Learning to Discover Multi-Class Attentional Regions for Multi-Label Image Recognition

Multi-label image recognition is a practical and challenging task compared to single-label image classification. However, previous works may be suboptimal because of a great number of object proposals or complex attentional region generation modules. In this paper, we propose a simple but efficient...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 30; pp. 5920 - 5932
Main Authors Gao, Bin-Bin, Zhou, Hong-Yu
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-label image recognition is a practical and challenging task compared to single-label image classification. However, previous works may be suboptimal because of a great number of object proposals or complex attentional region generation modules. In this paper, we propose a simple but efficient two-stream framework to recognize multi-category objects from global image to local regions, similar to how human beings perceive objects. To bridge the gap between global and local streams, we propose a multi-class attentional region module which aims to make the number of attentional regions as small as possible and keep the diversity of these regions as high as possible. Our method can efficiently and effectively recognize multi-class objects with an affordable computation cost and a parameter-free region localization module. Over three benchmarks on multi-label image classification, our method achieves new state-of-the-art results with a single model only using image semantics without label dependency. In addition, the effectiveness of the proposed method is extensively demonstrated under different factors such as global pooling strategy, input size and network architecture. Code has been made available at https://github.com/gaobb/MCAR .
AbstractList Multi-label image recognition is a practical and challenging task compared to single-label image classification. However, previous works may be suboptimal because of a great number of object proposals or complex attentional region generation modules. In this paper, we propose a simple but efficient two-stream framework to recognize multi-category objects from global image to local regions, similar to how human beings perceive objects. To bridge the gap between global and local streams, we propose a multi-class attentional region module which aims to make the number of attentional regions as small as possible and keep the diversity of these regions as high as possible. Our method can efficiently and effectively recognize multi-class objects with an affordable computation cost and a parameter-free region localization module. Over three benchmarks on multi-label image classification, our method achieves new state-of-the-art results with a single model only using image semantics without label dependency. In addition, the effectiveness of the proposed method is extensively demonstrated under different factors such as global pooling strategy, input size and network architecture. Code has been made available at https://github.com/gaobb/MCAR .
Multi-label image recognition is a practical and challenging task compared to single-label image classification. However, previous works may be suboptimal because of a great number of object proposals or complex attentional region generation modules. In this paper, we propose a simple but efficient two-stream framework to recognize multi-category objects from global image to local regions, similar to how human beings perceive objects. To bridge the gap between global and local streams, we propose a multi-class attentional region module which aims to make the number of attentional regions as small as possible and keep the diversity of these regions as high as possible. Our method can efficiently and effectively recognize multi-class objects with an affordable computation cost and a parameter-free region localization module. Over three benchmarks on multi-label image classification, our method achieves new state-of-the-art results with a single model only using image semantics without label dependency. In addition, the effectiveness of the proposed method is extensively demonstrated under different factors such as global pooling strategy, input size and network architecture. Code has been made available at https://github.com/gaobb/MCAR.Multi-label image recognition is a practical and challenging task compared to single-label image classification. However, previous works may be suboptimal because of a great number of object proposals or complex attentional region generation modules. In this paper, we propose a simple but efficient two-stream framework to recognize multi-category objects from global image to local regions, similar to how human beings perceive objects. To bridge the gap between global and local streams, we propose a multi-class attentional region module which aims to make the number of attentional regions as small as possible and keep the diversity of these regions as high as possible. Our method can efficiently and effectively recognize multi-class objects with an affordable computation cost and a parameter-free region localization module. Over three benchmarks on multi-label image classification, our method achieves new state-of-the-art results with a single model only using image semantics without label dependency. In addition, the effectiveness of the proposed method is extensively demonstrated under different factors such as global pooling strategy, input size and network architecture. Code has been made available at https://github.com/gaobb/MCAR.
Author Gao, Bin-Bin
Zhou, Hong-Yu
Author_xml – sequence: 1
  givenname: Bin-Bin
  orcidid: 0000-0003-2572-8156
  surname: Gao
  fullname: Gao, Bin-Bin
  email: gaobb@lamda.nju.edu.cn
  organization: Tencent YouTu Lab, Shenzhen, China
– sequence: 2
  givenname: Hong-Yu
  surname: Zhou
  fullname: Zhou, Hong-Yu
  email: whuzhouhongyu@gmail.com
  organization: Department of Computer Science, The University of Hong Kong, Hong Kong
BookMark eNp9kM1LwzAYh4NMcJveBS8FL14689WsOY75NZgoMr2WLH1bMrpmJqngf2_KpocdPOWF3_NL8j4jNGhtCwhdEjwhBMvb1eJ1QjElE4bzXODsBA2J5CTFmNNBnHE2TaeEyzM08n6DMeEZEUP0sQTlWtPWSbDJnfHafoFLnrsmmHTeKO-TWQjQBmNb1SRvUMfBJ5X9ZZZqDU2y2KoaYqpt3ZqePUenlWo8XBzOMXp_uF_Nn9Lly-NiPlummlEeUkaxFiovpaSMZcC1KqWgLNdaxkByLqeiyjKtNWE5FiUv1zmtYp5LDutSsDG62d-7c_azAx-KbdwBmka1YDtf0IwLgemU5BG9PkI3tnNxqwMlqWQkUnhPaWe9d1AVO2e2yn0XBBe96CKKLnrRxUF0rIijijZB9RaCU6b5r3i1LxoA-HtHxr9wTNkPZCyLXg
CODEN IIPRE4
CitedBy_id crossref_primary_10_1049_ipr2_13068
crossref_primary_10_1016_j_patcog_2025_111584
crossref_primary_10_1016_j_compbiomed_2024_108228
crossref_primary_10_1016_j_eswa_2023_119632
crossref_primary_10_1142_S0129065725500108
crossref_primary_10_14358_PERS_23_00055R2
crossref_primary_10_3348_jksr_2022_0155
crossref_primary_10_1007_s00521_021_06803_z
crossref_primary_10_1016_j_neunet_2025_107309
crossref_primary_10_1109_LRA_2022_3148454
crossref_primary_10_1016_j_cviu_2024_104062
crossref_primary_10_1109_TIM_2024_3400345
crossref_primary_10_1007_s10489_024_05845_9
crossref_primary_10_1109_TCSVT_2023_3288205
crossref_primary_10_1016_j_media_2023_102772
crossref_primary_10_1038_s41467_024_48972_0
crossref_primary_10_1145_3550278
crossref_primary_10_1016_j_future_2023_05_028
crossref_primary_10_1109_TMM_2022_3222657
crossref_primary_10_1016_j_eswa_2024_123526
crossref_primary_10_1016_j_fss_2024_109143
crossref_primary_10_3233_JCM_247185
crossref_primary_10_1109_TII_2023_3342442
crossref_primary_10_1109_TMM_2023_3277279
crossref_primary_10_1049_ipr2_13070
crossref_primary_10_1109_TGRS_2024_3478817
crossref_primary_10_1109_TCSVT_2023_3284812
crossref_primary_10_1155_2022_8110695
crossref_primary_10_1109_TIP_2023_3293776
crossref_primary_10_1007_s10489_023_04865_1
crossref_primary_10_1016_j_neunet_2023_08_052
crossref_primary_10_32604_cmc_2025_059102
crossref_primary_10_3390_app15052845
crossref_primary_10_3390_s22145433
crossref_primary_10_1109_LSP_2022_3215611
crossref_primary_10_1016_j_jvcir_2024_104098
crossref_primary_10_1016_j_patrec_2024_12_012
crossref_primary_10_1109_TIP_2023_3318958
crossref_primary_10_1109_TMM_2023_3324132
crossref_primary_10_3390_computation11020032
crossref_primary_10_1016_j_patcog_2022_109203
crossref_primary_10_3233_IDA_230239
crossref_primary_10_1109_TIM_2023_3300408
crossref_primary_10_1364_OE_541716
crossref_primary_10_1007_s10994_023_06440_8
crossref_primary_10_1017_S0263574724000195
crossref_primary_10_1016_j_patrec_2024_08_020
crossref_primary_10_1007_s10489_024_05968_z
crossref_primary_10_1016_j_neucom_2023_126605
crossref_primary_10_1145_3570166
crossref_primary_10_1007_s11263_023_01855_1
crossref_primary_10_1109_TNNLS_2023_3333542
crossref_primary_10_1109_TGRS_2024_3517672
crossref_primary_10_1007_s10994_024_06678_w
crossref_primary_10_1109_TMM_2021_3121559
crossref_primary_10_1109_TIM_2025_3548188
crossref_primary_10_1016_j_jksuci_2024_101916
crossref_primary_10_3390_app12031742
crossref_primary_10_1016_j_jksuci_2024_102245
crossref_primary_10_1007_s11263_023_01849_z
crossref_primary_10_1016_j_knosys_2023_111126
crossref_primary_10_1117_1_JRS_19_016505
crossref_primary_10_1016_j_engappai_2025_110379
crossref_primary_10_1016_j_ipm_2024_103800
crossref_primary_10_1109_TIP_2023_3266161
Cites_doi 10.1109/CVPR.2015.7299097
10.1109/TMM.2020.3002185
10.1109/ICCV.2015.123
10.1109/CVPR.2017.219
10.1109/TIP.2020.2991527
10.1016/j.patcog.2019.03.006
10.3389/fpsyg.2014.00277
10.1109/ICCV.2017.58
10.1109/CVPR.2017.476
10.1007/978-3-319-46466-4_41
10.1109/TIP.2016.2545300
10.1007/978-3-319-10602-1_26
10.1109/CVPR.2019.00082
10.1109/CVPR.2016.37
10.1109/CVPR.2016.90
10.1109/ICCV.2019.00061
10.1109/CVPR.2019.00532
10.1109/TKDE.2013.39
10.1109/CVPR.2014.81
10.1007/s11263-009-0275-4
10.1109/CVPR.2018.00139
10.1109/TPAMI.2015.2389824
10.1109/CVPR.2017.660
10.1109/CVPR.2016.349
10.1109/CVPR.2016.251
10.1109/CVPR.2018.00170
10.1109/ICCV.2015.425
10.1109/CVPR.2018.00636
10.1109/CVPR.2006.68
10.1109/TPAMI.2021.3063496
10.1109/TPAMI.2015.2491929
10.1109/TPAMI.2020.3025814
10.1109/TIP.2016.2549459
10.1016/j.pneurobio.2007.09.001
10.1109/CVPR.2018.00474
10.1016/j.artint.2011.10.002
10.1109/CVPR.2016.319
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2021.3088605
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5932
ExternalDocumentID 10_1109_TIP_2021_3088605
9466402
Genre orig-research
GrantInformation_xml – fundername: Tencent
  funderid: 10.13039/100015803
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c324t-320c6a8d992335e4cad96238cc90c6944976f55ccc13806d4db82f38c894ebd63
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 09:08:08 EDT 2025
Mon Jun 30 10:25:37 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Tue Jul 01 02:03:26 EDT 2025
Wed Aug 27 02:26:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-320c6a8d992335e4cad96238cc90c6944976f55ccc13806d4db82f38c894ebd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2572-8156
PQID 2546692931
PQPubID 85429
PageCount 13
ParticipantIDs crossref_primary_10_1109_TIP_2021_3088605
proquest_journals_2546692931
ieee_primary_9466402
proquest_miscellaneous_2546602718
crossref_citationtrail_10_1109_TIP_2021_3088605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
ref19
ref18
bazzani (ref27) 2011
navon (ref17) 1969; 5
cheng (ref26) 2014
ref45
chen (ref24) 2017
ref48
ref47
ref41
ref44
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref5
simonyan (ref50) 2015
ref40
lin (ref46) 2014
ref35
ref34
ref37
ref31
ref30
ref2
chen (ref13) 2018
ref1
ref39
ref38
xu (ref29) 2015
simonyan (ref42) 2014
mnih (ref32) 2014
yazici (ref36) 2020
ref23
ref25
ref20
ref22
ref21
ref28
jaderberg (ref33) 2015
chen (ref8) 2018
chen (ref16) 2021
References_xml – ident: ref2
  doi: 10.1109/CVPR.2015.7299097
– start-page: 2017
  year: 2015
  ident: ref33
  article-title: Spatial transformer networks
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– start-page: 6714
  year: 2018
  ident: ref13
  article-title: Order-free RNN with visual attention for multi-label classification
  publication-title: Proc 32nd AAAI Conf Artif Intell (AAAI)
– ident: ref35
  doi: 10.1109/TMM.2020.3002185
– start-page: 937
  year: 2011
  ident: ref27
  article-title: Learning attentional policies for tracking and recognition in video with deep networks
  publication-title: Proc 28th Int Conf Mach Learn (ICML)
– ident: ref1
  doi: 10.1109/ICCV.2015.123
– ident: ref10
  doi: 10.1109/CVPR.2017.219
– ident: ref39
  doi: 10.1109/TIP.2020.2991527
– ident: ref34
  doi: 10.1016/j.patcog.2019.03.006
– ident: ref19
  doi: 10.3389/fpsyg.2014.00277
– ident: ref9
  doi: 10.1109/ICCV.2017.58
– ident: ref28
  doi: 10.1109/CVPR.2017.476
– start-page: 2048
  year: 2015
  ident: ref29
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: Proc Int Conf Mach Learn (ICLR)
– ident: ref4
  doi: 10.1007/978-3-319-46466-4_41
– ident: ref37
  doi: 10.1109/TIP.2016.2545300
– year: 2017
  ident: ref24
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: arXiv 1706 05587
– ident: ref25
  doi: 10.1007/978-3-319-10602-1_26
– ident: ref11
  doi: 10.1109/CVPR.2019.00082
– ident: ref7
  doi: 10.1109/CVPR.2016.37
– ident: ref48
  doi: 10.1109/CVPR.2016.90
– ident: ref15
  doi: 10.1109/ICCV.2019.00061
– ident: ref14
  doi: 10.1109/CVPR.2019.00532
– ident: ref6
  doi: 10.1109/TKDE.2013.39
– ident: ref22
  doi: 10.1109/CVPR.2014.81
– ident: ref47
  doi: 10.1007/s11263-009-0275-4
– start-page: 3286
  year: 2014
  ident: ref26
  article-title: BING: Binarized normed gradients for objectness estimation at 300fps
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref45
  doi: 10.1109/CVPR.2018.00139
– start-page: 13440
  year: 2020
  ident: ref36
  article-title: Orderless recurrent models for multi-label classification
  publication-title: Proc IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref21
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref23
  doi: 10.1109/CVPR.2017.660
– start-page: 568
  year: 2014
  ident: ref42
  article-title: Two-stream convolutional networks for action recognition in videos
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref31
  doi: 10.1109/CVPR.2016.349
– start-page: 2204
  year: 2014
  ident: ref32
  article-title: Recurrent models of visual attention
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref12
  doi: 10.1109/CVPR.2016.251
– ident: ref44
  doi: 10.1109/CVPR.2018.00170
– year: 2015
  ident: ref50
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref3
  doi: 10.1109/ICCV.2015.425
– volume: 5
  start-page: 197
  year: 1969
  ident: ref17
  article-title: Forest before trees: The precedence of global features in visual perception
  publication-title: Perception Psychophys
– ident: ref30
  doi: 10.1109/CVPR.2018.00636
– ident: ref20
  doi: 10.1109/CVPR.2006.68
– start-page: 6730
  year: 2018
  ident: ref8
  article-title: Recurrent attentional reinforcement learning for multi-label image recognition
  publication-title: Proc 32nd AAAI Conf Artif Intell (AAAI)
– year: 2021
  ident: ref16
  article-title: Learning graph convolutional networks for multi-label recognition and applications
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3063496
– ident: ref5
  doi: 10.1109/TPAMI.2015.2491929
– ident: ref40
  doi: 10.1109/TPAMI.2020.3025814
– ident: ref38
  doi: 10.1109/TIP.2016.2549459
– ident: ref18
  doi: 10.1016/j.pneurobio.2007.09.001
– ident: ref49
  doi: 10.1109/CVPR.2018.00474
– ident: ref41
  doi: 10.1016/j.artint.2011.10.002
– ident: ref43
  doi: 10.1109/CVPR.2016.319
– start-page: 740
  year: 2014
  ident: ref46
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc Eur Conf Comput Vis (ECCV)
SSID ssj0014516
Score 2.6078544
Snippet Multi-label image recognition is a practical and challenging task compared to single-label image classification. However, previous works may be suboptimal...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5920
SubjectTerms attentional region
Computer architecture
global to local
Image classification
Image recognition
Modules
multi-class
Multi-label
Object recognition
Proposals
Reinforcement learning
Semantics
Streaming media
Task analysis
two-stream
Visualization
Title Learning to Discover Multi-Class Attentional Regions for Multi-Label Image Recognition
URI https://ieeexplore.ieee.org/document/9466402
https://www.proquest.com/docview/2546692931
https://www.proquest.com/docview/2546602718
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx5cn7i6SgQvgt3ttukjR_GBiorIrngrTZqKuLbidi_-emfStIiKeCvMNC1MJvkmM_kG4ABNLpVWVCWec4fY79ClJAauUrgeSnQU0UXhm9vwYsyvHoPHOThq78JorU3xme7To8nlZ6Wa0VHZwHChE3PkPAZu9V2tNmNADWdNZjOInAhhf5OSdMVgdHmHgaA37PvoUiE1qvuyBZmeKj8WYrO7nHfgpvmvuqjkpT-rZF99fKNs_O-Pr8CyhZnsuJ4XqzCnizXoWMjJrENP12DpCx_hOjxYttUnVpXs9HmqqL6TmTu6jumeyY6rqqlRZ_eaapmnDGGv1blOpZ6wy1dco9h9U5lUFhswPj8bnVw4tvGCoxBfVY7vuSpM40wg-vMDzVWaCYRJsVICBYJzxDB5ECilhn7shhnPZOzlKI8F1zIL_U1YKMpCbwHzvVznCDmiQGmO4FBmkuhnAuGmOAzPuzBobJEoy0pOzTEmiYlOXJGg9RKyXmKt14XD9o23mpHjD911MkarZ-3QhV5j7sS67DShxgAhgkV_2IX9VozORhmUtNDlzOpgID-Mt38feQcW6fv1GU0PFqr3md5F1FLJPTNdPwHJfOdD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1PT9VAEJ8gHNSDIGh8gLgmevDQ9_q22z974EBA8p48iCEPw612t1NjxNbQvhj4LHwVv5uz221DxHgj8dZkp5t2Z3bmNzuzMwBviOVKozZZ4oXwTPU72lKKHFclfU4jGMfmovDxSTQ5Ex_Ow_MluOnvwiCiTT7DoXm0sfy80gtzVDaytdB97lIoj_DqJzlo9e70gLj5lvPD9_P9ied6CHiaoELjBdzXUZbkkoBMEKLQWS7J4idaSxqQQpA5LsJQaz0OEj_KRa4SXtB4IgWqPApo3gewQjgj5O3tsD5GYVrc2lhqGHsxORpdENSXo_n0I7mefDwMaBNHpjXeLaNnu7jcUf3Wnh2uwq9uJdo0lm_DRaOG-vqPIpH_61KtwRMHpNleK_lPYQnLdVh1oJo5lVWvw-NbFRc34JOrJ_uFNRU7-Fprk8HK7C1kz_YHZXtN02Xhs1M02do1I2DvaGaZwgs2_U5amJ12uVdV-QzO7uVfn8NyWZX4AljACywIVMWhRkHwV-XKFNgJpZ_RNKIYwKjjfapd3XXT_uMitf6XL1OSltRIS-qkZQDv-jd-tDVH_kG7YZjf0zm-D2C7E6_UKaU6Na0PIoLDwXgAr_thUicmRpSVWC0cjc8JsWz-feZX8HAyP56ls-nJ0RY8Mt_Snkhtw3JzucCXhNEatWO3CoPP9y1wvwERs0Ou
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Discover+Multi-Class+Attentional+Regions+for+Multi-Label+Image+Recognition&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Gao%2C+Bin-Bin&rft.au=Zhou%2C+Hong-Yu&rft.date=2021&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=30&rft.spage=5920&rft.epage=5932&rft_id=info:doi/10.1109%2FTIP.2021.3088605&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2021_3088605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon