Algorithms for Leader Selection in Stochastically Forced Consensus Networks
We are interested in assigning a pre-specified number of nodes as leaders in order to minimize the mean-square deviation from consensus in stochastically forced networks. This problem arises in several applications including control of vehicular formations and localization in sensor networks. For ne...
Saved in:
Published in | IEEE transactions on automatic control Vol. 59; no. 7; pp. 1789 - 1802 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We are interested in assigning a pre-specified number of nodes as leaders in order to minimize the mean-square deviation from consensus in stochastically forced networks. This problem arises in several applications including control of vehicular formations and localization in sensor networks. For networks with leaders subject to noise, we show that the Boolean constraints (which indicate whether a node is a leader) are the only source of nonconvexity. By relaxing these constraints to their convex hull we obtain a lower bound on the global optimal value. We also use a simple but efficient greedy algorithm to identify leaders and to compute an upper bound. For networks with leaders that perfectly follow their desired trajectories, we identify an additional source of nonconvexity in the form of a rank constraint. Removal of the rank constraint and relaxation of the Boolean constraints yields a semidefinite program for which we develop a customized algorithm well-suited for large networks. Several examples ranging from regular lattices to random graphs are provided to illustrate the effectiveness of the developed algorithms. |
---|---|
AbstractList | We are interested in assigning a pre-specified number of nodes as leaders in order to minimize the mean-square deviation from consensus in stochastically forced networks. This problem arises in several applications including control of vehicular formations and localization in sensor networks. For networks with leaders subject to noise, we show that the Boolean constraints (which indicate whether a node is a leader) are the only source of nonconvexity. By relaxing these constraints to their convex hull we obtain a lower bound on the global optimal value. We also use a simple but efficient greedy algorithm to identify leaders and to compute an upper bound. For networks with leaders that perfectly follow their desired trajectories, we identify an additional source of nonconvexity in the form of a rank constraint. Removal of the rank constraint and relaxation of the Boolean constraints yields a semidefinite program for which we develop a customized algorithm well-suited for large networks. Several examples ranging from regular lattices to random graphs are provided to illustrate the effectiveness of the developed algorithms. |
Author | Jovanovic, Mihailo R. Fardad, Makan Fu Lin |
Author_xml | – sequence: 1 surname: Fu Lin fullname: Fu Lin email: fulin@mcs.anl.gov organization: Math. & Comput. Sci. Div., Argonne Nat. Lab., Argonne, IL, USA – sequence: 2 givenname: Makan surname: Fardad fullname: Fardad, Makan email: makan@syr.edu organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA – sequence: 3 givenname: Mihailo R. surname: Jovanovic fullname: Jovanovic, Mihailo R. email: mihailo@umn.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA |
BookMark | eNp9kEFPwjAUgBuDiYjeTbws8eJl2Nd2XXckRNRI9ACel9K9SXGs2JYY_r0jEA8cPDUv-b6X1--S9FrXIiE3QIcAtHiYj8ZDRkEMGQfBGD8jfcgylbKM8R7pUwoqLZiSF-QyhFU3SiGgT15HzafzNi7XIamdT6aoK_TJDBs00bo2sW0yi84sdYjW6KbZJRPnDVbJ2LUB27ANyRvGH-e_whU5r3UT8Pr4DsjH5HE-fk6n708v49E0NZyJmILAWlcLZWqQimXKIFMoGWJWLXRFcwMLgzynkkukecFZXRtdyWIBKq9ZJfiA3B_2brz73mKI5doGg02jW3TbUEImcwAmZNGhdyfoym19213XUULSPAcJHSUPlPEuBI91aWzU--9Hr21TAi33jcuucblvXB4bdyI9ETferrXf_afcHhSLiH-4zBWVoPgveziI2A |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1109_TAC_2016_2546180 crossref_primary_10_1016_j_ifacol_2017_08_2271 crossref_primary_10_1109_TSMC_2016_2636240 crossref_primary_10_1016_j_ifacol_2017_08_2078 crossref_primary_10_1088_1742_5468_ad864c crossref_primary_10_1109_TSP_2016_2550005 crossref_primary_10_1016_j_automatica_2016_02_005 crossref_primary_10_1016_j_automatica_2022_110334 crossref_primary_10_1109_TAC_2019_2898549 crossref_primary_10_1109_TNNLS_2019_2900592 crossref_primary_10_1016_j_automatica_2016_07_021 crossref_primary_10_3182_20130904_3_FR_2041_00211 crossref_primary_10_1016_j_neucom_2021_12_105 crossref_primary_10_1109_ACCESS_2022_3178121 crossref_primary_10_1109_TCNS_2020_3006271 crossref_primary_10_1109_TCNS_2018_2820499 crossref_primary_10_1016_j_isatra_2018_03_009 crossref_primary_10_1109_TCNS_2021_3058620 crossref_primary_10_1109_TNSE_2018_2792401 crossref_primary_10_1109_TCST_2016_2550582 crossref_primary_10_1109_TNSE_2017_2754944 crossref_primary_10_1142_S0218348X22500499 crossref_primary_10_1109_LCSYS_2017_2711781 crossref_primary_10_1109_TAC_2018_2874306 crossref_primary_10_1177_26339137221083293 crossref_primary_10_1016_j_ijepes_2020_106224 crossref_primary_10_1109_TAES_2021_3129720 crossref_primary_10_1016_j_ejcon_2015_04_002 crossref_primary_10_1016_j_ifacol_2015_10_321 crossref_primary_10_1109_TCNS_2017_2655731 crossref_primary_10_1109_TCNS_2020_3011814 crossref_primary_10_1109_TCNS_2015_2481138 crossref_primary_10_1038_srep40642 crossref_primary_10_1016_j_physa_2016_11_111 crossref_primary_10_1016_j_ifacol_2017_08_435 crossref_primary_10_1137_140999888 crossref_primary_10_1109_TAC_2015_2454373 crossref_primary_10_1016_j_sysconle_2018_01_009 crossref_primary_10_1109_TCNS_2020_2979884 crossref_primary_10_1088_1402_4896_aca9a3 crossref_primary_10_1109_TCNS_2023_3285872 crossref_primary_10_1109_TCYB_2016_2602358 crossref_primary_10_1038_srep05858 crossref_primary_10_1126_sciadv_aau0999 crossref_primary_10_1209_0295_5075_112_50002 crossref_primary_10_1007_s11071_020_06011_9 crossref_primary_10_3390_en10111906 crossref_primary_10_1109_TCNS_2018_2805639 crossref_primary_10_1080_00207721_2017_1322640 crossref_primary_10_1016_j_sysconle_2024_105945 crossref_primary_10_1109_TCNS_2019_2891011 crossref_primary_10_1002_dac_3583 crossref_primary_10_1016_j_ejcon_2016_05_003 crossref_primary_10_1088_1742_6596_955_1_012038 crossref_primary_10_1109_TAC_2017_2771944 crossref_primary_10_1109_TAC_2020_3000976 crossref_primary_10_1109_TCYB_2018_2868507 crossref_primary_10_1109_TCYB_2018_2888953 crossref_primary_10_1016_j_automatica_2018_10_053 crossref_primary_10_1109_TCYB_2024_3457783 crossref_primary_10_1016_j_sysconle_2016_03_007 crossref_primary_10_1109_TCNS_2018_2825024 crossref_primary_10_1109_TCNS_2016_2520201 crossref_primary_10_1109_TCSI_2022_3233866 crossref_primary_10_1002_oca_2337 crossref_primary_10_1063_5_0020696 crossref_primary_10_1109_MCS_2017_2743518 crossref_primary_10_1109_LRA_2020_2974654 crossref_primary_10_1007_s43684_021_00005_z crossref_primary_10_1109_TNSE_2024_3395710 crossref_primary_10_1115_1_4031175 crossref_primary_10_1109_TITS_2023_3262606 |
Cites_doi | 10.1137/050645452 10.1109/TAC.2010.2056730 10.1109/ACC.2010.5531506 10.1137/060674909 10.1109/MCS.2007.384125 10.1002/j.1538-7305.1970.tb01770.x 10.1109/CDC.2012.6426973 10.1109/TAC.2003.812781 10.1109/CDC.2011.6161482 10.1257/mic.2.1.112 10.1109/TSP.2007.912270 10.1017/CBO9780511804441 10.1109/T-WC.2008.070241 10.1109/TSP.2009.2027741 10.1109/CDC.2012.6426323 10.1109/TAC.2013.2281473 10.1109/CDC.2011.6161507 10.1109/CDC.2012.6426844 10.1109/CDC.2010.5718151 10.1561/2200000016 10.1109/TAC.2008.919548 10.1109/CDC.2004.1428782 10.1109/ACC.2013.6580421 10.1016/0743-7315(89)90021-X 10.1016/j.jpdc.2006.08.010 10.1002/cpe.4330020403 10.1016/j.sysconle.2012.10.014 10.1515/9781400835355 10.1109/MSP.2010.936019 10.1109/ACC.2013.6580577 10.2307/2285509 10.1109/CDC.2011.6160248 10.1109/TAC.2011.2181790 10.1109/CDC.2012.6426070 10.1109/TSP.2008.2007095 10.1109/TAC.2012.2202052 10.1016/j.physd.2013.07.014 10.1109/ACC.2012.6315183 10.1016/j.automatica.2009.09.002 10.1016/j.automatica.2007.07.009 10.1137/0124033 10.1109/CDC.2013.6761082 10.1109/CDC.2006.377282 10.1142/9789814324359_0164 10.1103/PhysRevE.74.036104 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
DOI | 10.1109/TAC.2014.2314223 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 1802 |
ExternalDocumentID | 3378167311 10_1109_TAC_2014_2314223 6780618 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: CMMI-06-44793; CMMI-09-27720; CMMI-0927509 funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
ID | FETCH-LOGICAL-c324t-14efadb8cf168258ce28e62ee5dbad07c1bce370636e07932ffcad69b187f2d43 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Fri Jul 11 05:10:10 EDT 2025 Mon Jun 30 10:20:18 EDT 2025 Tue Jul 01 01:11:46 EDT 2025 Thu Apr 24 23:06:32 EDT 2025 Wed Aug 27 02:52:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | semidefinite programming (SDP) leader selection sensor selection convex optimization consensus networks greedy algorithm variance amplification Alternating direction method of multipliers (ADMMs) performance bounds convex relaxations |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-14efadb8cf168258ce28e62ee5dbad07c1bce370636e07932ffcad69b187f2d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1546077161 |
PQPubID | 85475 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1546077161 proquest_miscellaneous_1567112469 ieee_primary_6780618 crossref_citationtrail_10_1109_TAC_2014_2314223 crossref_primary_10_1109_TAC_2014_2314223 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref17 ref16 ref19 ref18 parikh (ref46) 2013; 1 pasqualetti (ref32) 2013 poulakakis (ref29) 2012 ref50 cybenko (ref4) 1989; 7 ref48 ref47 ref42 ref41 luenberger (ref51) 1968 bertsekas (ref44) 1999 hong (ref43) 2013 mesbahi (ref1) 2010 ref49 ref8 ref9 nocedal (ref53) 2006 xiao (ref10) 2007; 67 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref2 carli (ref7) 2007; 44 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 chen (ref45) 2011 |
References_xml | – ident: ref36 doi: 10.1137/050645452 – ident: ref12 doi: 10.1109/TAC.2010.2056730 – ident: ref11 doi: 10.1109/ACC.2010.5531506 – ident: ref21 doi: 10.1137/060674909 – ident: ref8 doi: 10.1109/MCS.2007.384125 – ident: ref38 doi: 10.1002/j.1538-7305.1970.tb01770.x – year: 2013 ident: ref32 publication-title: Controllability Metrics and Algorithms for Complex Networks – ident: ref23 doi: 10.1109/CDC.2012.6426973 – ident: ref6 doi: 10.1109/TAC.2003.812781 – ident: ref33 doi: 10.1109/CDC.2011.6161482 – ident: ref3 doi: 10.1257/mic.2.1.112 – ident: ref9 doi: 10.1109/TSP.2007.912270 – ident: ref52 doi: 10.1017/CBO9780511804441 – ident: ref41 doi: 10.1109/T-WC.2008.070241 – ident: ref49 doi: 10.1109/TSP.2009.2027741 – ident: ref25 doi: 10.1109/CDC.2012.6426323 – ident: ref17 doi: 10.1109/TAC.2013.2281473 – year: 2012 ident: ref29 publication-title: Node Classification in Networks of Stochastic Evidence Accumulators – ident: ref34 doi: 10.1109/CDC.2011.6161507 – ident: ref24 doi: 10.1109/CDC.2012.6426844 – year: 2006 ident: ref53 publication-title: Numerical Optimization – ident: ref15 doi: 10.1109/CDC.2010.5718151 – ident: ref42 doi: 10.1561/2200000016 – ident: ref20 doi: 10.1109/TAC.2008.919548 – volume: 1 start-page: 123 year: 2013 ident: ref46 article-title: Proximal algorithms publication-title: Found Trends Optim – ident: ref19 doi: 10.1109/CDC.2004.1428782 – year: 2011 ident: ref45 publication-title: Projection onto A Simplex – ident: ref26 doi: 10.1109/ACC.2013.6580421 – year: 1968 ident: ref51 publication-title: Optimization by vector space methods – volume: 7 start-page: 279 year: 1989 ident: ref4 article-title: Dynamic load balancing for distributed memory multiprocessors publication-title: J Parallel Distrib Comput doi: 10.1016/0743-7315(89)90021-X – volume: 67 start-page: 33 year: 2007 ident: ref10 article-title: Distributed average consensus with least-mean-square deviation publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2006.08.010 – ident: ref5 doi: 10.1002/cpe.4330020403 – ident: ref28 doi: 10.1016/j.sysconle.2012.10.014 – year: 2010 ident: ref1 publication-title: Graph Theoretic Methods in Multiagent Networks doi: 10.1515/9781400835355 – ident: ref50 doi: 10.1109/MSP.2010.936019 – ident: ref48 doi: 10.1109/ACC.2013.6580577 – ident: ref2 doi: 10.2307/2285509 – ident: ref16 doi: 10.1109/CDC.2011.6160248 – year: 2013 ident: ref43 article-title: On the linear convergence of the alternating direction method of multipliers publication-title: Mathematical Programming – ident: ref14 doi: 10.1109/TAC.2011.2181790 – ident: ref47 doi: 10.1109/CDC.2012.6426070 – ident: ref39 doi: 10.1109/TSP.2008.2007095 – ident: ref13 doi: 10.1109/TAC.2012.2202052 – ident: ref31 doi: 10.1016/j.physd.2013.07.014 – ident: ref18 doi: 10.1109/ACC.2012.6315183 – ident: ref22 doi: 10.1016/j.automatica.2009.09.002 – volume: 44 start-page: 671 year: 2007 ident: ref7 article-title: Communication constraints in the average consensus problem publication-title: Automatica doi: 10.1016/j.automatica.2007.07.009 – ident: ref35 doi: 10.1137/0124033 – ident: ref30 doi: 10.1109/CDC.2013.6761082 – ident: ref27 doi: 10.1109/CDC.2006.377282 – year: 1999 ident: ref44 publication-title: Nonlinear Programming – ident: ref37 doi: 10.1142/9789814324359_0164 – ident: ref40 doi: 10.1103/PhysRevE.74.036104 |
SSID | ssj0016441 |
Score | 2.4974046 |
Snippet | We are interested in assigning a pre-specified number of nodes as leaders in order to minimize the mean-square deviation from consensus in stochastically... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1789 |
SubjectTerms | Algorithms Automatic control Boolean algebra Convex functions Deviation Greedy algorithms Heuristic Laplace equations Linear programming Networks Position (location) Probability theory Randomness Trajectory Upper bound Vectors |
Title | Algorithms for Leader Selection in Stochastically Forced Consensus Networks |
URI | https://ieeexplore.ieee.org/document/6780618 https://www.proquest.com/docview/1546077161 https://www.proquest.com/docview/1567112469 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_bQQmnVLRQZqZdKzW7iOI59XKGuEAgugMQtiu1xQV2SapM9lF_POMlG_VLFLVKc2JqxPW8843kAn7IcrTbCR1aJLBIcaUnxNIuc8olNEKXOwwXni0t5eiPObrPbLfgy3oVBxC75DKfhsYvlu9quw1HZjDZWMj9qG7bJcevvao0Rg2DX-1039KbGkGSsZ9fzk5DDJaaEZQTn6W8mqONU-Wsj7qzL4jVcbMbVJ5V8n65bM7WPf5RsfO7Ad-HVADPZvJ8Xe7CF1Rt4-UvxwX04ny-_1av79u6hYYRcWU-2ya46YhzSFruv2FVb27uy6c67lz_Zol5ZdCyQfAaGjIZd9knkzVu4WXy9PjmNBmqFyBKCaqNEoC-dUdYnknxEZZErlBwxc6Z0cW4TYzHNCb9IDCX0uPe2dFKbROWeO5G-g52qrvA9MMJ7qTDa68xboYXXcalyJ0sjY41clhOYbaRd2KHueKC_WBad_xHrgvRTBP0Ug34m8Hn84kdfc-M_bfeDuMd2g6QncLhRaDEsyqYgtCjjnBzEZALH42taTiFGUlZYr0MbmRMEFVJ_-PefD-BF6L_P2D2EnXa1xo-ES1pz1E3IJ7-R3vo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6N7QF42ICB6NjAk_aCRNrEcRz7sZpWdWztyzppb1Fsn7eJkqAmfYBfj52kEQM07S1S7MTy-e4--873AZwkKWqpmA20YEnAKDqVonESGGEjHSFymfoLzrM5n16zrzfJzRZ86e_CIGKTfIZD_9jE8k2p1_6obOQMq3M_4hnsOL-fRO1trT5m4D17a3f9_0QflAzlaDE-9VlcbOjQDKM0fuCEGlaVf0xx418mezDbjKxNK_k2XNdqqH_9VbTxqUN_Bbsd0CTjdmW8hi0s3sDLP8oP7sPFeHlbru7ru-8VcdiVtHSb5KqhxnHyIvcFuapLfZdXzYn38ieZlCuNhniaT8-RUZF5m0ZevYXrydnidBp05AqBdhiqDiKGNjdKaBtxt0sUGqlAThETo3ITpjpSGuPUIRiOvogetVbnhksVidRSw-J3sF2UBb4H4hBfzJS0MrGaSWZlmIvU8FzxUCLl-QBGm9nOdFd53BNgLLNmBxLKzMkn8_LJOvkM4HPf40dbdeORtvt-uvt23UwP4HAj0KxTyypzeJGHqdsiRgM47l87hfJRkrzAcu3b8NSBUMblwf-__AmeTxezy-zyfH7xAV74sbT5u4ewXa_WeORQSq0-NovzN4lg4kM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+for+Leader+Selection+in+Stochastically+Forced+Consensus+Networks&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Fu+Lin&rft.au=Fardad%2C+Makan&rft.au=Jovanovic%2C+Mihailo+R.&rft.date=2014-07-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=59&rft.issue=7&rft.spage=1789&rft.epage=1802&rft_id=info:doi/10.1109%2FTAC.2014.2314223&rft.externalDocID=6780618 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |