OTD/OTX2 functional equivalence depends on 5' and 3' UTR-mediated control of Otx2 mRNA for nucleo-cytoplasmic export and epiblast-restricted translation
How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory control mechanisms. Previous studies in mouse have suggested that, despite the homeodomain-restricted homology, Drosophila orthodenticle (otd...
Saved in:
Published in | Development (Cambridge) Vol. 128; no. 23; pp. 4801 - 4813 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.12.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory control mechanisms. Previous studies in mouse have suggested that, despite the homeodomain-restricted homology, Drosophila orthodenticle (otd) and murine Otx1 genes share functional equivalence and that translation of Otx2 mRNA in epiblast and neuroectoderm might require a cell type-specific post-transcriptional control depending on its 5' and 3' untranslated sequences (UTRs). In order to study whether OTD is functionally equivalent to OTX2 and whether synthesis of OTD in epiblast is molecularly dependent on the post-transcriptional control of Otx2 mRNA, we generated a first mouse model (otd(2)) in which an Otx2 region including 213 bp of the 5' UTR, exons, introns and the 3' UTR was replaced by an otd cDNA and a second mutant (otd(2FL)) replacing only exons and introns of Otx2 with the otd coding sequence fused to intact 5' and 3' UTRs of Otx2. otd(2) and otd(2FL) mRNAs were properly transcribed under the Otx2 transcriptional control, but mRNA translation in epiblast and neuroectoderm occurred only in otd(2FL) mutants. Phenotypic analysis revealed that visceral endoderm (VE)-restricted translation of otd(2) mRNA was sufficient to rescue Otx2 requirement for early anterior patterning and proper gastrulation but it failed to maintain forebrain and midbrain identity. Importantly, epiblast and neuroectoderm translation of otd(2FL) mRNA rescued maintenance of anterior patterning as it did in a third mouse model replacing, as in otd(2FL), exons and introns of Otx2 with an Otx2 cDNA (Otx2(2c)). The molecular analysis has revealed that Otx2 5' and 3' UTR sequences, deleted in the otd(2) mRNA, are required for nucleo-cytoplasmic export and epiblast-restricted translation. Indeed, these molecular impairments were completely rescued in otd(2FL) and Otx2(2c) mutants. These data provide novel in vivo evidence supporting the concept that during evolution pre-existing gene functions have been recruited into new developmental pathways by modifying their regulatory control. |
---|---|
AbstractList | How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory control mechanisms. Previous studies in mouse have suggested that, despite the homeodomain-restricted homology, Drosophila orthodenticle (otd) and murine Otx1 genes share functional equivalence and that translation of Otx2 mRNA in epiblast and neuroectoderm might require a cell type-specific post-transcriptional control depending on its 5′ and 3′ untranslated sequences (UTRs).
In order to study whether OTD is functionally equivalent to OTX2 and whether synthesis of OTD in epiblast is molecularly dependent on the post-transcriptional control of Otx2 mRNA, we generated a first mouse model (otd2) in which an Otx2 region including 213 bp of the 5′ UTR, exons, introns and the 3′ UTR was replaced by an otd cDNA and a second mutant (otd2FL) replacing only exons and introns of Otx2 with the otd coding sequence fused to intact 5′ and 3′ UTRs of Otx2.
otd2 and otd2FL mRNAs were properly transcribed under the Otx2 transcriptional control, but mRNA translation in epiblast and neuroectoderm occurred only in otd2FL mutants. Phenotypic analysis revealed that visceral endoderm (VE)-restricted translation of otd2 mRNA was sufficient to rescue Otx2 requirement for early anterior patterning and proper gastrulation but it failed to maintain forebrain and midbrain identity.
Importantly, epiblast and neuroectoderm translation of otd2FL mRNA rescued maintenance of anterior patterning as it did in a third mouse model replacing, as in otd2FL, exons and introns of Otx2 with an Otx2 cDNA (Otx22c). The molecular analysis has revealed that Otx2 5′ and 3′ UTR sequences, deleted in the otd2 mRNA, are required for nucleo-cytoplasmic export and epiblast-restricted translation. Indeed, these molecular impairments were completely rescued in otd2FL and Otx22c mutants. These data provide novel in vivo evidence supporting the concept that during evolution pre-existing gene functions have been recruited into new developmental pathways by modifying their regulatory control. How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory control mechanisms. Previous studies in mouse have suggested that, despite the homeodomain-restricted homology, Drosophila orthodenticle (otd) and murine Otx1 genes share functional equivalence and that translation of Otx2 mRNA in epiblast and neuroectoderm might require a cell type-specific post-transcriptional control depending on its 5' and 3' untranslated sequences (UTRs). In order to study whether OTD is functionally equivalent to OTX2 and whether synthesis of OTD in epiblast is molecularly dependent on the post-transcriptional control of Otx2 mRNA, we generated a first mouse model (otd(2)) in which an Otx2 region including 213 bp of the 5' UTR, exons, introns and the 3' UTR was replaced by an otd cDNA and a second mutant (otd(2FL)) replacing only exons and introns of Otx2 with the otd coding sequence fused to intact 5' and 3' UTRs of Otx2. otd(2) and otd(2FL) mRNAs were properly transcribed under the Otx2 transcriptional control, but mRNA translation in epiblast and neuroectoderm occurred only in otd(2FL) mutants. Phenotypic analysis revealed that visceral endoderm (VE)-restricted translation of otd(2) mRNA was sufficient to rescue Otx2 requirement for early anterior patterning and proper gastrulation but it failed to maintain forebrain and midbrain identity. Importantly, epiblast and neuroectoderm translation of otd(2FL) mRNA rescued maintenance of anterior patterning as it did in a third mouse model replacing, as in otd(2FL), exons and introns of Otx2 with an Otx2 cDNA (Otx2(2c)). The molecular analysis has revealed that Otx2 5' and 3' UTR sequences, deleted in the otd(2) mRNA, are required for nucleo-cytoplasmic export and epiblast-restricted translation. Indeed, these molecular impairments were completely rescued in otd(2FL) and Otx2(2c) mutants. These data provide novel in vivo evidence supporting the concept that during evolution pre-existing gene functions have been recruited into new developmental pathways by modifying their regulatory control. How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory control mechanisms. Previous studies in mouse have suggested that, despite the homeodomain-restricted homology, Drosophila orthodenticle (otd) and murine Otx1 genes share functional equivalence and that translation of Otx2 mRNA in epiblast and neuroectoderm might require a cell type-specific post-transcriptional control depending on its 5' and 3' untranslated sequences (UTRs). In order to study whether OTD is functionally equivalent to OTX2 and whether synthesis of OTD in epiblast is molecularly dependent on the post-transcriptional control of Otx2 mRNA, we generated a first mouse model (otd super(2)) in which an Otx2 region including 213 bp of the 5' UTR, exons, introns and the 3' UTR was replaced by an otd cDNA and a second mutant (otd super(2FL)) replacing only exons and introns of Otx2 with the otd coding sequence fused to intact 5' and 3' UTRs of Otx2. otd super(2) and otd super(2FL) mRNAs were properly transcribed under the Otx2 transcriptional control, but mRNA translation in epiblast and neuroectoderm occurred only in otd super(2FL) mutants. Phenotypic analysis revealed that visceral endoderm (VE)-restricted translation of otd super(2) mRNA was sufficient to rescue Otx2 requirement for early anterior patterning and proper gastrulation but it failed to maintain forebrain and midbrain identity. Importantly, epiblast and neuroectoderm translation of otd super(2FL) mRNA rescued maintenance of anterior patterning as it did in a third mouse model replacing, as in otd super(2FL), exons and introns of Otx2 with an Otx2 cDNA (Otx2 super(2c)). The molecular analysis has revealed that Otx2 5' and 3' UTR sequences, deleted in the otd super(2) mRNA, are required for nucleo-cytoplasmic export and epiblast-restricted translation. Indeed, these molecular impairments were completely rescued in otd super(2FL) and Otx2 super(2c) mutants. These data provide novel in vivo evidence supporting the concept that during evolution pre-existing gene functions have been recruited into new developmental pathways by modifying their regulatory control. |
Author | Ilengo, C Corte, G Signore, M Martinez-Barbera, J P Puelles, E Reichert, H Annino, A Simeone, A Acampora, D Boyl, P P |
Author_xml | – sequence: 1 givenname: D surname: Acampora fullname: Acampora, D organization: MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, New Hunts House, London SE1 9RT, UK – sequence: 2 givenname: P P surname: Boyl fullname: Boyl, P P – sequence: 3 givenname: M surname: Signore fullname: Signore, M – sequence: 4 givenname: J P surname: Martinez-Barbera fullname: Martinez-Barbera, J P – sequence: 5 givenname: C surname: Ilengo fullname: Ilengo, C – sequence: 6 givenname: E surname: Puelles fullname: Puelles, E – sequence: 7 givenname: A surname: Annino fullname: Annino, A – sequence: 8 givenname: H surname: Reichert fullname: Reichert, H – sequence: 9 givenname: G surname: Corte fullname: Corte, G – sequence: 10 givenname: A surname: Simeone fullname: Simeone, A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11731460$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1r3DAUFCWl2aQ991Z0ak7e1YdtSceQpkkhdCFsoDejfX4GF1lyJDkk_6Q_N9pmocee3vDevGGYOSMnPngk5DNnay5qsenxqQC9FnJda8bfkRWvlaoMF-aErJhpWMWN4afkLKXfjDHZKvWBnHKuJK9btiJ_trtvm-3ul6DD4iGPwVtH8XEZn6xDD0h7nNH3iQZPmwtqfU_lBX3Y3VcT9qPN2FMIPsfgaBjoNj8LOt3_vKRDiNQv4DBU8JLD7GyaRqD4PIeY_8rgPO7LNlcRU44jHKRytD45e7DxkbwfrEv46TjPycP3693VbXW3vflxdXlXgRR1rrhgFqCxuAeplYIWuNVatlbVVtfYCCt7RDGolmO5D7C3BgaoedNIYILJc_L1TXeO4XEpVrppTIDOWY9hSZ0SkhuuzX-JXAtlSsKFuHkjQgwpRRy6OY6TjS8dZ92hta60VoDuhOwOrZWPL0fpZV9i_cc_1iRfAeollmU |
CitedBy_id | crossref_primary_10_1007_s00427_006_0064_9 crossref_primary_10_1098_rstb_2015_0045 crossref_primary_10_1016_j_mod_2011_11_001 crossref_primary_10_1242_dev_114900 crossref_primary_10_1016_S1534_5807_03_00293_4 crossref_primary_10_1016_j_ydbio_2006_06_014 crossref_primary_10_1186_1471_213X_7_122 crossref_primary_10_1002_bies_20062 crossref_primary_10_1073_pnas_0604686103 crossref_primary_10_1007_s12038_014_9444_x crossref_primary_10_1016_j_febslet_2011_05_006 crossref_primary_10_1016_j_ydbio_2010_11_004 crossref_primary_10_1016_S1567_133X_03_00056_5 crossref_primary_10_1046_j_1471_4159_2003_01583_x crossref_primary_10_1002_dvdy_22782 crossref_primary_10_1002_jcp_21944 crossref_primary_10_1016_j_modgep_2007_01_005 crossref_primary_10_1016_S1467_8039_03_00007_0 crossref_primary_10_1073_pnas_1918797117 crossref_primary_10_1186_1749_8104_2_12 crossref_primary_10_1016_j_ydbio_2010_03_013 crossref_primary_10_1016_j_brainresbull_2005_02_005 crossref_primary_10_1016_S0012_1606_03_00244_6 crossref_primary_10_1016_S0959_437X_02_00318_0 crossref_primary_10_1038_s41586_022_05246_3 crossref_primary_10_1016_S0166_2236_00_02095_6 crossref_primary_10_1006_geno_2002_6854 crossref_primary_10_1093_chemse_bjw002 crossref_primary_10_1016_j_mod_2009_07_003 |
Cites_doi | 10.1016/0168-9525(96)81383-7 10.1242/dev.125.9.1703 10.1002/bies.950180314 10.1038/ng1096-218 10.1242/dev.125.22.4521 10.1111/j.1432-1033.1992.tb16870.x 10.1038/35011536 10.1093/icb/34.4.533 10.1073/pnas.95.7.3737 10.1242/dev.124.18.3639 10.1038/373111a0 10.1016/S0168-9525(98)01488-7 10.1038/358687a0 10.1016/S0168-9525(00)02000-X 10.1016/0168-9525(94)90033-7 10.1016/0925-4773(96)00544-8 10.1016/S0092-8674(00)80560-7 10.1016/S0301-0082(00)00042-3 10.1242/jcs.s2-72.285.51 10.1242/dev.125.9.1691 10.1242/dev.122.1.243 10.1038/276565a0 10.1016/0925-4773(94)90062-0 10.1093/emboj/17.23.6790 10.1146/annurev.neuro.21.1.445 10.1242/dev.126.7.1417 10.1101/gad.9.21.2646 10.1242/dev.125.24.5091 10.1002/j.1460-2075.1993.tb05935.x 10.1038/380037a0 10.1016/S0168-9525(97)81401-1 10.1242/dev.126.11.2309 10.1016/S0959-4388(99)00002-1 10.1146/annurev.neuro.20.1.483 10.1016/S0925-4773(97)00161-5 10.1038/35053516 10.1016/S0166-2236(98)01387-3 10.1242/dev.125.5.845 10.1126/science.274.5290.1109 10.1016/0092-8674(94)90290-9 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 P64 RC3 7X8 |
DOI | 10.1242/dev.128.23.4801 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
EndPage | 4813 |
ExternalDocumentID | 10_1242_dev_128_23_4801 11731460 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0R~ 186 18M 2WC 34G 39C 3O- 4.4 53G 5GY 5RE 5VS 85S 9M8 AAFWJ ABTAH ABZEH ACGFS ACPRK ACREN ADBBV ADFRT AENEX AFFNX AGCDD AGGIJ AI. ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F20 F5P F9R GX1 H13 HZ~ H~9 INIJC KQ8 MVM NPM O9- OHT OK1 P2P R.V RCB RHF RHI SJN TR2 TWZ UPT UQL VH1 W8F WH7 WOQ X7M XJT XOL XSW ZCG ZGI ZXP ZY4 AAYXX CITATION 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c324t-120acc5aebc3877c6c1a8836a74a84e52a3dee2f761e877fcba9cfc41553c0203 |
ISSN | 0950-1991 |
IngestDate | Thu Oct 24 23:18:54 EDT 2024 Fri Oct 25 11:47:09 EDT 2024 Fri Dec 06 04:39:44 EST 2024 Sat Sep 28 08:29:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c324t-120acc5aebc3877c6c1a8836a74a84e52a3dee2f761e877fcba9cfc41553c0203 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 11731460 |
PQID | 18279003 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_72319189 proquest_miscellaneous_18279003 crossref_primary_10_1242_dev_128_23_4801 pubmed_primary_11731460 |
PublicationCentury | 2000 |
PublicationDate | 2001-12-01 |
PublicationDateYYYYMMDD | 2001-12-01 |
PublicationDate_xml | – month: 12 year: 2001 text: 2001-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2001 |
References | 2021042604084662100_SIMEONE-ETAL-1993 2021042604084662100_SIMEONE-ETAL-1992 2021042604084662100_MORSLI-ETAL-1999 2021042604084662100_FINKELSTEIN-AND-BONCINELLI-1994 2021042604084662100_LEUZINGER-ETAL-1998 2021042604084662100_ACAMPORA-ETAL-1995 2021042604084662100_ACAMPORA-ETAL-1998B 2021042604084662100_PILO-BOYL-ETAL-2001 2021042604084662100_ACAMPORA-ETAL-1998A 2021042604084662100_ACAMPORA-ETAL-1999 2021042604084662100_ACAMPORA-ETAL-1996 2021042604084662100_ACAMPORA-ETAL-1997 2021042604084662100_GARSTANG-1928 2021042604084662100_RUBENSTEIN-ETAL-1998 2021042604084662100_PETERSON-1995 2021042604084662100_JOYNER-1996 2021042604084662100_REICHERT-AND-SIMEONE-1999 2021042604084662100_RHINN-ETAL-1998 2021042604084662100_ACAMPORA-AND-SIMEONE-1999 2021042604084662100_LI-ETAL-1994 2021042604084662100_LEWIS-1978 2021042604084662100_LORENI-AND-AMALDI-1992 2021042604084662100_SIMEONE-1999 2021042604084662100_SIMEONE-1998 2021042604084662100_BEDDINGTON-AND-ROBERTSON-1999 2021042604084662100_WURST-AND-BALLY-CUIF-2001 2021042604084662100_HOLLAND-1999 2021042604084662100_LUMSDEN-1990 2021042604084662100_ARENDT-AND-NUUMLBLER-JUNG-1996 2021042604084662100_CALLAERTS-ETAL-1997 2021042604084662100_LIU-ETAL-1999 2021042604084662100_SUDA-ETAL-1997 2021042604084662100_DE-ROBERTIS-AND-SASAI-1996 2021042604084662100_SIMEONE-2000 2021042604084662100_ARENDT-AND-NUUMLBLER-JUNG-1999 2021042604084662100_HANKS-ETAL-1998 2021042604084662100_MATSUO-ETAL-1995 2021042604084662100_ACAMPORA-ETAL-2001 2021042604084662100_ARAKI-AND-NAKAMURA-1999 2021042604084662100_LACALLI-1994 2021042604084662100_SHARMAN-AND-BRAND-1998 2021042604084662100_BRIATA-ETAL-1996 2021042604084662100_KRUMLAUF-1994 2021042604084662100_LEMAIRE-AND-KODJABACHIAN-1996 2021042604084662100_NAGAO-ETAL-1998 2021042604084662100_ANG-ETAL-1996 2021042604084662100_HOGAN-ETAL-1994 2021042604084662100_LUMSDEN-AND-KRUMLAUF-1996 |
References_xml | – ident: 2021042604084662100_JOYNER-1996 doi: 10.1016/0168-9525(96)81383-7 – ident: 2021042604084662100_LIU-ETAL-1999 – ident: 2021042604084662100_ARAKI-AND-NAKAMURA-1999 – ident: 2021042604084662100_LEUZINGER-ETAL-1998 doi: 10.1242/dev.125.9.1703 – ident: 2021042604084662100_ARENDT-AND-NUUMLBLER-JUNG-1996 doi: 10.1002/bies.950180314 – ident: 2021042604084662100_ACAMPORA-ETAL-1996 doi: 10.1038/ng1096-218 – ident: 2021042604084662100_PILO-BOYL-ETAL-2001 – ident: 2021042604084662100_HANKS-ETAL-1998 doi: 10.1242/dev.125.22.4521 – ident: 2021042604084662100_LORENI-AND-AMALDI-1992 doi: 10.1111/j.1432-1033.1992.tb16870.x – ident: 2021042604084662100_HOLLAND-1999 doi: 10.1038/35011536 – ident: 2021042604084662100_LACALLI-1994 doi: 10.1093/icb/34.4.533 – ident: 2021042604084662100_MORSLI-ETAL-1999 – ident: 2021042604084662100_ACAMPORA-ETAL-1995 – ident: 2021042604084662100_NAGAO-ETAL-1998 doi: 10.1073/pnas.95.7.3737 – ident: 2021042604084662100_ACAMPORA-ETAL-1997 doi: 10.1242/dev.124.18.3639 – ident: 2021042604084662100_PETERSON-1995 doi: 10.1038/373111a0 – ident: 2021042604084662100_SHARMAN-AND-BRAND-1998 doi: 10.1016/S0168-9525(98)01488-7 – ident: 2021042604084662100_SIMEONE-1999 – ident: 2021042604084662100_SIMEONE-ETAL-1992 doi: 10.1038/358687a0 – ident: 2021042604084662100_SIMEONE-2000 doi: 10.1016/S0168-9525(00)02000-X – ident: 2021042604084662100_FINKELSTEIN-AND-BONCINELLI-1994 doi: 10.1016/0168-9525(94)90033-7 – ident: 2021042604084662100_BRIATA-ETAL-1996 doi: 10.1016/0925-4773(96)00544-8 – ident: 2021042604084662100_BEDDINGTON-AND-ROBERTSON-1999 doi: 10.1016/S0092-8674(00)80560-7 – ident: 2021042604084662100_HOGAN-ETAL-1994 – ident: 2021042604084662100_ACAMPORA-ETAL-2001 doi: 10.1016/S0301-0082(00)00042-3 – ident: 2021042604084662100_LUMSDEN-1990 – ident: 2021042604084662100_GARSTANG-1928 doi: 10.1242/jcs.s2-72.285.51 – ident: 2021042604084662100_ACAMPORA-ETAL-1998A doi: 10.1242/dev.125.9.1691 – ident: 2021042604084662100_ANG-ETAL-1996 doi: 10.1242/dev.122.1.243 – ident: 2021042604084662100_LEWIS-1978 doi: 10.1038/276565a0 – ident: 2021042604084662100_LI-ETAL-1994 doi: 10.1016/0925-4773(94)90062-0 – ident: 2021042604084662100_SIMEONE-1998 doi: 10.1093/emboj/17.23.6790 – ident: 2021042604084662100_RUBENSTEIN-ETAL-1998 doi: 10.1146/annurev.neuro.21.1.445 – ident: 2021042604084662100_ACAMPORA-ETAL-1999 doi: 10.1242/dev.126.7.1417 – ident: 2021042604084662100_MATSUO-ETAL-1995 doi: 10.1101/gad.9.21.2646 – ident: 2021042604084662100_ACAMPORA-ETAL-1998B doi: 10.1242/dev.125.24.5091 – ident: 2021042604084662100_SIMEONE-ETAL-1993 doi: 10.1002/j.1460-2075.1993.tb05935.x – ident: 2021042604084662100_DE-ROBERTIS-AND-SASAI-1996 doi: 10.1038/380037a0 – ident: 2021042604084662100_LEMAIRE-AND-KODJABACHIAN-1996 doi: 10.1016/S0168-9525(97)81401-1 – ident: 2021042604084662100_ARENDT-AND-NUUMLBLER-JUNG-1999 doi: 10.1242/dev.126.11.2309 – ident: 2021042604084662100_REICHERT-AND-SIMEONE-1999 doi: 10.1016/S0959-4388(99)00002-1 – ident: 2021042604084662100_CALLAERTS-ETAL-1997 doi: 10.1146/annurev.neuro.20.1.483 – ident: 2021042604084662100_SUDA-ETAL-1997 doi: 10.1016/S0925-4773(97)00161-5 – ident: 2021042604084662100_WURST-AND-BALLY-CUIF-2001 doi: 10.1038/35053516 – ident: 2021042604084662100_ACAMPORA-AND-SIMEONE-1999 doi: 10.1016/S0166-2236(98)01387-3 – ident: 2021042604084662100_RHINN-ETAL-1998 doi: 10.1242/dev.125.5.845 – ident: 2021042604084662100_LUMSDEN-AND-KRUMLAUF-1996 doi: 10.1126/science.274.5290.1109 – ident: 2021042604084662100_KRUMLAUF-1994 doi: 10.1016/0092-8674(94)90290-9 |
SSID | ssj0003677 |
Score | 1.8910178 |
Snippet | How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 4801 |
SubjectTerms | 3' Untranslated Regions 5' Untranslated Regions Active Transport, Cell Nucleus Animals Biological Evolution Body Patterning - genetics Brain - embryology Brain - metabolism Cytoplasm - metabolism DNA, Complementary - genetics Drosophila - embryology Drosophila - genetics Drosophila melanogaster Drosophila Proteins Homeodomain Proteins - genetics Mice Mice, Knockout Morphogenesis Nerve Tissue Proteins - genetics orthodenticle (otd) gene OTD protein Otx Transcription Factors Otx1 gene Otx2 gene OTX2 protein Phenotype Protein Biosynthesis RNA, Messenger - genetics RNA, Messenger - metabolism Species Specificity Trans-Activators - genetics |
Title | OTD/OTX2 functional equivalence depends on 5' and 3' UTR-mediated control of Otx2 mRNA for nucleo-cytoplasmic export and epiblast-restricted translation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/11731460 https://search.proquest.com/docview/18279003 https://search.proquest.com/docview/72319189 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIgXBONWrn5AGtKULolzcR8H2zTG1kojlSpeIufUQZUgKZCidb9kP5dznLRx2SYuL5HlNidVvy_2Z_tcGHvtSUCd7IU4-uXCCbzcdRTOUw5qkRyiPMh0RMHJJ4PocBQcjcNxp3NheS3Nq6wH51fGlfwPqtiHuFKU7D8guzKKHdhGfPGKCOP1rzAeJnt48zAZ-9s0PzXbevrbfIpPMa9sXePWHAmE5C5B2-SCGqPk1DFRI6Q4l_7qKByH1Zm__fV0sGv8DwvKdlw6sKjKGcps8qPXZ6TYjSE9m2bYWzlU3wPHUzJV0dz3pYW70b2Wb5I5N15GitkbEaBMlqw1N-S35aKusdzGoX2cfi4a5-DWA8EkQ9DnDh2f6NrGUXPLckvDs9xDlnuTLnnAeGvDtC8tPvrCGnUpBY41gweyDm-9NDugHEFUJvonNmXPF732RjsP92CYHoyOj9Nkf5zcYDcpxSJVZdh7_2E1x4vI1PRc_dAmaRQ-YOc38-t655pFjBEzyT12t1mF8N2aUvdZRxeb7FZdl3SxyW6fNB4X2PmpNJ0P2AWybYe4xluucYtrvOEaLwsebnEkCBdb3OYZb3jGy5wTzzjxjCPP-GWe8ZpnxswVPOMWzx6y0cF-8u7Qaep6OIDyvUK0XQUQKp2BkHEMEXhKShGpOFAy0KGvxERrP48jT-PnOWSqDzmQ9BVAJ-eP2EZRFvoJ4xoEeCFkuXQhiEMtAzebhBJAK0qs5HbZm-W_n87q9C0pLXsRqBSBwoZMfZESUF32aolOikMsnZupQpfzHykuwWPa8L_-GzGukvqe7HfZ4xrW9mFeLFCMuE__aP0Zu9O-C8_ZRvV9rl-g4K2yl4Z7vwAKDaxW |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OTD%2FOTX2+functional+equivalence+depends+on+5%27+and+3%27+UTR-mediated+control+of+Otx2+mRNA+for+nucleo-cytoplasmic+export+and+epiblast-restricted+translation&rft.jtitle=Development+%28Cambridge%29&rft.au=Acampora%2C+D&rft.au=Boyl%2C+P+P&rft.au=Signore%2C+M&rft.au=Martinez-Barbera%2C+J+P&rft.date=2001-12-01&rft.issn=0950-1991&rft.volume=128&rft.issue=23&rft.spage=4801&rft.epage=4813&rft_id=info:doi/10.1242%2Fdev.128.23.4801&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |