Delving Deep Into Label Smoothing

Label smoothing is an effective regularization tool for deep neural networks (DNNs), which generates soft labels by applying a weighted average between the uniform distribution and the hard label. It is often used to reduce the overfitting problem of training DNNs and further improve classification...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 30; pp. 5984 - 5996
Main Authors Zhang, Chang-Bin, Jiang, Peng-Tao, Hou, Qibin, Wei, Yunchao, Han, Qi, Li, Zhen, Cheng, Ming-Ming
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Label smoothing is an effective regularization tool for deep neural networks (DNNs), which generates soft labels by applying a weighted average between the uniform distribution and the hard label. It is often used to reduce the overfitting problem of training DNNs and further improve classification performance. In this paper, we aim to investigate how to generate more reliable soft labels. We present an Online Label Smoothing (OLS) strategy, which generates soft labels based on the statistics of the model prediction for the target category. The proposed OLS constructs a more reasonable probability distribution between the target categories and non-target categories to supervise DNNs. Experiments demonstrate that based on the same classification models, the proposed approach can effectively improve the classification performance on CIFAR-100, ImageNet, and fine-grained datasets. Additionally, the proposed method can significantly improve the robustness of DNN models to noisy labels compared to current label smoothing approaches. The source code is available at our project page: https://mmcheng.net/ols/
AbstractList Label smoothing is an effective regularization tool for deep neural networks (DNNs), which generates soft labels by applying a weighted average between the uniform distribution and the hard label. It is often used to reduce the overfitting problem of training DNNs and further improve classification performance. In this paper, we aim to investigate how to generate more reliable soft labels. We present an Online Label Smoothing (OLS) strategy, which generates soft labels based on the statistics of the model prediction for the target category. The proposed OLS constructs a more reasonable probability distribution between the target categories and non-target categories to supervise DNNs. Experiments demonstrate that based on the same classification models, the proposed approach can effectively improve the classification performance on CIFAR-100, ImageNet, and fine-grained datasets. Additionally, the proposed method can significantly improve the robustness of DNN models to noisy labels compared to current label smoothing approaches. The source code is available at our project page: https://mmcheng.net/ols/
Label smoothing is an effective regularization tool for deep neural networks (DNNs), which generates soft labels by applying a weighted average between the uniform distribution and the hard label. It is often used to reduce the overfitting problem of training DNNs and further improve classification performance. In this paper, we aim to investigate how to generate more reliable soft labels. We present an Online Label Smoothing (OLS) strategy, which generates soft labels based on the statistics of the model prediction for the target category. The proposed OLS constructs a more reasonable probability distribution between the target categories and non-target categories to supervise DNNs. Experiments demonstrate that based on the same classification models, the proposed approach can effectively improve the classification performance on CIFAR-100, ImageNet, and fine-grained datasets. Additionally, the proposed method can significantly improve the robustness of DNN models to noisy labels compared to current label smoothing approaches. The source code is available at our project page: https://mmcheng.net/ols/.Label smoothing is an effective regularization tool for deep neural networks (DNNs), which generates soft labels by applying a weighted average between the uniform distribution and the hard label. It is often used to reduce the overfitting problem of training DNNs and further improve classification performance. In this paper, we aim to investigate how to generate more reliable soft labels. We present an Online Label Smoothing (OLS) strategy, which generates soft labels based on the statistics of the model prediction for the target category. The proposed OLS constructs a more reasonable probability distribution between the target categories and non-target categories to supervise DNNs. Experiments demonstrate that based on the same classification models, the proposed approach can effectively improve the classification performance on CIFAR-100, ImageNet, and fine-grained datasets. Additionally, the proposed method can significantly improve the robustness of DNN models to noisy labels compared to current label smoothing approaches. The source code is available at our project page: https://mmcheng.net/ols/.
Author Zhang, Chang-Bin
Li, Zhen
Cheng, Ming-Ming
Wei, Yunchao
Han, Qi
Jiang, Peng-Tao
Hou, Qibin
Author_xml – sequence: 1
  givenname: Chang-Bin
  orcidid: 0000-0003-0043-8240
  surname: Zhang
  fullname: Zhang, Chang-Bin
  organization: TKLNDST, CS, Nankai University, Tianjin, China
– sequence: 2
  givenname: Peng-Tao
  orcidid: 0000-0002-1786-4943
  surname: Jiang
  fullname: Jiang, Peng-Tao
  organization: TKLNDST, CS, Nankai University, Tianjin, China
– sequence: 3
  givenname: Qibin
  orcidid: 0000-0002-8388-8708
  surname: Hou
  fullname: Hou, Qibin
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
– sequence: 4
  givenname: Yunchao
  orcidid: 0000-0002-2812-8781
  surname: Wei
  fullname: Wei, Yunchao
  organization: Institute of Information Science, Beijing Jiaotong University, Beijing, China
– sequence: 5
  givenname: Qi
  surname: Han
  fullname: Han, Qi
  organization: TKLNDST, CS, Nankai University, Tianjin, China
– sequence: 6
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  organization: TKLNDST, CS, Nankai University, Tianjin, China
– sequence: 7
  givenname: Ming-Ming
  orcidid: 0000-0001-5550-8758
  surname: Cheng
  fullname: Cheng, Ming-Ming
  email: cmm@nankai.edu.cn
  organization: TKLNDST, CS, Nankai University, Tianjin, China
BookMark eNp9kE1LAzEQhoNUrK3eBS8rXrxsnXxuc5TWj0JBwXoO2TjRLdtN3WwF_70pLR568DQD87zDyzMgvSY0SMgFhRGloG8Xs5cRA0ZHHMZaC3ZETqkWNAcQrJd2kEVeUKH7ZBDjEoAKSdUJ6XNBlaKanpKrKdbfVfORTRHX2azpQja3JdbZ6yqE7jNdzsixt3XE8_0ckreH-8XkKZ8_P84md_PccSa6nDHpnVBOS1AlZR6ZQD8uvCwZANdj4f17IUvgCGgd5eglOqtoKcADKMaH5Gb3d92Grw3Gzqyq6LCubYNhEw2TQkqtpeAJvT5Al2HTNqndllJKczXWiVI7yrUhxha9cVVnuyo0XWur2lAwW4kmSTRbiWYvMQXhILhuq5Vtf_6LXO4iFSL-4VookcrwX09heZ8
CODEN IIPRE4
CitedBy_id crossref_primary_10_23919_JSEE_2023_000069
crossref_primary_10_1109_TCAD_2022_3218239
crossref_primary_10_1088_1741_2552_adbec0
crossref_primary_10_1109_TIM_2024_3372220
crossref_primary_10_1109_TMM_2022_3181439
crossref_primary_10_1016_j_eswa_2023_119632
crossref_primary_10_1007_s44196_022_00144_y
crossref_primary_10_1016_j_patcog_2024_110938
crossref_primary_10_1109_JBHI_2022_3180989
crossref_primary_10_1016_j_compind_2022_103786
crossref_primary_10_1109_TCE_2023_3293841
crossref_primary_10_1002_ima_22933
crossref_primary_10_1109_TCSVT_2023_3311142
crossref_primary_10_1109_TGRS_2023_3336357
crossref_primary_10_1109_TPAMI_2022_3166451
crossref_primary_10_7717_peerj_cs_2005
crossref_primary_10_1016_j_asoc_2024_111925
crossref_primary_10_1177_13694332241291247
crossref_primary_10_1109_TIP_2022_3197931
crossref_primary_10_1016_j_knosys_2023_110384
crossref_primary_10_1016_j_inffus_2023_02_012
crossref_primary_10_1016_j_patcog_2024_110545
crossref_primary_10_1016_j_neucom_2023_03_035
crossref_primary_10_1016_j_ins_2023_119014
crossref_primary_10_1109_ACCESS_2024_3378105
crossref_primary_10_1016_j_future_2024_107551
crossref_primary_10_1093_bioinformatics_btaf014
crossref_primary_10_1016_j_engappai_2024_107968
crossref_primary_10_1007_s13042_025_02537_9
crossref_primary_10_1145_3585279
crossref_primary_10_1145_3627817
crossref_primary_10_1109_ACCESS_2024_3359367
crossref_primary_10_1109_ACCESS_2025_3540164
crossref_primary_10_3390_fractalfract7020132
crossref_primary_10_1016_j_compag_2024_108951
crossref_primary_10_1109_TAI_2023_3297086
crossref_primary_10_1016_j_jrmge_2024_09_025
crossref_primary_10_1016_j_knosys_2023_110916
crossref_primary_10_1109_TTE_2023_3313986
crossref_primary_10_1016_j_cageo_2024_105708
crossref_primary_10_1109_TCSVT_2024_3359681
crossref_primary_10_1007_s13042_025_02591_3
crossref_primary_10_1016_j_engappai_2023_107605
crossref_primary_10_2139_ssrn_4149531
crossref_primary_10_1016_j_patcog_2023_110225
crossref_primary_10_1038_s41598_024_52360_5
crossref_primary_10_1016_j_asoc_2023_110191
crossref_primary_10_1016_j_apm_2024_115844
crossref_primary_10_1016_j_neucom_2024_127637
crossref_primary_10_3390_rs15143578
crossref_primary_10_1109_TII_2023_3256400
crossref_primary_10_1109_TAFFC_2022_3220291
crossref_primary_10_1007_s11263_024_02080_0
crossref_primary_10_3390_cancers14215312
crossref_primary_10_1109_TIP_2023_3321461
crossref_primary_10_1016_j_eswa_2024_126174
crossref_primary_10_2139_ssrn_4051352
crossref_primary_10_1016_j_patcog_2022_109063
crossref_primary_10_1109_ACCESS_2024_3485479
crossref_primary_10_1088_1361_6501_ad6e0e
crossref_primary_10_1016_j_knosys_2024_112877
crossref_primary_10_1108_IJICC_07_2023_0198
crossref_primary_10_1109_TPAMI_2023_3311336
crossref_primary_10_1145_3674975
crossref_primary_10_1109_TAFFC_2024_3378698
crossref_primary_10_1007_s11227_024_06628_2
crossref_primary_10_1016_j_compeleceng_2024_109156
crossref_primary_10_1016_j_neucom_2025_129833
crossref_primary_10_1109_TCSVT_2023_3341728
crossref_primary_10_1186_s40537_024_01039_9
crossref_primary_10_3390_s24072168
crossref_primary_10_1109_JAS_2024_124629
crossref_primary_10_1371_journal_pdig_0000432
crossref_primary_10_1016_j_neucom_2024_128182
crossref_primary_10_1007_s11432_023_3979_9
crossref_primary_10_1016_j_neunet_2024_106215
crossref_primary_10_1109_ACCESS_2024_3362636
crossref_primary_10_1109_TNNLS_2023_3325541
crossref_primary_10_1007_s11227_023_05381_2
crossref_primary_10_1109_JSTARS_2022_3208107
crossref_primary_10_1371_journal_pone_0261307
crossref_primary_10_1016_j_sigpro_2023_109003
crossref_primary_10_1111_phor_12489
crossref_primary_10_1016_j_ipm_2023_103327
crossref_primary_10_1088_1361_6501_ad1f2d
crossref_primary_10_1109_TAFFC_2023_3285231
crossref_primary_10_1049_ccs2_12079
crossref_primary_10_1109_TIM_2023_3235461
crossref_primary_10_1121_10_0011741
crossref_primary_10_1109_TCSVT_2024_3406443
crossref_primary_10_3934_nhm_2023070
crossref_primary_10_1007_s00330_023_09687_w
crossref_primary_10_1109_TIM_2024_3453330
crossref_primary_10_1007_s00371_022_02721_w
crossref_primary_10_1016_j_ress_2022_108972
crossref_primary_10_1016_j_ress_2025_110909
crossref_primary_10_2139_ssrn_4201034
crossref_primary_10_32604_cmc_2024_058586
crossref_primary_10_1007_s40962_024_01335_3
crossref_primary_10_1016_j_jvcir_2024_104062
crossref_primary_10_1109_ACCESS_2023_3300692
crossref_primary_10_1016_j_ymssp_2025_112582
crossref_primary_10_1109_JSEN_2023_3295363
crossref_primary_10_32604_iasc_2023_029037
crossref_primary_10_1038_s41467_024_45999_1
crossref_primary_10_1016_j_eswa_2023_119544
crossref_primary_10_1016_j_biosystemseng_2024_09_008
crossref_primary_10_1088_1361_6501_adbf34
crossref_primary_10_1016_j_patcog_2024_110725
crossref_primary_10_1109_TGRS_2022_3174352
crossref_primary_10_1109_TGRS_2024_3419111
crossref_primary_10_1145_3644391
crossref_primary_10_7717_peerj_cs_1288
crossref_primary_10_1016_j_eswa_2023_121981
crossref_primary_10_1088_1741_2552_ac8dc5
crossref_primary_10_1109_LRA_2025_3540379
Cites_doi 10.1109/CVPR42600.2020.01009
10.1109/TIP.2019.2921876
10.1109/CVPR.2018.00474
10.1109/TPAMI.2020.3029801
10.1109/CVPR.2017.634
10.1109/34.134056
10.1109/ICCV.2019.00971
10.1109/ICCV.2019.00053
10.1109/TNNLS.2017.2677468
10.1109/TPAMI.2015.2456899
10.1109/TIP.2016.2531289
10.1109/CVPR.2019.01150
10.1109/TNNLS.2019.2938782
10.1109/CVPR.2018.00582
10.1109/CVPR42600.2020.00396
10.1109/TIP.2019.2917781
10.1007/s11263-009-0275-4
10.1109/ICCV.2019.00524
10.1109/CVPR.2019.00265
10.1109/TNNLS.2016.2545112
10.1109/TCSVT.2016.2607345
10.1109/TPAMI.2019.2938758
10.1109/ACCESS.2019.2960566
10.1109/CVPR.2016.308
10.1109/TIP.2018.2883743
10.1609/aaai.v33i01.33015565
10.1109/TNNLS.2018.2851924
10.1109/TIP.2020.3044220
10.1109/ICCV.2019.00822
10.1109/TIP.2019.2947792
10.1109/ICCV.2019.00381
10.1109/CVPR.2016.514
10.1007/s11432-020-3097-4
10.1007/s11263-019-01265-2
10.1109/TNNLS.2017.2699783
10.1109/TIP.2017.2774041
10.1109/TNNLS.2018.2875470
10.1109/CVPR.2016.90
10.1109/CVPR.2019.00718
10.1109/TNNLS.2018.2792062
10.1109/CVPR.2018.00745
10.1109/TPAMI.2017.2723400
10.1109/TIP.2018.2877939
10.1007/978-3-030-01258-8_5
10.1109/TIP.2019.2950508
10.1109/CVPR.2016.91
10.1109/CVPR.2017.243
10.1109/CVPR.2009.5206848
10.1109/TNNLS.2018.2852721
10.1109/ICCV.2019.00972
10.1109/TIP.2015.2423557
10.1109/TPAMI.2016.2577031
10.1109/ICCVW.2013.77
10.1109/ICVGIP.2008.47
10.1109/TIP.2020.2989544
10.1109/ICCV.2019.00041
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2021.3089942
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5996
ExternalDocumentID 10_1109_TIP_2021_3089942
9464693
Genre orig-research
GrantInformation_xml – fundername: NSFC
  grantid: 61922046
  funderid: 10.13039/501100001809
– fundername: Science and Technology Innovation Project from Chinese Ministry of Education
– fundername: Fundamental Research Funds for the Central Universities through Nankai University
  grantid: 63213090
  funderid: 10.13039/501100012226
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0100400
  funderid: 10.13039/501100012166
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c324t-225fc46c9506b12fe24ef87f5b2003984ffd75b03e0eac13ef5eca61b40f00623
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 09:19:31 EDT 2025
Mon Jun 30 10:19:55 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Tue Jul 01 02:03:26 EDT 2025
Wed Aug 27 02:26:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-225fc46c9506b12fe24ef87f5b2003984ffd75b03e0eac13ef5eca61b40f00623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0043-8240
0000-0002-2812-8781
0000-0002-1786-4943
0000-0001-5550-8758
0000-0002-8388-8708
PMID 34166191
PQID 2546693689
PQPubID 85429
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TIP_2021_3089942
crossref_primary_10_1109_TIP_2021_3089942
proquest_miscellaneous_2545599543
ieee_primary_9464693
proquest_journals_2546693689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References li (ref28) 2020; 31
ref57
zhang (ref69) 2017
ref59
ref15
ref53
ref52
ref54
ref10
liu (ref77) 2016
ref16
ref18
maaten (ref56) 2008; 9
goodfellow (ref70) 2015
devries (ref12) 2017
ref50
arazo (ref51) 2019
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref7
müller (ref55) 2019
ref9
ref4
ref3
ref6
ref5
ref40
kurakin (ref71) 2017
ref79
ref35
ref78
ref37
ref36
ref75
ref31
ref74
ref30
guo (ref80) 2017
ref33
ref76
ref32
ref2
ghiasi (ref14) 2018
reed (ref11) 2015
ref39
ref38
shu (ref47) 2019
krizhevsky (ref8) 0
ref73
ref72
tan (ref22) 2019; 97
xiao (ref68) 2015
ref24
ref67
ref23
ref26
ref25
ref64
ref20
ref63
ref66
ref65
ren (ref46) 2018
hinton (ref17) 2015
paszke (ref58) 2017
zhang (ref13) 2018
ref27
ref29
maji (ref21) 2013
ref60
ref62
ref61
wah (ref19) 2011
furlanello (ref34) 2018
simonyan (ref1) 2015
References_xml – ident: ref23
  doi: 10.1109/CVPR42600.2020.01009
– ident: ref66
  doi: 10.1109/TIP.2019.2921876
– ident: ref6
  doi: 10.1109/CVPR.2018.00474
– ident: ref30
  doi: 10.1109/TPAMI.2020.3029801
– ident: ref4
  doi: 10.1109/CVPR.2017.634
– volume: 97
  start-page: 6105
  year: 2019
  ident: ref22
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
  publication-title: Mach Learn Res
– ident: ref40
  doi: 10.1109/34.134056
– ident: ref72
  doi: 10.1109/ICCV.2019.00971
– ident: ref38
  doi: 10.1109/ICCV.2019.00053
– ident: ref52
  doi: 10.1109/TNNLS.2017.2677468
– start-page: 4696
  year: 2019
  ident: ref55
  article-title: When does label smoothing help?
  publication-title: Proc Adv Neural Inform Process Syst
– ident: ref48
  doi: 10.1109/TPAMI.2015.2456899
– start-page: 21
  year: 2016
  ident: ref77
  article-title: SSD: Single shot multibox detector
  publication-title: Proc Eur Conf Comput Vis
– year: 2015
  ident: ref11
  article-title: Training deep neural networks on noisy labels with bootstrapping
  publication-title: Proc Int Conf Learn Represent Workshop
– ident: ref62
  doi: 10.1109/TIP.2016.2531289
– ident: ref50
  doi: 10.1109/CVPR.2019.01150
– ident: ref42
  doi: 10.1109/TNNLS.2019.2938782
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref56
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– volume: 31
  start-page: 2294
  year: 2020
  ident: ref28
  article-title: Reconstruction regularized deep metric learning for multi-label image classification
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref44
  doi: 10.1109/CVPR.2018.00582
– ident: ref57
  doi: 10.1109/CVPR42600.2020.00396
– start-page: 10727
  year: 2018
  ident: ref14
  article-title: DropBlock: A regularization method for convolutional networks
  publication-title: Proc Adv Neural Inform Process Syst
– ident: ref75
  doi: 10.1109/TIP.2019.2917781
– ident: ref79
  doi: 10.1007/s11263-009-0275-4
– ident: ref45
  doi: 10.1109/ICCV.2019.00524
– start-page: 312
  year: 2019
  ident: ref51
  article-title: Unsupervised label noise modeling and loss correction
  publication-title: Proc Int Conf Mech Learn
– ident: ref29
  doi: 10.1109/CVPR.2019.00265
– start-page: 1321
  year: 2017
  ident: ref80
  article-title: On calibration of modern neural networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref61
  doi: 10.1109/TNNLS.2016.2545112
– start-page: 2691
  year: 2015
  ident: ref68
  article-title: Learning from massive noisy labeled data for image classification
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– start-page: 1602
  year: 2018
  ident: ref34
  article-title: Born-again neural networks
  publication-title: Proc Int Conf Mech Learn
– ident: ref64
  doi: 10.1109/TCSVT.2016.2607345
– year: 2018
  ident: ref13
  article-title: Mixup: Beyond empirical risk minimization
  publication-title: Proc Int Conf Learn Represent
– year: 2017
  ident: ref58
  article-title: Automatic differentiation in PyTorch
  publication-title: Proc Adv Neural Inform Process Syst Workshop
– ident: ref7
  doi: 10.1109/TPAMI.2019.2938758
– ident: ref15
  doi: 10.1109/ACCESS.2019.2960566
– ident: ref10
  doi: 10.1109/CVPR.2016.308
– ident: ref37
  doi: 10.1109/TIP.2018.2883743
– ident: ref25
  doi: 10.1609/aaai.v33i01.33015565
– ident: ref33
  doi: 10.1109/TNNLS.2018.2851924
– ident: ref32
  doi: 10.1109/TIP.2020.3044220
– year: 2015
  ident: ref1
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– ident: ref31
  doi: 10.1109/ICCV.2019.00822
– start-page: 4334
  year: 2018
  ident: ref46
  article-title: Learning to reweight examples for robust deep learning
  publication-title: Proc Int Conf Mech Learn
– ident: ref74
  doi: 10.1109/TIP.2019.2947792
– ident: ref24
  doi: 10.1109/ICCV.2019.00381
– ident: ref26
  doi: 10.1109/CVPR.2016.514
– ident: ref59
  doi: 10.1007/s11432-020-3097-4
– ident: ref16
  doi: 10.1007/s11263-019-01265-2
– year: 2011
  ident: ref19
  article-title: The caltech-UCSD birds-200-2011 dataset
– ident: ref41
  doi: 10.1109/TNNLS.2017.2699783
– ident: ref65
  doi: 10.1109/TIP.2017.2774041
– ident: ref53
  doi: 10.1109/TNNLS.2018.2875470
– ident: ref2
  doi: 10.1109/CVPR.2016.90
– ident: ref54
  doi: 10.1109/CVPR.2019.00718
– ident: ref43
  doi: 10.1109/TNNLS.2018.2792062
– ident: ref5
  doi: 10.1109/CVPR.2018.00745
– ident: ref67
  doi: 10.1109/TPAMI.2017.2723400
– ident: ref39
  doi: 10.1109/TIP.2018.2877939
– year: 2015
  ident: ref17
  article-title: Distilling the knowledge in a neural network
  publication-title: Proc Adv Neural Inform Process Syst Workshop
– year: 2017
  ident: ref71
  article-title: Adversarial machine learning at scale
  publication-title: Proc Int Conf Learn Represent
– ident: ref27
  doi: 10.1007/978-3-030-01258-8_5
– ident: ref35
  doi: 10.1109/TIP.2019.2950508
– ident: ref73
  doi: 10.1109/CVPR.2016.91
– ident: ref3
  doi: 10.1109/CVPR.2017.243
– year: 2017
  ident: ref69
  article-title: Understanding deep learning requires rethinking generalization
  publication-title: Proc Int Conf Learn Represent
– year: 0
  ident: ref8
  article-title: Learning multiple layers of features from tiny images
– ident: ref9
  doi: 10.1109/CVPR.2009.5206848
– ident: ref63
  doi: 10.1109/TNNLS.2018.2852721
– year: 2013
  ident: ref21
  article-title: A database for fine-grained aircraft recognition
  publication-title: Proc IEEE Conf Comp Vis Pattern Recognit
– ident: ref78
  doi: 10.1109/ICCV.2019.00972
– ident: ref60
  doi: 10.1109/TIP.2015.2423557
– year: 2017
  ident: ref12
  article-title: Improved regularization of convolutional neural networks with cutout
  publication-title: arXiv 1708 04552
– ident: ref76
  doi: 10.1109/TPAMI.2016.2577031
– year: 2015
  ident: ref70
  article-title: Explaining and harnessing adversarial examples
  publication-title: Proc Int Conf Learn Represent
– ident: ref20
  doi: 10.1109/ICCVW.2013.77
– ident: ref18
  doi: 10.1109/ICVGIP.2008.47
– start-page: 1919
  year: 2019
  ident: ref47
  article-title: Meta-weight-net: Learning an explicit mapping for sample weighting
  publication-title: Proc Adv Neural Inform Process Syst
– ident: ref36
  doi: 10.1109/TIP.2020.2989544
– ident: ref49
  doi: 10.1109/ICCV.2019.00041
SSID ssj0014516
Score 2.6897995
Snippet Label smoothing is an effective regularization tool for deep neural networks (DNNs), which generates soft labels by applying a weighted average between the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5984
SubjectTerms Artificial neural networks
Cats
Classification
knowledge distillation
Labels
Noise measurement
noisy labels
online label smoothing
Predictive models
Regularization
Robustness
Smoothing
Smoothing methods
soft labels
Source code
Training
Title Delving Deep Into Label Smoothing
URI https://ieeexplore.ieee.org/document/9464693
https://www.proquest.com/docview/2546693689
https://www.proquest.com/docview/2545599543
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8VnsYDH4WJDoZSaS-TSOskthM_IqBqp4GQBhJvUeycX1aSaqQv_PWcnTTa2DTxFukcx_H5fHe-8-8AvqBkpYwKHWZJhiEnjRwWJhMhckvagKVofS2Cm1s5f-DfHsXjAM77uzCI6JPPcOIefSy_rM3aHZVNFZfkzSVbsEWOW3tXq48YuIKzPrIp0jAls38TkmRqer-4I0cwjiaJi3FxV8CG9m4aior-0Ea-vMpfe7JXNLM9uNkMsc0v-TlZN3piXt6gN773H_Zht7M4g4t2iRzAAKsh7HXWZ9DJ9vMQdn6DJjyE8RUu3VlDcIW4ChZVUwffC43L4MdTTcwlyhE8zK7vL-dhV04hNGQ1NSFJrjVcGiWY1FFsMeZos9QK7RLUVMatLVOhWYKMduMoQSvQFDLSnFl31TL5CNtVXeExBDxKpShFyrUynDpUMWYYFSyx5OWauBzBdDOtuemwxl3Ji2XufQ6mcuJJ7niSdzwZwdf-jVWLs_GftoduXvt23ZSO4HTDubwTxOfcwf0TTWZqBOOeTCLk4iJFhfXat_G4azz59O-eT-CD-3578nIK282vNX4mW6TRZ34RvgJqLNVw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1NT9sw9Imxw8aBbnyIQrcFaZdJpHUS24mP0xhqtxZNWpG4RbHzfKEkCNILv55nJ43Yh6bdIj3bcvz8vvy-AD6iZKWMCh1mSYYhJ4kcFiYTIXJL0oClaH0vgsWlnF7xb9fiegvO-lwYRPTBZzh2n96XX9Zm7Z7KJopLsuaSF_CS5L6I22yt3mfgWs5636ZIw5QU_41TkqnJcvaDTME4GifOy8VdCxvi3rQZFf0ij3yDlT-4shc1FwNYbDbZRpjcjNeNHpvH3-o3_u9fvIHdTucMPreX5C1sYbUHg07_DDrqftiDnWfFCffh9BxX7rUhOEe8C2ZVUwfzQuMq-HlbE3oJcgBXF1-XX6Zh11AhNKQ3NSHRrjVcGiWY1FFsMeZos9QK7ULUVMatLVOhWYKM-HGUoBVoChlpzqxLtkwOYbuqKzyCgEepFKVIuVaG04IqxgyjgiWW7FwTl0OYbI41N121cdf0YpV7q4OpnHCSO5zkHU6G8KmfcddW2vjH2H13rv247kiHMNpgLu9I8SF3Bf8JJjM1hNMeTETkPCNFhfXaj_GV13hy_PeVP8Cr6XIxz-ezy-8n8NrtpX2HGcF2c7_Gd6SZNPq9v5BPv17Yug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delving+Deep+Into+Label+Smoothing&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhang%2C+Chang-Bin&rft.au=Jiang%2C+Peng-Tao&rft.au=Hou%2C+Qibin&rft.au=Wei%2C+Yunchao&rft.date=2021&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=30&rft.spage=5984&rft.epage=5996&rft_id=info:doi/10.1109%2FTIP.2021.3089942&rft_id=info%3Apmid%2F34166191&rft.externalDocID=9464693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon