Uniform Asymptotics of the Elliptic Sine
Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions. Approximations of elliptic functions in a neighborhood of a degeneration are usually examined by means of series in the modulus of the elliptic functi...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 258; no. 1; pp. 23 - 36 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1072-3374 1573-8795 |
DOI | 10.1007/s10958-021-05534-9 |
Cover
Abstract | Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions. Approximations of elliptic functions in a neighborhood of a degeneration are usually examined by means of series in the modulus of the elliptic function. For applications of the theory of elliptic functions in the theory of dynamical systems, uniform approximations with respect to the modulus and the independent variable are important. This review contains methods for constructing uniform asymptotics. |
---|---|
AbstractList | Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions. Approximations of elliptic functions in a neighborhood of a degeneration are usually examined by means of series in the modulus of the elliptic function. For applications of the theory of elliptic functions in the theory of dynamical systems, uniform approximations with respect to the modulus and the independent variable are important. This review contains methods for constructing uniform asymptotics. Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions. Approximations of elliptic functions in a neighborhood of a degeneration are usually examined by means of series in the modulus of the elliptic function. For applications of the theory of elliptic functions in the theory of dynamical systems, uniform approximations with respect to the modulus and the independent variable are important. This review contains methods for constructing uniform asymptotics. Keywords and phrases: elliptic function, asymptotics, series. AMS Subject Classification: 33-02, 33E05 |
Audience | Academic |
Author | Kiselev, O. M. |
Author_xml | – sequence: 1 givenname: O. M. surname: Kiselev fullname: Kiselev, O. M. email: olegkiselev@matem.anrb.ru, ok@ufanet.ru organization: Institute of Mathematics with Computing Center, Ufa Federal Research Center of the Russian Academy of Sciences |
BookMark | eNp9kU1LAzEQhoMo2Fb_gKcFL3pITTKbzeZYStVCQbD2HLZpdk3ZL5Mt2H9v6gqlUCSHhOF5JsO8Q3RZN7VB6I6SMSVEPHlKJE8xYRQTziHG8gINKBeAUyH5ZXgTwTCAiK_R0PstCVKSwgA9rGqbN66KJn5ftV3TWe2jJo-6TxPNytK2oRAtbW1u0FWeld7c_t0jtHqefUxf8eLtZT6dLLAGFktMNaRA11Qzyqk2kGdJlqSx1jxdbwwjSRLm42EowzRoLSVLBY8BONvIWEoKI3Tf921d87UzvlPbZufq8KViXCQSeALxkSqy0ihb503nMl1Zr9VEsJRCLMWhFz5DFaY2LivDAnMbyif8-AwfzsZUVp8VHk-EwHTmuyuynfdqvnw_ZVnPatd470yuWmerzO0VJeoQoupDVCFE9RuikkGCXvIBrgvjjtv4x_oBzm-a3Q |
Cites_doi | 10.1090/mmono/079 10.5962/bhl.title.30963 10.1007/978-1-4899-2843-6 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2021 Springer Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10958-021-05534-9 |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 36 |
ExternalDocumentID | A728134971 10_1007_s10958_021_05534_9 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c3249-1c3831b1c2151ce3fa6a684cc58bde20660555879e2c3cc99287543352d949913 |
IEDL.DBID | U2A |
ISSN | 1072-3374 |
IngestDate | Fri Jul 25 11:05:46 EDT 2025 Tue Jun 17 20:35:23 EDT 2025 Thu Jun 12 23:43:03 EDT 2025 Tue Jun 10 20:48:05 EDT 2025 Fri Jun 27 03:54:20 EDT 2025 Tue Jul 01 01:42:19 EDT 2025 Fri Feb 21 02:48:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 33-02 33E05 asymptotics series elliptic function |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3249-1c3831b1c2151ce3fa6a684cc58bde20660555879e2c3cc99287543352d949913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2576935634 |
PQPubID | 2043545 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2576935634 gale_infotracmisc_A728134971 gale_infotracgeneralonefile_A728134971 gale_infotracacademiconefile_A728134971 gale_incontextgauss_ISR_A728134971 crossref_primary_10_1007_s10958_021_05534_9 springer_journals_10_1007_s10958_021_05534_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211000 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2021 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | AkhiezerNIElements of the Theory of Elliptic Functions1990Providence, Rhode IslandAMS10.1090/mmono/079 DunneGVRaoKLame instantonsJ. High Energy Phys.200010191917433000989.81028 C. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Regiomontanus (1829). Maxima. A Computer Algebra System, http://maxima.sourceforge.net. KuznetsovEAMikhailovAVStability of stationary waves in nonlinear media with weak dispersionZh. Eksp. Teor. Fiz.197467517171727 A. M. Zhuravsky, Handbook of Elliptic Functions [in Russian], Akad. Nauk SSSR, Moscow (1941). E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge (1927). KaplunSFluid Mechanics and Singular Perturbations1967New YorkAcademic Press A. Lindstedt, “Beitrag zur Integration der Differentialgleichungen der Strungstheorie,” Mem. Acad. Imper. Sci. St. Petersbourg, 31, No. 4, 20 (1883). KiselevOMOscillations near the separatrix of the Duffing equationTr. Inst. Mat. Ural. Otdel. Ross. Akad. Nauk2012182141153 GlebovSGKiselevOMTarkhanovNNonlinear Equations with Small Parameter2017Berlinde Gryuter1377.34001 TimofeevAVOn the constancy of an adiabatic invariant when the nature of the motion changesZh. Eksp. Teor. Fiz.197875413031308 AbramowitzMStegunIAHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables1984New YorkWiley0643.33001 NewcombSAn Investigation of the Orbit of Uranus with General Ttables of Its Motion1873KnowledgeSmithsonian Contrib O. M. Kiselev, Uniform asymptotic behaviour of Jacobi sn near a singular point. The lost formula from handbooks for elliptic functions, arxiv 1510.06602 (2015). NeishtadtAIPassing through a separatrix in the resonance problem with a slowly varying parameterPrikl. Mat. Mekh.1975394621632 D. Mumford, Tata Lectures of Theta I, II, Birkh¨auser, Boston–Basel–Stuttgart (1983). Wolfram Research, http://functions.wolfram.com/EllipticFunctions/JacobiSN/06/03/. S Newcomb (5534_CR14) 1873 5534_CR18 NI Akhiezer (5534_CR2) 1990 S Kaplun (5534_CR6) 1967 AI Neishtadt (5534_CR13) 1975; 39 EA Kuznetsov (5534_CR9) 1974; 67 5534_CR17 M Abramowitz (5534_CR1) 1984 SG Glebov (5534_CR4) 2017 5534_CR16 5534_CR5 5534_CR11 5534_CR10 GV Dunne (5534_CR3) 2000; 1 5534_CR8 5534_CR12 AV Timofeev (5534_CR15) 1978; 75 OM Kiselev (5534_CR7) 2012; 18 |
References_xml | – reference: NewcombSAn Investigation of the Orbit of Uranus with General Ttables of Its Motion1873KnowledgeSmithsonian Contrib – reference: KaplunSFluid Mechanics and Singular Perturbations1967New YorkAcademic Press – reference: E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge (1927). – reference: Maxima. A Computer Algebra System, http://maxima.sourceforge.net. – reference: NeishtadtAIPassing through a separatrix in the resonance problem with a slowly varying parameterPrikl. Mat. Mekh.1975394621632 – reference: TimofeevAVOn the constancy of an adiabatic invariant when the nature of the motion changesZh. Eksp. Teor. Fiz.197875413031308 – reference: Wolfram Research, http://functions.wolfram.com/EllipticFunctions/JacobiSN/06/03/. – reference: KuznetsovEAMikhailovAVStability of stationary waves in nonlinear media with weak dispersionZh. Eksp. Teor. Fiz.197467517171727 – reference: A. Lindstedt, “Beitrag zur Integration der Differentialgleichungen der Strungstheorie,” Mem. Acad. Imper. Sci. St. Petersbourg, 31, No. 4, 20 (1883). – reference: C. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Regiomontanus (1829). – reference: AkhiezerNIElements of the Theory of Elliptic Functions1990Providence, Rhode IslandAMS10.1090/mmono/079 – reference: D. Mumford, Tata Lectures of Theta I, II, Birkh¨auser, Boston–Basel–Stuttgart (1983). – reference: GlebovSGKiselevOMTarkhanovNNonlinear Equations with Small Parameter2017Berlinde Gryuter1377.34001 – reference: DunneGVRaoKLame instantonsJ. High Energy Phys.200010191917433000989.81028 – reference: KiselevOMOscillations near the separatrix of the Duffing equationTr. Inst. Mat. Ural. Otdel. Ross. Akad. Nauk2012182141153 – reference: AbramowitzMStegunIAHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables1984New YorkWiley0643.33001 – reference: O. M. Kiselev, Uniform asymptotic behaviour of Jacobi sn near a singular point. The lost formula from handbooks for elliptic functions, arxiv 1510.06602 (2015). – reference: A. M. Zhuravsky, Handbook of Elliptic Functions [in Russian], Akad. Nauk SSSR, Moscow (1941). – volume-title: Nonlinear Equations with Small Parameter year: 2017 ident: 5534_CR4 – volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables year: 1984 ident: 5534_CR1 – volume-title: Elements of the Theory of Elliptic Functions year: 1990 ident: 5534_CR2 doi: 10.1090/mmono/079 – volume: 1 start-page: 1 issue: 019 year: 2000 ident: 5534_CR3 publication-title: J. High Energy Phys. – volume-title: An Investigation of the Orbit of Uranus with General Ttables of Its Motion year: 1873 ident: 5534_CR14 doi: 10.5962/bhl.title.30963 – volume: 67 start-page: 1717 issue: 5 year: 1974 ident: 5534_CR9 publication-title: Zh. Eksp. Teor. Fiz. – ident: 5534_CR5 – volume-title: Fluid Mechanics and Singular Perturbations year: 1967 ident: 5534_CR6 – volume: 18 start-page: 141 issue: 2 year: 2012 ident: 5534_CR7 publication-title: Tr. Inst. Mat. Ural. Otdel. Ross. Akad. Nauk – volume: 39 start-page: 621 issue: 4 year: 1975 ident: 5534_CR13 publication-title: Prikl. Mat. Mekh. – ident: 5534_CR16 – ident: 5534_CR17 – ident: 5534_CR18 – ident: 5534_CR8 – ident: 5534_CR10 – ident: 5534_CR11 – volume: 75 start-page: 1303 issue: 4 year: 1978 ident: 5534_CR15 publication-title: Zh. Eksp. Teor. Fiz. – ident: 5534_CR12 doi: 10.1007/978-1-4899-2843-6 |
SSID | ssj0007683 |
Score | 2.2210932 |
Snippet | Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions.... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 23 |
SubjectTerms | Approximation Asymptotic methods Asymptotic properties Degeneration Elliptic functions Hyperbolic functions Independent variables Mathematics Mathematics and Statistics Trigonometric functions |
Title | Uniform Asymptotics of the Elliptic Sine |
URI | https://link.springer.com/article/10.1007/s10958-021-05534-9 https://www.proquest.com/docview/2576935634 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPQgPnF9UURU0MJ2k7TNsYrrCz2oC3oKedWTu2LXg__emT7U-jh4KjQfoZ0kk2_IzBeAHcfiSLtuHiZepCHnRoZG4FwWSEVinkcucnSie3Udnw34xb24r4vCiibbvTmSLD31l2I3id1RSkFXCMZDOQnTAmN3Wo6DXvbhf5FAV2n1SS9kLOF1qczvfbS2o-9O-cfpaLnp9OdhrmaLQVYN7wJM-OEizF59SK0WS7CPrJGIZ5AVb0_P4xG9DUZ5gJCAEjLQJdjgFrnkMgz6J3fHZ2F9_UFokeXIMLIYPUYmsrQrW89yHes45daK1DhPMuylWFcifc8ya6XE4EdwqqFypDgTsRWYGo6GfhUC77RPLWPGOOwgTrXzqeddo6XgxsWuAweNFdRzpXKhPvWMyWYKbaZKmynZgW0ylCL5iCHlpzzq16JQ57c3Kkt6KQkeJlEH9mpQPhq_aKvrdH_8IFKcaiF3W8jHSm_7N-BGC4gLwbabm4FT9UIsFMVTkomY8Q4cNoP52fz3T679D74OMzQVqzS_DZgav7z6TaQrY7MF01n_6OianqcPlydb5Wx9B9ZA36o |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADYhVljRACJIjUxHYSHysEKks5AJW4Wd7SEy0i5cDfM5MmQFgOXJMnKxnb42f5zTPAgWNJpF07D1MvspBzI0MjcCwLpCIJzyMXOTrR7d0m3T6_ehSPVVFYUavd6yPJMlN_KXaT2BxJCtpCMB7KaZhFMpDRvQX9uPORf5FAT2T1aRwylvKqVOb3NhrL0fek_ON0tFx0LpZgsWKLQWfSvcsw5YcrsND7sFotVuEYWSMRz6BTvD09j0f0NBjlAUICEmRgSrDBPXLJNehfnD-cdcPq-oPQIsuRYWRx9xiZyNKqbD3LdaKTjFsrMuM82bCXZl2p9LFl1kqJmx_BqYbKkeNMxNZhZjga-g0IvNM-s4wZ47CBJNPOZ563jZaCG5e4FpzUUVDPE5cL9elnTDFTGDNVxkzJFuxToBTZRwxJnzLQr0WhLu_vVCeNMzI8TKMWHFWgfDR-0VZXcn_8IHKcaiAPG8jBxG_7N-B2A4gTwTZf1x2nqolYKNpPSSYSxltwWnfm5-u_f3Lzf_A9mOs-9G7UzeXt9RbMxzTESsnfNsyMX179DlKXsdktR-o7hBLfjQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61Wwm1h6rlIbbdtlGFoFKJWMd2Eh9XbVdQHkLQlbhZfoUT2RUJB_49M0kWCKWHXuORlcyMx5_lb74AbHmeMuPHRZwFmcdCWBVbibksEYqkomCeebrRPT5J92fi94W8eNTF37Ddl1eSbU8DqTSV9d7CF3uPGt8UTk30grGUXMTqJbzCcswo02fJ5L4WI5huKfZZEnOeia5t5vk5elvT0wL9101pswFN38HbDjlGkzbU7-FFKFfhzfG97Gq1Bt8QQRIIjSbV7dWintPTaF5EaBIROQPLg4vOEVeuw2z668-P_bj7FULsEPGomDk8STLLHO3QLvDCpCbNhXMytz6QJHsj3JWpkDjunFJ4EJKC-qk8qc8wvgGDcl6GTYiCNyF3nFvrcYI0Nz7kQYytUVJYn_ohfF96QS9axQv9oG1MPtPoM934TKshfCVHaZKSKImrcmluqkofnJ_pSZbkJH6YsSHsdEbFvL42znTUf3whUp_qWW73LC9b7e3nDEc9Q1wUrj-8DJzuFmWl6WyluEy5GMLuMpgPw__-yA__Z_4FVk5_TvXRwcnhR3idUIY17L8RDOrrm_AJUUxtPzeJege6buPJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniform+Asymptotics+of+the+Elliptic+Sine&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kiselev%2C+O.+M.&rft.date=2021-10-01&rft.pub=Springer+US&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=258&rft.issue=1&rft.spage=23&rft.epage=36&rft_id=info:doi/10.1007%2Fs10958-021-05534-9&rft.externalDocID=10_1007_s10958_021_05534_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |