Algorithms for Leader Selection in Stochastically Forced Consensus Networks

We are interested in assigning a pre-specified number of nodes as leaders in order to minimize the mean-square deviation from consensus in stochastically forced networks. This problem arises in several applications including control of vehicular formations and localization in sensor networks. For ne...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 59; no. 7; pp. 1789 - 1802
Main Authors Fu Lin, Fardad, Makan, Jovanovic, Mihailo R.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We are interested in assigning a pre-specified number of nodes as leaders in order to minimize the mean-square deviation from consensus in stochastically forced networks. This problem arises in several applications including control of vehicular formations and localization in sensor networks. For networks with leaders subject to noise, we show that the Boolean constraints (which indicate whether a node is a leader) are the only source of nonconvexity. By relaxing these constraints to their convex hull we obtain a lower bound on the global optimal value. We also use a simple but efficient greedy algorithm to identify leaders and to compute an upper bound. For networks with leaders that perfectly follow their desired trajectories, we identify an additional source of nonconvexity in the form of a rank constraint. Removal of the rank constraint and relaxation of the Boolean constraints yields a semidefinite program for which we develop a customized algorithm well-suited for large networks. Several examples ranging from regular lattices to random graphs are provided to illustrate the effectiveness of the developed algorithms.
AbstractList We are interested in assigning a pre-specified number of nodes as leaders in order to minimize the mean-square deviation from consensus in stochastically forced networks. This problem arises in several applications including control of vehicular formations and localization in sensor networks. For networks with leaders subject to noise, we show that the Boolean constraints (which indicate whether a node is a leader) are the only source of nonconvexity. By relaxing these constraints to their convex hull we obtain a lower bound on the global optimal value. We also use a simple but efficient greedy algorithm to identify leaders and to compute an upper bound. For networks with leaders that perfectly follow their desired trajectories, we identify an additional source of nonconvexity in the form of a rank constraint. Removal of the rank constraint and relaxation of the Boolean constraints yields a semidefinite program for which we develop a customized algorithm well-suited for large networks. Several examples ranging from regular lattices to random graphs are provided to illustrate the effectiveness of the developed algorithms.
Author Jovanovic, Mihailo R.
Fardad, Makan
Fu Lin
Author_xml – sequence: 1
  surname: Fu Lin
  fullname: Fu Lin
  email: fulin@mcs.anl.gov
  organization: Math. & Comput. Sci. Div., Argonne Nat. Lab., Argonne, IL, USA
– sequence: 2
  givenname: Makan
  surname: Fardad
  fullname: Fardad, Makan
  email: makan@syr.edu
  organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA
– sequence: 3
  givenname: Mihailo R.
  surname: Jovanovic
  fullname: Jovanovic, Mihailo R.
  email: mihailo@umn.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA
BookMark eNp9kEFPwjAUgBuDiYjeTbws8eJl2Nd2XXckRNRI9ACel9K9SXGs2JYY_r0jEA8cPDUv-b6X1--S9FrXIiE3QIcAtHiYj8ZDRkEMGQfBGD8jfcgylbKM8R7pUwoqLZiSF-QyhFU3SiGgT15HzafzNi7XIamdT6aoK_TJDBs00bo2sW0yi84sdYjW6KbZJRPnDVbJ2LUB27ANyRvGH-e_whU5r3UT8Pr4DsjH5HE-fk6n708v49E0NZyJmILAWlcLZWqQimXKIFMoGWJWLXRFcwMLgzynkkukecFZXRtdyWIBKq9ZJfiA3B_2brz73mKI5doGg02jW3TbUEImcwAmZNGhdyfoym19213XUULSPAcJHSUPlPEuBI91aWzU--9Hr21TAi33jcuucblvXB4bdyI9ETferrXf_afcHhSLiH-4zBWVoPgveziI2A
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_TAC_2016_2546180
crossref_primary_10_1016_j_ifacol_2017_08_2271
crossref_primary_10_1109_TSMC_2016_2636240
crossref_primary_10_1016_j_ifacol_2017_08_2078
crossref_primary_10_1088_1742_5468_ad864c
crossref_primary_10_1109_TSP_2016_2550005
crossref_primary_10_1016_j_automatica_2016_02_005
crossref_primary_10_1016_j_automatica_2022_110334
crossref_primary_10_1109_TAC_2019_2898549
crossref_primary_10_1109_TNNLS_2019_2900592
crossref_primary_10_1016_j_automatica_2016_07_021
crossref_primary_10_3182_20130904_3_FR_2041_00211
crossref_primary_10_1016_j_neucom_2021_12_105
crossref_primary_10_1109_ACCESS_2022_3178121
crossref_primary_10_1109_TCNS_2020_3006271
crossref_primary_10_1109_TCNS_2018_2820499
crossref_primary_10_1016_j_isatra_2018_03_009
crossref_primary_10_1109_TCNS_2021_3058620
crossref_primary_10_1109_TNSE_2018_2792401
crossref_primary_10_1109_TCST_2016_2550582
crossref_primary_10_1109_TNSE_2017_2754944
crossref_primary_10_1142_S0218348X22500499
crossref_primary_10_1109_LCSYS_2017_2711781
crossref_primary_10_1109_TAC_2018_2874306
crossref_primary_10_1177_26339137221083293
crossref_primary_10_1016_j_ijepes_2020_106224
crossref_primary_10_1109_TAES_2021_3129720
crossref_primary_10_1016_j_ejcon_2015_04_002
crossref_primary_10_1016_j_ifacol_2015_10_321
crossref_primary_10_1109_TCNS_2017_2655731
crossref_primary_10_1109_TCNS_2020_3011814
crossref_primary_10_1109_TCNS_2015_2481138
crossref_primary_10_1038_srep40642
crossref_primary_10_1016_j_physa_2016_11_111
crossref_primary_10_1016_j_ifacol_2017_08_435
crossref_primary_10_1137_140999888
crossref_primary_10_1109_TAC_2015_2454373
crossref_primary_10_1016_j_sysconle_2018_01_009
crossref_primary_10_1109_TCNS_2020_2979884
crossref_primary_10_1088_1402_4896_aca9a3
crossref_primary_10_1109_TCNS_2023_3285872
crossref_primary_10_1109_TCYB_2016_2602358
crossref_primary_10_1038_srep05858
crossref_primary_10_1126_sciadv_aau0999
crossref_primary_10_1209_0295_5075_112_50002
crossref_primary_10_1007_s11071_020_06011_9
crossref_primary_10_3390_en10111906
crossref_primary_10_1109_TCNS_2018_2805639
crossref_primary_10_1080_00207721_2017_1322640
crossref_primary_10_1016_j_sysconle_2024_105945
crossref_primary_10_1109_TCNS_2019_2891011
crossref_primary_10_1002_dac_3583
crossref_primary_10_1016_j_ejcon_2016_05_003
crossref_primary_10_1088_1742_6596_955_1_012038
crossref_primary_10_1109_TAC_2017_2771944
crossref_primary_10_1109_TAC_2020_3000976
crossref_primary_10_1109_TCYB_2018_2868507
crossref_primary_10_1109_TCYB_2018_2888953
crossref_primary_10_1016_j_automatica_2018_10_053
crossref_primary_10_1109_TCYB_2024_3457783
crossref_primary_10_1016_j_sysconle_2016_03_007
crossref_primary_10_1109_TCNS_2018_2825024
crossref_primary_10_1109_TCNS_2016_2520201
crossref_primary_10_1109_TCSI_2022_3233866
crossref_primary_10_1002_oca_2337
crossref_primary_10_1063_5_0020696
crossref_primary_10_1109_MCS_2017_2743518
crossref_primary_10_1109_LRA_2020_2974654
crossref_primary_10_1007_s43684_021_00005_z
crossref_primary_10_1109_TNSE_2024_3395710
crossref_primary_10_1115_1_4031175
crossref_primary_10_1109_TITS_2023_3262606
Cites_doi 10.1137/050645452
10.1109/TAC.2010.2056730
10.1109/ACC.2010.5531506
10.1137/060674909
10.1109/MCS.2007.384125
10.1002/j.1538-7305.1970.tb01770.x
10.1109/CDC.2012.6426973
10.1109/TAC.2003.812781
10.1109/CDC.2011.6161482
10.1257/mic.2.1.112
10.1109/TSP.2007.912270
10.1017/CBO9780511804441
10.1109/T-WC.2008.070241
10.1109/TSP.2009.2027741
10.1109/CDC.2012.6426323
10.1109/TAC.2013.2281473
10.1109/CDC.2011.6161507
10.1109/CDC.2012.6426844
10.1109/CDC.2010.5718151
10.1561/2200000016
10.1109/TAC.2008.919548
10.1109/CDC.2004.1428782
10.1109/ACC.2013.6580421
10.1016/0743-7315(89)90021-X
10.1016/j.jpdc.2006.08.010
10.1002/cpe.4330020403
10.1016/j.sysconle.2012.10.014
10.1515/9781400835355
10.1109/MSP.2010.936019
10.1109/ACC.2013.6580577
10.2307/2285509
10.1109/CDC.2011.6160248
10.1109/TAC.2011.2181790
10.1109/CDC.2012.6426070
10.1109/TSP.2008.2007095
10.1109/TAC.2012.2202052
10.1016/j.physd.2013.07.014
10.1109/ACC.2012.6315183
10.1016/j.automatica.2009.09.002
10.1016/j.automatica.2007.07.009
10.1137/0124033
10.1109/CDC.2013.6761082
10.1109/CDC.2006.377282
10.1142/9789814324359_0164
10.1103/PhysRevE.74.036104
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
DOI 10.1109/TAC.2014.2314223
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 1802
ExternalDocumentID 3378167311
10_1109_TAC_2014_2314223
6780618
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CMMI-06-44793; CMMI-09-27720; CMMI-0927509
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
ID FETCH-LOGICAL-c324t-14efadb8cf168258ce28e62ee5dbad07c1bce370636e07932ffcad69b187f2d43
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Fri Jul 11 05:10:10 EDT 2025
Mon Jun 30 10:20:18 EDT 2025
Tue Jul 01 01:11:46 EDT 2025
Thu Apr 24 23:06:32 EDT 2025
Wed Aug 27 02:52:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords semidefinite programming (SDP)
leader selection
sensor selection
convex optimization
consensus networks
greedy algorithm
variance amplification
Alternating direction method of multipliers (ADMMs)
performance bounds
convex relaxations
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-14efadb8cf168258ce28e62ee5dbad07c1bce370636e07932ffcad69b187f2d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1546077161
PQPubID 85475
PageCount 14
ParticipantIDs proquest_journals_1546077161
proquest_miscellaneous_1567112469
ieee_primary_6780618
crossref_citationtrail_10_1109_TAC_2014_2314223
crossref_primary_10_1109_TAC_2014_2314223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref17
ref16
ref19
ref18
parikh (ref46) 2013; 1
pasqualetti (ref32) 2013
poulakakis (ref29) 2012
ref50
cybenko (ref4) 1989; 7
ref48
ref47
ref42
ref41
luenberger (ref51) 1968
bertsekas (ref44) 1999
hong (ref43) 2013
mesbahi (ref1) 2010
ref49
ref8
ref9
nocedal (ref53) 2006
xiao (ref10) 2007; 67
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
carli (ref7) 2007; 44
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
chen (ref45) 2011
References_xml – ident: ref36
  doi: 10.1137/050645452
– ident: ref12
  doi: 10.1109/TAC.2010.2056730
– ident: ref11
  doi: 10.1109/ACC.2010.5531506
– ident: ref21
  doi: 10.1137/060674909
– ident: ref8
  doi: 10.1109/MCS.2007.384125
– ident: ref38
  doi: 10.1002/j.1538-7305.1970.tb01770.x
– year: 2013
  ident: ref32
  publication-title: Controllability Metrics and Algorithms for Complex Networks
– ident: ref23
  doi: 10.1109/CDC.2012.6426973
– ident: ref6
  doi: 10.1109/TAC.2003.812781
– ident: ref33
  doi: 10.1109/CDC.2011.6161482
– ident: ref3
  doi: 10.1257/mic.2.1.112
– ident: ref9
  doi: 10.1109/TSP.2007.912270
– ident: ref52
  doi: 10.1017/CBO9780511804441
– ident: ref41
  doi: 10.1109/T-WC.2008.070241
– ident: ref49
  doi: 10.1109/TSP.2009.2027741
– ident: ref25
  doi: 10.1109/CDC.2012.6426323
– ident: ref17
  doi: 10.1109/TAC.2013.2281473
– year: 2012
  ident: ref29
  publication-title: Node Classification in Networks of Stochastic Evidence Accumulators
– ident: ref34
  doi: 10.1109/CDC.2011.6161507
– ident: ref24
  doi: 10.1109/CDC.2012.6426844
– year: 2006
  ident: ref53
  publication-title: Numerical Optimization
– ident: ref15
  doi: 10.1109/CDC.2010.5718151
– ident: ref42
  doi: 10.1561/2200000016
– ident: ref20
  doi: 10.1109/TAC.2008.919548
– volume: 1
  start-page: 123
  year: 2013
  ident: ref46
  article-title: Proximal algorithms
  publication-title: Found Trends Optim
– ident: ref19
  doi: 10.1109/CDC.2004.1428782
– year: 2011
  ident: ref45
  publication-title: Projection onto A Simplex
– ident: ref26
  doi: 10.1109/ACC.2013.6580421
– year: 1968
  ident: ref51
  publication-title: Optimization by vector space methods
– volume: 7
  start-page: 279
  year: 1989
  ident: ref4
  article-title: Dynamic load balancing for distributed memory multiprocessors
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/0743-7315(89)90021-X
– volume: 67
  start-page: 33
  year: 2007
  ident: ref10
  article-title: Distributed average consensus with least-mean-square deviation
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2006.08.010
– ident: ref5
  doi: 10.1002/cpe.4330020403
– ident: ref28
  doi: 10.1016/j.sysconle.2012.10.014
– year: 2010
  ident: ref1
  publication-title: Graph Theoretic Methods in Multiagent Networks
  doi: 10.1515/9781400835355
– ident: ref50
  doi: 10.1109/MSP.2010.936019
– ident: ref48
  doi: 10.1109/ACC.2013.6580577
– ident: ref2
  doi: 10.2307/2285509
– ident: ref16
  doi: 10.1109/CDC.2011.6160248
– year: 2013
  ident: ref43
  article-title: On the linear convergence of the alternating direction method of multipliers
  publication-title: Mathematical Programming
– ident: ref14
  doi: 10.1109/TAC.2011.2181790
– ident: ref47
  doi: 10.1109/CDC.2012.6426070
– ident: ref39
  doi: 10.1109/TSP.2008.2007095
– ident: ref13
  doi: 10.1109/TAC.2012.2202052
– ident: ref31
  doi: 10.1016/j.physd.2013.07.014
– ident: ref18
  doi: 10.1109/ACC.2012.6315183
– ident: ref22
  doi: 10.1016/j.automatica.2009.09.002
– volume: 44
  start-page: 671
  year: 2007
  ident: ref7
  article-title: Communication constraints in the average consensus problem
  publication-title: Automatica
  doi: 10.1016/j.automatica.2007.07.009
– ident: ref35
  doi: 10.1137/0124033
– ident: ref30
  doi: 10.1109/CDC.2013.6761082
– ident: ref27
  doi: 10.1109/CDC.2006.377282
– year: 1999
  ident: ref44
  publication-title: Nonlinear Programming
– ident: ref37
  doi: 10.1142/9789814324359_0164
– ident: ref40
  doi: 10.1103/PhysRevE.74.036104
SSID ssj0016441
Score 2.4974046
Snippet We are interested in assigning a pre-specified number of nodes as leaders in order to minimize the mean-square deviation from consensus in stochastically...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1789
SubjectTerms Algorithms
Automatic control
Boolean algebra
Convex functions
Deviation
Greedy algorithms
Heuristic
Laplace equations
Linear programming
Networks
Position (location)
Probability theory
Randomness
Trajectory
Upper bound
Vectors
Title Algorithms for Leader Selection in Stochastically Forced Consensus Networks
URI https://ieeexplore.ieee.org/document/6780618
https://www.proquest.com/docview/1546077161
https://www.proquest.com/docview/1567112469
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_bQQmnVLRQZqZdKzW7iOI59XKGuEAgugMQtiu1xQV2SapM9lF_POMlG_VLFLVKc2JqxPW8843kAn7IcrTbCR1aJLBIcaUnxNIuc8olNEKXOwwXni0t5eiPObrPbLfgy3oVBxC75DKfhsYvlu9quw1HZjDZWMj9qG7bJcevvao0Rg2DX-1039KbGkGSsZ9fzk5DDJaaEZQTn6W8mqONU-Wsj7qzL4jVcbMbVJ5V8n65bM7WPf5RsfO7Ad-HVADPZvJ8Xe7CF1Rt4-UvxwX04ny-_1av79u6hYYRcWU-2ya46YhzSFruv2FVb27uy6c67lz_Zol5ZdCyQfAaGjIZd9knkzVu4WXy9PjmNBmqFyBKCaqNEoC-dUdYnknxEZZErlBwxc6Z0cW4TYzHNCb9IDCX0uPe2dFKbROWeO5G-g52qrvA9MMJ7qTDa68xboYXXcalyJ0sjY41clhOYbaRd2KHueKC_WBad_xHrgvRTBP0Ug34m8Hn84kdfc-M_bfeDuMd2g6QncLhRaDEsyqYgtCjjnBzEZALH42taTiFGUlZYr0MbmRMEFVJ_-PefD-BF6L_P2D2EnXa1xo-ES1pz1E3IJ7-R3vo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6N7QF42ICB6NjAk_aCRNrEcRz7sZpWdWztyzppb1Fsn7eJkqAmfYBfj52kEQM07S1S7MTy-e4--873AZwkKWqpmA20YEnAKDqVonESGGEjHSFymfoLzrM5n16zrzfJzRZ86e_CIGKTfIZD_9jE8k2p1_6obOQMq3M_4hnsOL-fRO1trT5m4D17a3f9_0QflAzlaDE-9VlcbOjQDKM0fuCEGlaVf0xx418mezDbjKxNK_k2XNdqqH_9VbTxqUN_Bbsd0CTjdmW8hi0s3sDLP8oP7sPFeHlbru7ru-8VcdiVtHSb5KqhxnHyIvcFuapLfZdXzYn38ieZlCuNhniaT8-RUZF5m0ZevYXrydnidBp05AqBdhiqDiKGNjdKaBtxt0sUGqlAThETo3ITpjpSGuPUIRiOvogetVbnhksVidRSw-J3sF2UBb4H4hBfzJS0MrGaSWZlmIvU8FzxUCLl-QBGm9nOdFd53BNgLLNmBxLKzMkn8_LJOvkM4HPf40dbdeORtvt-uvt23UwP4HAj0KxTyypzeJGHqdsiRgM47l87hfJRkrzAcu3b8NSBUMblwf-__AmeTxezy-zyfH7xAV74sbT5u4ewXa_WeORQSq0-NovzN4lg4kM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+for+Leader+Selection+in+Stochastically+Forced+Consensus+Networks&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Fu+Lin&rft.au=Fardad%2C+Makan&rft.au=Jovanovic%2C+Mihailo+R.&rft.date=2014-07-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=59&rft.issue=7&rft.spage=1789&rft.epage=1802&rft_id=info:doi/10.1109%2FTAC.2014.2314223&rft.externalDocID=6780618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon