OTD/OTX2 functional equivalence depends on 5' and 3' UTR-mediated control of Otx2 mRNA for nucleo-cytoplasmic export and epiblast-restricted translation

How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory control mechanisms. Previous studies in mouse have suggested that, despite the homeodomain-restricted homology, Drosophila orthodenticle (otd...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 128; no. 23; pp. 4801 - 4813
Main Authors Acampora, D, Boyl, P P, Signore, M, Martinez-Barbera, J P, Ilengo, C, Puelles, E, Annino, A, Reichert, H, Corte, G, Simeone, A
Format Journal Article
LanguageEnglish
Published England 01.12.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory control mechanisms. Previous studies in mouse have suggested that, despite the homeodomain-restricted homology, Drosophila orthodenticle (otd) and murine Otx1 genes share functional equivalence and that translation of Otx2 mRNA in epiblast and neuroectoderm might require a cell type-specific post-transcriptional control depending on its 5' and 3' untranslated sequences (UTRs). In order to study whether OTD is functionally equivalent to OTX2 and whether synthesis of OTD in epiblast is molecularly dependent on the post-transcriptional control of Otx2 mRNA, we generated a first mouse model (otd(2)) in which an Otx2 region including 213 bp of the 5' UTR, exons, introns and the 3' UTR was replaced by an otd cDNA and a second mutant (otd(2FL)) replacing only exons and introns of Otx2 with the otd coding sequence fused to intact 5' and 3' UTRs of Otx2. otd(2) and otd(2FL) mRNAs were properly transcribed under the Otx2 transcriptional control, but mRNA translation in epiblast and neuroectoderm occurred only in otd(2FL) mutants. Phenotypic analysis revealed that visceral endoderm (VE)-restricted translation of otd(2) mRNA was sufficient to rescue Otx2 requirement for early anterior patterning and proper gastrulation but it failed to maintain forebrain and midbrain identity. Importantly, epiblast and neuroectoderm translation of otd(2FL) mRNA rescued maintenance of anterior patterning as it did in a third mouse model replacing, as in otd(2FL), exons and introns of Otx2 with an Otx2 cDNA (Otx2(2c)). The molecular analysis has revealed that Otx2 5' and 3' UTR sequences, deleted in the otd(2) mRNA, are required for nucleo-cytoplasmic export and epiblast-restricted translation. Indeed, these molecular impairments were completely rescued in otd(2FL) and Otx2(2c) mutants. These data provide novel in vivo evidence supporting the concept that during evolution pre-existing gene functions have been recruited into new developmental pathways by modifying their regulatory control.
AbstractList How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory control mechanisms. Previous studies in mouse have suggested that, despite the homeodomain-restricted homology, Drosophila orthodenticle (otd) and murine Otx1 genes share functional equivalence and that translation of Otx2 mRNA in epiblast and neuroectoderm might require a cell type-specific post-transcriptional control depending on its 5′ and 3′ untranslated sequences (UTRs). In order to study whether OTD is functionally equivalent to OTX2 and whether synthesis of OTD in epiblast is molecularly dependent on the post-transcriptional control of Otx2 mRNA, we generated a first mouse model (otd2) in which an Otx2 region including 213 bp of the 5′ UTR, exons, introns and the 3′ UTR was replaced by an otd cDNA and a second mutant (otd2FL) replacing only exons and introns of Otx2 with the otd coding sequence fused to intact 5′ and 3′ UTRs of Otx2. otd2 and otd2FL mRNAs were properly transcribed under the Otx2 transcriptional control, but mRNA translation in epiblast and neuroectoderm occurred only in otd2FL mutants. Phenotypic analysis revealed that visceral endoderm (VE)-restricted translation of otd2 mRNA was sufficient to rescue Otx2 requirement for early anterior patterning and proper gastrulation but it failed to maintain forebrain and midbrain identity. Importantly, epiblast and neuroectoderm translation of otd2FL mRNA rescued maintenance of anterior patterning as it did in a third mouse model replacing, as in otd2FL, exons and introns of Otx2 with an Otx2 cDNA (Otx22c). The molecular analysis has revealed that Otx2 5′ and 3′ UTR sequences, deleted in the otd2 mRNA, are required for nucleo-cytoplasmic export and epiblast-restricted translation. Indeed, these molecular impairments were completely rescued in otd2FL and Otx22c mutants. These data provide novel in vivo evidence supporting the concept that during evolution pre-existing gene functions have been recruited into new developmental pathways by modifying their regulatory control.
How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory control mechanisms. Previous studies in mouse have suggested that, despite the homeodomain-restricted homology, Drosophila orthodenticle (otd) and murine Otx1 genes share functional equivalence and that translation of Otx2 mRNA in epiblast and neuroectoderm might require a cell type-specific post-transcriptional control depending on its 5' and 3' untranslated sequences (UTRs). In order to study whether OTD is functionally equivalent to OTX2 and whether synthesis of OTD in epiblast is molecularly dependent on the post-transcriptional control of Otx2 mRNA, we generated a first mouse model (otd(2)) in which an Otx2 region including 213 bp of the 5' UTR, exons, introns and the 3' UTR was replaced by an otd cDNA and a second mutant (otd(2FL)) replacing only exons and introns of Otx2 with the otd coding sequence fused to intact 5' and 3' UTRs of Otx2. otd(2) and otd(2FL) mRNAs were properly transcribed under the Otx2 transcriptional control, but mRNA translation in epiblast and neuroectoderm occurred only in otd(2FL) mutants. Phenotypic analysis revealed that visceral endoderm (VE)-restricted translation of otd(2) mRNA was sufficient to rescue Otx2 requirement for early anterior patterning and proper gastrulation but it failed to maintain forebrain and midbrain identity. Importantly, epiblast and neuroectoderm translation of otd(2FL) mRNA rescued maintenance of anterior patterning as it did in a third mouse model replacing, as in otd(2FL), exons and introns of Otx2 with an Otx2 cDNA (Otx2(2c)). The molecular analysis has revealed that Otx2 5' and 3' UTR sequences, deleted in the otd(2) mRNA, are required for nucleo-cytoplasmic export and epiblast-restricted translation. Indeed, these molecular impairments were completely rescued in otd(2FL) and Otx2(2c) mutants. These data provide novel in vivo evidence supporting the concept that during evolution pre-existing gene functions have been recruited into new developmental pathways by modifying their regulatory control.
How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory control mechanisms. Previous studies in mouse have suggested that, despite the homeodomain-restricted homology, Drosophila orthodenticle (otd) and murine Otx1 genes share functional equivalence and that translation of Otx2 mRNA in epiblast and neuroectoderm might require a cell type-specific post-transcriptional control depending on its 5' and 3' untranslated sequences (UTRs). In order to study whether OTD is functionally equivalent to OTX2 and whether synthesis of OTD in epiblast is molecularly dependent on the post-transcriptional control of Otx2 mRNA, we generated a first mouse model (otd super(2)) in which an Otx2 region including 213 bp of the 5' UTR, exons, introns and the 3' UTR was replaced by an otd cDNA and a second mutant (otd super(2FL)) replacing only exons and introns of Otx2 with the otd coding sequence fused to intact 5' and 3' UTRs of Otx2. otd super(2) and otd super(2FL) mRNAs were properly transcribed under the Otx2 transcriptional control, but mRNA translation in epiblast and neuroectoderm occurred only in otd super(2FL) mutants. Phenotypic analysis revealed that visceral endoderm (VE)-restricted translation of otd super(2) mRNA was sufficient to rescue Otx2 requirement for early anterior patterning and proper gastrulation but it failed to maintain forebrain and midbrain identity. Importantly, epiblast and neuroectoderm translation of otd super(2FL) mRNA rescued maintenance of anterior patterning as it did in a third mouse model replacing, as in otd super(2FL), exons and introns of Otx2 with an Otx2 cDNA (Otx2 super(2c)). The molecular analysis has revealed that Otx2 5' and 3' UTR sequences, deleted in the otd super(2) mRNA, are required for nucleo-cytoplasmic export and epiblast-restricted translation. Indeed, these molecular impairments were completely rescued in otd super(2FL) and Otx2 super(2c) mutants. These data provide novel in vivo evidence supporting the concept that during evolution pre-existing gene functions have been recruited into new developmental pathways by modifying their regulatory control.
Author Ilengo, C
Corte, G
Signore, M
Martinez-Barbera, J P
Puelles, E
Reichert, H
Annino, A
Simeone, A
Acampora, D
Boyl, P P
Author_xml – sequence: 1
  givenname: D
  surname: Acampora
  fullname: Acampora, D
  organization: MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, New Hunts House, London SE1 9RT, UK
– sequence: 2
  givenname: P P
  surname: Boyl
  fullname: Boyl, P P
– sequence: 3
  givenname: M
  surname: Signore
  fullname: Signore, M
– sequence: 4
  givenname: J P
  surname: Martinez-Barbera
  fullname: Martinez-Barbera, J P
– sequence: 5
  givenname: C
  surname: Ilengo
  fullname: Ilengo, C
– sequence: 6
  givenname: E
  surname: Puelles
  fullname: Puelles, E
– sequence: 7
  givenname: A
  surname: Annino
  fullname: Annino, A
– sequence: 8
  givenname: H
  surname: Reichert
  fullname: Reichert, H
– sequence: 9
  givenname: G
  surname: Corte
  fullname: Corte, G
– sequence: 10
  givenname: A
  surname: Simeone
  fullname: Simeone, A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11731460$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1r3DAUFCWl2aQ991Z0ak7e1YdtSceQpkkhdCFsoDejfX4GF1lyJDkk_6Q_N9pmocee3vDevGGYOSMnPngk5DNnay5qsenxqQC9FnJda8bfkRWvlaoMF-aErJhpWMWN4afkLKXfjDHZKvWBnHKuJK9btiJ_trtvm-3ul6DD4iGPwVtH8XEZn6xDD0h7nNH3iQZPmwtqfU_lBX3Y3VcT9qPN2FMIPsfgaBjoNj8LOt3_vKRDiNQv4DBU8JLD7GyaRqD4PIeY_8rgPO7LNlcRU44jHKRytD45e7DxkbwfrEv46TjPycP3693VbXW3vflxdXlXgRR1rrhgFqCxuAeplYIWuNVatlbVVtfYCCt7RDGolmO5D7C3BgaoedNIYILJc_L1TXeO4XEpVrppTIDOWY9hSZ0SkhuuzX-JXAtlSsKFuHkjQgwpRRy6OY6TjS8dZ92hta60VoDuhOwOrZWPL0fpZV9i_cc_1iRfAeollmU
CitedBy_id crossref_primary_10_1007_s00427_006_0064_9
crossref_primary_10_1098_rstb_2015_0045
crossref_primary_10_1016_j_mod_2011_11_001
crossref_primary_10_1242_dev_114900
crossref_primary_10_1016_S1534_5807_03_00293_4
crossref_primary_10_1016_j_ydbio_2006_06_014
crossref_primary_10_1186_1471_213X_7_122
crossref_primary_10_1002_bies_20062
crossref_primary_10_1073_pnas_0604686103
crossref_primary_10_1007_s12038_014_9444_x
crossref_primary_10_1016_j_febslet_2011_05_006
crossref_primary_10_1016_j_ydbio_2010_11_004
crossref_primary_10_1016_S1567_133X_03_00056_5
crossref_primary_10_1046_j_1471_4159_2003_01583_x
crossref_primary_10_1002_dvdy_22782
crossref_primary_10_1002_jcp_21944
crossref_primary_10_1016_j_modgep_2007_01_005
crossref_primary_10_1016_S1467_8039_03_00007_0
crossref_primary_10_1073_pnas_1918797117
crossref_primary_10_1186_1749_8104_2_12
crossref_primary_10_1016_j_ydbio_2010_03_013
crossref_primary_10_1016_j_brainresbull_2005_02_005
crossref_primary_10_1016_S0012_1606_03_00244_6
crossref_primary_10_1016_S0959_437X_02_00318_0
crossref_primary_10_1038_s41586_022_05246_3
crossref_primary_10_1016_S0166_2236_00_02095_6
crossref_primary_10_1006_geno_2002_6854
crossref_primary_10_1093_chemse_bjw002
crossref_primary_10_1016_j_mod_2009_07_003
Cites_doi 10.1016/0168-9525(96)81383-7
10.1242/dev.125.9.1703
10.1002/bies.950180314
10.1038/ng1096-218
10.1242/dev.125.22.4521
10.1111/j.1432-1033.1992.tb16870.x
10.1038/35011536
10.1093/icb/34.4.533
10.1073/pnas.95.7.3737
10.1242/dev.124.18.3639
10.1038/373111a0
10.1016/S0168-9525(98)01488-7
10.1038/358687a0
10.1016/S0168-9525(00)02000-X
10.1016/0168-9525(94)90033-7
10.1016/0925-4773(96)00544-8
10.1016/S0092-8674(00)80560-7
10.1016/S0301-0082(00)00042-3
10.1242/jcs.s2-72.285.51
10.1242/dev.125.9.1691
10.1242/dev.122.1.243
10.1038/276565a0
10.1016/0925-4773(94)90062-0
10.1093/emboj/17.23.6790
10.1146/annurev.neuro.21.1.445
10.1242/dev.126.7.1417
10.1101/gad.9.21.2646
10.1242/dev.125.24.5091
10.1002/j.1460-2075.1993.tb05935.x
10.1038/380037a0
10.1016/S0168-9525(97)81401-1
10.1242/dev.126.11.2309
10.1016/S0959-4388(99)00002-1
10.1146/annurev.neuro.20.1.483
10.1016/S0925-4773(97)00161-5
10.1038/35053516
10.1016/S0166-2236(98)01387-3
10.1242/dev.125.5.845
10.1126/science.274.5290.1109
10.1016/0092-8674(94)90290-9
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
P64
RC3
7X8
DOI 10.1242/dev.128.23.4801
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
EndPage 4813
ExternalDocumentID 10_1242_dev_128_23_4801
11731460
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0R~
186
18M
2WC
34G
39C
3O-
4.4
53G
5GY
5RE
5VS
85S
9M8
AAFWJ
ABTAH
ABZEH
ACGFS
ACPRK
ACREN
ADBBV
ADFRT
AENEX
AFFNX
AGCDD
AGGIJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F20
F5P
F9R
GX1
H13
HZ~
H~9
INIJC
KQ8
MVM
NPM
O9-
OHT
OK1
P2P
R.V
RCB
RHF
RHI
SJN
TR2
TWZ
UPT
UQL
VH1
W8F
WH7
WOQ
X7M
XJT
XOL
XSW
ZCG
ZGI
ZXP
ZY4
AAYXX
CITATION
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c324t-120acc5aebc3877c6c1a8836a74a84e52a3dee2f761e877fcba9cfc41553c0203
ISSN 0950-1991
IngestDate Thu Oct 24 23:18:54 EDT 2024
Fri Oct 25 11:47:09 EDT 2024
Fri Dec 06 04:39:44 EST 2024
Sat Sep 28 08:29:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c324t-120acc5aebc3877c6c1a8836a74a84e52a3dee2f761e877fcba9cfc41553c0203
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 11731460
PQID 18279003
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_72319189
proquest_miscellaneous_18279003
crossref_primary_10_1242_dev_128_23_4801
pubmed_primary_11731460
PublicationCentury 2000
PublicationDate 2001-12-01
PublicationDateYYYYMMDD 2001-12-01
PublicationDate_xml – month: 12
  year: 2001
  text: 2001-12-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2001
References 2021042604084662100_SIMEONE-ETAL-1993
2021042604084662100_SIMEONE-ETAL-1992
2021042604084662100_MORSLI-ETAL-1999
2021042604084662100_FINKELSTEIN-AND-BONCINELLI-1994
2021042604084662100_LEUZINGER-ETAL-1998
2021042604084662100_ACAMPORA-ETAL-1995
2021042604084662100_ACAMPORA-ETAL-1998B
2021042604084662100_PILO-BOYL-ETAL-2001
2021042604084662100_ACAMPORA-ETAL-1998A
2021042604084662100_ACAMPORA-ETAL-1999
2021042604084662100_ACAMPORA-ETAL-1996
2021042604084662100_ACAMPORA-ETAL-1997
2021042604084662100_GARSTANG-1928
2021042604084662100_RUBENSTEIN-ETAL-1998
2021042604084662100_PETERSON-1995
2021042604084662100_JOYNER-1996
2021042604084662100_REICHERT-AND-SIMEONE-1999
2021042604084662100_RHINN-ETAL-1998
2021042604084662100_ACAMPORA-AND-SIMEONE-1999
2021042604084662100_LI-ETAL-1994
2021042604084662100_LEWIS-1978
2021042604084662100_LORENI-AND-AMALDI-1992
2021042604084662100_SIMEONE-1999
2021042604084662100_SIMEONE-1998
2021042604084662100_BEDDINGTON-AND-ROBERTSON-1999
2021042604084662100_WURST-AND-BALLY-CUIF-2001
2021042604084662100_HOLLAND-1999
2021042604084662100_LUMSDEN-1990
2021042604084662100_ARENDT-AND-NUUMLBLER-JUNG-1996
2021042604084662100_CALLAERTS-ETAL-1997
2021042604084662100_LIU-ETAL-1999
2021042604084662100_SUDA-ETAL-1997
2021042604084662100_DE-ROBERTIS-AND-SASAI-1996
2021042604084662100_SIMEONE-2000
2021042604084662100_ARENDT-AND-NUUMLBLER-JUNG-1999
2021042604084662100_HANKS-ETAL-1998
2021042604084662100_MATSUO-ETAL-1995
2021042604084662100_ACAMPORA-ETAL-2001
2021042604084662100_ARAKI-AND-NAKAMURA-1999
2021042604084662100_LACALLI-1994
2021042604084662100_SHARMAN-AND-BRAND-1998
2021042604084662100_BRIATA-ETAL-1996
2021042604084662100_KRUMLAUF-1994
2021042604084662100_LEMAIRE-AND-KODJABACHIAN-1996
2021042604084662100_NAGAO-ETAL-1998
2021042604084662100_ANG-ETAL-1996
2021042604084662100_HOGAN-ETAL-1994
2021042604084662100_LUMSDEN-AND-KRUMLAUF-1996
References_xml – ident: 2021042604084662100_JOYNER-1996
  doi: 10.1016/0168-9525(96)81383-7
– ident: 2021042604084662100_LIU-ETAL-1999
– ident: 2021042604084662100_ARAKI-AND-NAKAMURA-1999
– ident: 2021042604084662100_LEUZINGER-ETAL-1998
  doi: 10.1242/dev.125.9.1703
– ident: 2021042604084662100_ARENDT-AND-NUUMLBLER-JUNG-1996
  doi: 10.1002/bies.950180314
– ident: 2021042604084662100_ACAMPORA-ETAL-1996
  doi: 10.1038/ng1096-218
– ident: 2021042604084662100_PILO-BOYL-ETAL-2001
– ident: 2021042604084662100_HANKS-ETAL-1998
  doi: 10.1242/dev.125.22.4521
– ident: 2021042604084662100_LORENI-AND-AMALDI-1992
  doi: 10.1111/j.1432-1033.1992.tb16870.x
– ident: 2021042604084662100_HOLLAND-1999
  doi: 10.1038/35011536
– ident: 2021042604084662100_LACALLI-1994
  doi: 10.1093/icb/34.4.533
– ident: 2021042604084662100_MORSLI-ETAL-1999
– ident: 2021042604084662100_ACAMPORA-ETAL-1995
– ident: 2021042604084662100_NAGAO-ETAL-1998
  doi: 10.1073/pnas.95.7.3737
– ident: 2021042604084662100_ACAMPORA-ETAL-1997
  doi: 10.1242/dev.124.18.3639
– ident: 2021042604084662100_PETERSON-1995
  doi: 10.1038/373111a0
– ident: 2021042604084662100_SHARMAN-AND-BRAND-1998
  doi: 10.1016/S0168-9525(98)01488-7
– ident: 2021042604084662100_SIMEONE-1999
– ident: 2021042604084662100_SIMEONE-ETAL-1992
  doi: 10.1038/358687a0
– ident: 2021042604084662100_SIMEONE-2000
  doi: 10.1016/S0168-9525(00)02000-X
– ident: 2021042604084662100_FINKELSTEIN-AND-BONCINELLI-1994
  doi: 10.1016/0168-9525(94)90033-7
– ident: 2021042604084662100_BRIATA-ETAL-1996
  doi: 10.1016/0925-4773(96)00544-8
– ident: 2021042604084662100_BEDDINGTON-AND-ROBERTSON-1999
  doi: 10.1016/S0092-8674(00)80560-7
– ident: 2021042604084662100_HOGAN-ETAL-1994
– ident: 2021042604084662100_ACAMPORA-ETAL-2001
  doi: 10.1016/S0301-0082(00)00042-3
– ident: 2021042604084662100_LUMSDEN-1990
– ident: 2021042604084662100_GARSTANG-1928
  doi: 10.1242/jcs.s2-72.285.51
– ident: 2021042604084662100_ACAMPORA-ETAL-1998A
  doi: 10.1242/dev.125.9.1691
– ident: 2021042604084662100_ANG-ETAL-1996
  doi: 10.1242/dev.122.1.243
– ident: 2021042604084662100_LEWIS-1978
  doi: 10.1038/276565a0
– ident: 2021042604084662100_LI-ETAL-1994
  doi: 10.1016/0925-4773(94)90062-0
– ident: 2021042604084662100_SIMEONE-1998
  doi: 10.1093/emboj/17.23.6790
– ident: 2021042604084662100_RUBENSTEIN-ETAL-1998
  doi: 10.1146/annurev.neuro.21.1.445
– ident: 2021042604084662100_ACAMPORA-ETAL-1999
  doi: 10.1242/dev.126.7.1417
– ident: 2021042604084662100_MATSUO-ETAL-1995
  doi: 10.1101/gad.9.21.2646
– ident: 2021042604084662100_ACAMPORA-ETAL-1998B
  doi: 10.1242/dev.125.24.5091
– ident: 2021042604084662100_SIMEONE-ETAL-1993
  doi: 10.1002/j.1460-2075.1993.tb05935.x
– ident: 2021042604084662100_DE-ROBERTIS-AND-SASAI-1996
  doi: 10.1038/380037a0
– ident: 2021042604084662100_LEMAIRE-AND-KODJABACHIAN-1996
  doi: 10.1016/S0168-9525(97)81401-1
– ident: 2021042604084662100_ARENDT-AND-NUUMLBLER-JUNG-1999
  doi: 10.1242/dev.126.11.2309
– ident: 2021042604084662100_REICHERT-AND-SIMEONE-1999
  doi: 10.1016/S0959-4388(99)00002-1
– ident: 2021042604084662100_CALLAERTS-ETAL-1997
  doi: 10.1146/annurev.neuro.20.1.483
– ident: 2021042604084662100_SUDA-ETAL-1997
  doi: 10.1016/S0925-4773(97)00161-5
– ident: 2021042604084662100_WURST-AND-BALLY-CUIF-2001
  doi: 10.1038/35053516
– ident: 2021042604084662100_ACAMPORA-AND-SIMEONE-1999
  doi: 10.1016/S0166-2236(98)01387-3
– ident: 2021042604084662100_RHINN-ETAL-1998
  doi: 10.1242/dev.125.5.845
– ident: 2021042604084662100_LUMSDEN-AND-KRUMLAUF-1996
  doi: 10.1126/science.274.5290.1109
– ident: 2021042604084662100_KRUMLAUF-1994
  doi: 10.1016/0092-8674(94)90290-9
SSID ssj0003677
Score 1.8910178
Snippet How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 4801
SubjectTerms 3' Untranslated Regions
5' Untranslated Regions
Active Transport, Cell Nucleus
Animals
Biological Evolution
Body Patterning - genetics
Brain - embryology
Brain - metabolism
Cytoplasm - metabolism
DNA, Complementary - genetics
Drosophila - embryology
Drosophila - genetics
Drosophila melanogaster
Drosophila Proteins
Homeodomain Proteins - genetics
Mice
Mice, Knockout
Morphogenesis
Nerve Tissue Proteins - genetics
orthodenticle (otd) gene
OTD protein
Otx Transcription Factors
Otx1 gene
Otx2 gene
OTX2 protein
Phenotype
Protein Biosynthesis
RNA, Messenger - genetics
RNA, Messenger - metabolism
Species Specificity
Trans-Activators - genetics
Title OTD/OTX2 functional equivalence depends on 5' and 3' UTR-mediated control of Otx2 mRNA for nucleo-cytoplasmic export and epiblast-restricted translation
URI https://www.ncbi.nlm.nih.gov/pubmed/11731460
https://search.proquest.com/docview/18279003
https://search.proquest.com/docview/72319189
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIgXBONWrn5AGtKULolzcR8H2zTG1kojlSpeIufUQZUgKZCidb9kP5dznLRx2SYuL5HlNidVvy_2Z_tcGHvtSUCd7IU4-uXCCbzcdRTOUw5qkRyiPMh0RMHJJ4PocBQcjcNxp3NheS3Nq6wH51fGlfwPqtiHuFKU7D8guzKKHdhGfPGKCOP1rzAeJnt48zAZ-9s0PzXbevrbfIpPMa9sXePWHAmE5C5B2-SCGqPk1DFRI6Q4l_7qKByH1Zm__fV0sGv8DwvKdlw6sKjKGcps8qPXZ6TYjSE9m2bYWzlU3wPHUzJV0dz3pYW70b2Wb5I5N15GitkbEaBMlqw1N-S35aKusdzGoX2cfi4a5-DWA8EkQ9DnDh2f6NrGUXPLckvDs9xDlnuTLnnAeGvDtC8tPvrCGnUpBY41gweyDm-9NDugHEFUJvonNmXPF732RjsP92CYHoyOj9Nkf5zcYDcpxSJVZdh7_2E1x4vI1PRc_dAmaRQ-YOc38-t655pFjBEzyT12t1mF8N2aUvdZRxeb7FZdl3SxyW6fNB4X2PmpNJ0P2AWybYe4xluucYtrvOEaLwsebnEkCBdb3OYZb3jGy5wTzzjxjCPP-GWe8ZpnxswVPOMWzx6y0cF-8u7Qaep6OIDyvUK0XQUQKp2BkHEMEXhKShGpOFAy0KGvxERrP48jT-PnOWSqDzmQ9BVAJ-eP2EZRFvoJ4xoEeCFkuXQhiEMtAzebhBJAK0qs5HbZm-W_n87q9C0pLXsRqBSBwoZMfZESUF32aolOikMsnZupQpfzHykuwWPa8L_-GzGukvqe7HfZ4xrW9mFeLFCMuE__aP0Zu9O-C8_ZRvV9rl-g4K2yl4Z7vwAKDaxW
link.rule.ids 314,780,784,27924,27925
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OTD%2FOTX2+functional+equivalence+depends+on+5%27+and+3%27+UTR-mediated+control+of+Otx2+mRNA+for+nucleo-cytoplasmic+export+and+epiblast-restricted+translation&rft.jtitle=Development+%28Cambridge%29&rft.au=Acampora%2C+D&rft.au=Boyl%2C+P+P&rft.au=Signore%2C+M&rft.au=Martinez-Barbera%2C+J+P&rft.date=2001-12-01&rft.issn=0950-1991&rft.volume=128&rft.issue=23&rft.spage=4801&rft.epage=4813&rft_id=info:doi/10.1242%2Fdev.128.23.4801&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon