  publication-title: Int J Heat Mass Transf
– volume: 65
  start-page: 765
  year: 2013
  end-page: 778
  ident: bib14
  article-title: The effect of conducting boundaries on Lapwood-Prats convection
  publication-title: Int J Heat Mass Transf
– year: 2013
  ident: bib15
  article-title: Convection in porous media
– year: 2008
  ident: bib16
  article-title: Stability and wave motion in porous media
– volume: 87
  start-page: 459
  year: 2011
  end-page: 464
  ident: bib4
  article-title: The effect of local thermal nonequilibrium on the stability of convection in a vertical porous channel
  publication-title: Transp Porous Media
– volume: 15
  start-page: 171
  year: 2013
  end-page: 178
  ident: bib6
  article-title: A nonlinear stability analysis of convection in a porous vertical channel including local thermal nonequilibrium
  publication-title: J Math Fluid Mech
– volume: 737
  start-page: 205
  year: 2013
  end-page: 231
  ident: bib18
  article-title: Stability of columnar convection in a porous medium
  publication-title: J Fluid Mech
– year: 2004
  ident: bib17
  article-title: Hydrodynamic stability
– volume: 14
  start-page: 395
  year: 1995
  end-page: 407
  ident: bib3
  article-title: The stability of vertical thermal boundary-layer flow in a porous medium
  publication-title: Eur J Mech B Fluids
– volume: 35
  start-page: 545
  year: 1969
  end-page: 547
  ident: bib1
  article-title: A proof that convection in a porous vertical slab is stable
  publication-title: J Fluid Mech
– volume: 42
  start-page: 789
  year: 2006
  end-page: 794
  ident: bib11
  article-title: Stability of a fluid-saturated porous medium contained in a vertical cylinder heated from below by forced convection
  publication-title: Heat Mass Transf
– volume: 31
  start-page: 1529
  year: 1988
  end-page: 1534
  ident: bib2
  article-title: The stability of Prandtl-Darcy convection in a vertical porous layer
  publication-title: Int J Heat Mass Transf
– volume: 30
  start-page: 1941
  year: 1987
  end-page: 1947
  ident: bib12
  article-title: The effect of slab width on the stability of natural convection in confined saturated porous media
  publication-title: Phys Fluids
– volume: 28
  start-page: 014101
  year: 2016
  ident: bib9
  article-title: Instability of stationary two-dimensional mixed convection across a vertical porous layer
  publication-title: Phys Fluids
– volume: 79
  start-page: 759
  year: 2014
  end-page: 768
  ident: bib7
  article-title: On Gill's stability problem for non-Newtonian Darcy's flow
  publication-title: Int J Heat Mass Transf
– volume: 770
  start-page: 273
  year: 2015
  end-page: 288
  ident: bib8
  article-title: A proof that convection in a porous vertical slab may be unstable
  publication-title: J Fluid Mech
– volume: 42
  start-page: 269
  year: 1988
  end-page: 275
  ident: bib5
  article-title: A nonlinear analysis of convection in a porous vertical slab
  publication-title: Geophys Astrophysical Fluid Dyn
– volume: 54
  start-page: 293
  year: 2011
  end-page: 301
  ident: bib13
  article-title: The effect of conducting bounding plates on the onset of Horton-Rogers-Lapwood convection
  publication-title: Int J Heat Mass Transf
– volume: 71
  start-page: 4835
  year: 1966
  end-page: 4838
  ident: bib19
  article-title: The effect of horizontal fluid flow on thermally induced convection currents in porous mediums
  publication-title: J Geophys Res
– volume: 65
  start-page: 765
  year: 2013
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib14
  article-title: The effect of conducting boundaries on Lapwood-Prats convection
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2013.05.071
– volume: 71
  start-page: 4835
  year: 1966
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib19
  article-title: The effect of horizontal fluid flow on thermally induced convection currents in porous mediums
  publication-title: J Geophys Res
  doi: 10.1029/JZ071i020p04835
– volume: 737
  start-page: 205
  year: 2013
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib18
  article-title: Stability of columnar convection in a porous medium
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2013.559
– volume: 42
  start-page: 789
  year: 2006
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib11
  article-title: Stability of a fluid-saturated porous medium contained in a vertical cylinder heated from below by forced convection
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-005-0045-y
– year: 2004
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib17
– volume: 35
  start-page: 545
  year: 1969
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib1
  article-title: A proof that convection in a porous vertical slab is stable
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112069001273
– year: 2008
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib16
– volume: 31
  start-page: 1529
  year: 1988
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib2
  article-title: The stability of Prandtl-Darcy convection in a vertical porous layer
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(88)90260-8
– volume: 79
  start-page: 759
  year: 2014
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib7
  article-title: On Gill's stability problem for non-Newtonian Darcy's flow
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.08.051
– volume: 770
  start-page: 273
  year: 2015
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib8
  article-title: A proof that convection in a porous vertical slab may be unstable
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2015.154
– volume: 42
  start-page: 269
  year: 1988
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib5
  article-title: A nonlinear analysis of convection in a porous vertical slab
  publication-title: Geophys Astrophysical Fluid Dyn
  doi: 10.1080/03091928808213611
– volume: 30
  start-page: 1941
  year: 1987
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib12
  article-title: The effect of slab width on the stability of natural convection in confined saturated porous media
  publication-title: Phys Fluids
  doi: 10.1063/1.866208
– volume: 46
  start-page: 3697
  year: 2003
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib10
  article-title: Stability of a fluid-saturated porous medium heated from below by forced convection
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/S0017-9310(03)00168-6
– year: 2013
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib15
– volume: 15
  start-page: 171
  year: 2013
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib6
  article-title: A nonlinear stability analysis of convection in a porous vertical channel including local thermal nonequilibrium
  publication-title: J Math Fluid Mech
  doi: 10.1007/s00021-012-0109-y
– volume: 54
  start-page: 293
  year: 2011
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib13
  article-title: The effect of conducting bounding plates on the onset of Horton-Rogers-Lapwood convection
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2010.08.025
– volume: 87
  start-page: 459
  year: 2011
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib4
  article-title: The effect of local thermal nonequilibrium on the stability of convection in a vertical porous channel
  publication-title: Transp Porous Media
  doi: 10.1007/s11242-010-9694-5
– volume: 14
  start-page: 395
  year: 1995
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib3
  article-title: The stability of vertical thermal boundary-layer flow in a porous medium
  publication-title: Eur J Mech B Fluids
– volume: 28
  start-page: 014101
  year: 2016
  ident: 10.1016/j.ijthermalsci.2017.05.028_bib9
  article-title: Instability of stationary two-dimensional mixed convection across a vertical porous layer
  publication-title: Phys Fluids
  doi: 10.1063/1.4939287
SSID ssj0007909
Score 2.2748473
Snippet The instability of natural convection in a vertical porous layer is analysed. The plane parallel boundaries of the vertical layer are modelled as open and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 427
SubjectTerms Biot number
Eigenvalue problem
Linear stability
Natural convection
Porous layer
Title Unstable buoyant flow in a vertical porous layer with convective boundary conditions
URI https://dx.doi.org/10.1016/j.ijthermalsci.2017.05.028
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBZpsrRD6ZOmj6Chqxs7six76BBCQ9rSLE0gm5BlCRxcJ4SEkqW_vXd-hBQ6FDpa-MC-k-4-iU_fEXJvWKi0CTyHKyUcP_BhSUVCO8yyJAiV4dbDi8Jv42A09V9mfNYgg_ouDNIqq9xf5vQiW1cj3cqb3WWadt_xBAV1rwFRoAgcbIFaPRYFvEla_efX0XiXkEVUMD3wfQcNau3RguaVzhFofUCsdYpMr1LIE5uz_1an9mrP8IQcV6CR9svvOiUNk5-Roz0pwXMymSLOizND481iC-6iNlt80jSnihYtlyEWFLA2bPRppgBnUzyBpQXpvEh5NC4aLK22OJaURK4LMh0-TQYjp-qY4GgARmuHKW60cRMtuAVg4ttAeEoBjEKSKdPMwuYi1lbBrysAOyFgGQZLWLjKKpUwwS5JM1_k5opQqFMsFCruJW7ia1fHqH3n-8zVPFGs57VJVPtH6kpOHLtaZLLmjc3lvm8l-la6XIJv24TtbJelqMafrB7rMMgfU0RC9v-D_fU_7W_IIT6VTL5b0lyvNuYOEMk67pCDhy-vU827bz4245g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgAD4inK0wNraFI7cTowoIqqQNuFVupmOY4tpQppVbVCXfjt3OUBRWKoxOr4JOds3322Pn9HyJ1hodIm8BxfKeHwgMOWagvtMMviIFTGtx4-FB4Mg96Yv0z8SY10qrcwSKssY38R0_NoXbY0S28250nSfMMbFNS9BkSBInBwBNrhPhPI67v__OF5iHbO88DeDnavlEdzklcyRZj1DjOtE-R5FTKeWJr9ryy1kXm6h-SghIz0sRjVEamZ7JjsbwgJnpDRGFFelBoarWZrcBa16eyDJhlVNC-4DDNBAWnDMZ-mClA2xftXmlPO84BHo7y80mKNbXFB4zol4-7TqNNzynoJjgZYtHSY8o02bqyFbwGWcBsITykAUUgxZZpZOFpE2ir4dQVQJwQkw2ADC1dZpWIm2BmpZ7PMnBMKWYqFQkWt2I25dnWEynecM1f7sWItr0HalX-kLsXEsaZFKivW2FRu-laib6XrS_Btg7Bv23khqbGV1UM1DfLXApEQ-7ewv_in_S3Z7Y0Gfdl_Hr5ekj38UnD6rkh9uViZa8Amy-gmX3tfLofkYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unstable+buoyant+flow+in+a+vertical+porous+layer+with+convective+boundary+conditions&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Barletta%2C+A.&rft.au=Celli%2C+M.&rft.au=Ouarzazi%2C+M.N.&rft.date=2017-10-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1290-0729&rft.eissn=1778-4166&rft.volume=120&rft.spage=427&rft.epage=436&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2017.05.028&rft.externalDocID=S1290072916309401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon