Uniform Asymptotics of the Elliptic Sine

Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions. Approximations of elliptic functions in a neighborhood of a degeneration are usually examined by means of series in the modulus of the elliptic functi...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 258; no. 1; pp. 23 - 36
Main Author Kiselev, O. M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1072-3374
1573-8795
DOI10.1007/s10958-021-05534-9

Cover

Abstract Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions. Approximations of elliptic functions in a neighborhood of a degeneration are usually examined by means of series in the modulus of the elliptic function. For applications of the theory of elliptic functions in the theory of dynamical systems, uniform approximations with respect to the modulus and the independent variable are important. This review contains methods for constructing uniform asymptotics.
AbstractList Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions. Approximations of elliptic functions in a neighborhood of a degeneration are usually examined by means of series in the modulus of the elliptic function. For applications of the theory of elliptic functions in the theory of dynamical systems, uniform approximations with respect to the modulus and the independent variable are important. This review contains methods for constructing uniform asymptotics.
Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions. Approximations of elliptic functions in a neighborhood of a degeneration are usually examined by means of series in the modulus of the elliptic function. For applications of the theory of elliptic functions in the theory of dynamical systems, uniform approximations with respect to the modulus and the independent variable are important. This review contains methods for constructing uniform asymptotics. Keywords and phrases: elliptic function, asymptotics, series. AMS Subject Classification: 33-02, 33E05
Audience Academic
Author Kiselev, O. M.
Author_xml – sequence: 1
  givenname: O. M.
  surname: Kiselev
  fullname: Kiselev, O. M.
  email: olegkiselev@matem.anrb.ru, ok@ufanet.ru
  organization: Institute of Mathematics with Computing Center, Ufa Federal Research Center of the Russian Academy of Sciences
BookMark eNp9kU1LAzEQhoMo2Fb_gKcFL3pITTKbzeZYStVCQbD2HLZpdk3ZL5Mt2H9v6gqlUCSHhOF5JsO8Q3RZN7VB6I6SMSVEPHlKJE8xYRQTziHG8gINKBeAUyH5ZXgTwTCAiK_R0PstCVKSwgA9rGqbN66KJn5ftV3TWe2jJo-6TxPNytK2oRAtbW1u0FWeld7c_t0jtHqefUxf8eLtZT6dLLAGFktMNaRA11Qzyqk2kGdJlqSx1jxdbwwjSRLm42EowzRoLSVLBY8BONvIWEoKI3Tf921d87UzvlPbZufq8KViXCQSeALxkSqy0ihb503nMl1Zr9VEsJRCLMWhFz5DFaY2LivDAnMbyif8-AwfzsZUVp8VHk-EwHTmuyuynfdqvnw_ZVnPatd470yuWmerzO0VJeoQoupDVCFE9RuikkGCXvIBrgvjjtv4x_oBzm-a3Q
Cites_doi 10.1090/mmono/079
10.5962/bhl.title.30963
10.1007/978-1-4899-2843-6
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-021-05534-9
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 36
ExternalDocumentID A728134971
10_1007_s10958_021_05534_9
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c3249-1c3831b1c2151ce3fa6a684cc58bde20660555879e2c3cc99287543352d949913
IEDL.DBID U2A
ISSN 1072-3374
IngestDate Fri Jul 25 11:05:46 EDT 2025
Tue Jun 17 20:35:23 EDT 2025
Thu Jun 12 23:43:03 EDT 2025
Tue Jun 10 20:48:05 EDT 2025
Fri Jun 27 03:54:20 EDT 2025
Tue Jul 01 01:42:19 EDT 2025
Fri Feb 21 02:48:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 33-02
33E05
asymptotics
series
elliptic function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3249-1c3831b1c2151ce3fa6a684cc58bde20660555879e2c3cc99287543352d949913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2576935634
PQPubID 2043545
PageCount 14
ParticipantIDs proquest_journals_2576935634
gale_infotracmisc_A728134971
gale_infotracgeneralonefile_A728134971
gale_infotracacademiconefile_A728134971
gale_incontextgauss_ISR_A728134971
crossref_primary_10_1007_s10958_021_05534_9
springer_journals_10_1007_s10958_021_05534_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211000
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References AkhiezerNIElements of the Theory of Elliptic Functions1990Providence, Rhode IslandAMS10.1090/mmono/079
DunneGVRaoKLame instantonsJ. High Energy Phys.200010191917433000989.81028
C. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Regiomontanus (1829).
Maxima. A Computer Algebra System, http://maxima.sourceforge.net.
KuznetsovEAMikhailovAVStability of stationary waves in nonlinear media with weak dispersionZh. Eksp. Teor. Fiz.197467517171727
A. M. Zhuravsky, Handbook of Elliptic Functions [in Russian], Akad. Nauk SSSR, Moscow (1941).
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge (1927).
KaplunSFluid Mechanics and Singular Perturbations1967New YorkAcademic Press
A. Lindstedt, “Beitrag zur Integration der Differentialgleichungen der Strungstheorie,” Mem. Acad. Imper. Sci. St. Petersbourg, 31, No. 4, 20 (1883).
KiselevOMOscillations near the separatrix of the Duffing equationTr. Inst. Mat. Ural. Otdel. Ross. Akad. Nauk2012182141153
GlebovSGKiselevOMTarkhanovNNonlinear Equations with Small Parameter2017Berlinde Gryuter1377.34001
TimofeevAVOn the constancy of an adiabatic invariant when the nature of the motion changesZh. Eksp. Teor. Fiz.197875413031308
AbramowitzMStegunIAHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables1984New YorkWiley0643.33001
NewcombSAn Investigation of the Orbit of Uranus with General Ttables of Its Motion1873KnowledgeSmithsonian Contrib
O. M. Kiselev, Uniform asymptotic behaviour of Jacobi sn near a singular point. The lost formula from handbooks for elliptic functions, arxiv 1510.06602 (2015).
NeishtadtAIPassing through a separatrix in the resonance problem with a slowly varying parameterPrikl. Mat. Mekh.1975394621632
D. Mumford, Tata Lectures of Theta I, II, Birkh¨auser, Boston–Basel–Stuttgart (1983).
Wolfram Research, http://functions.wolfram.com/EllipticFunctions/JacobiSN/06/03/.
S Newcomb (5534_CR14) 1873
5534_CR18
NI Akhiezer (5534_CR2) 1990
S Kaplun (5534_CR6) 1967
AI Neishtadt (5534_CR13) 1975; 39
EA Kuznetsov (5534_CR9) 1974; 67
5534_CR17
M Abramowitz (5534_CR1) 1984
SG Glebov (5534_CR4) 2017
5534_CR16
5534_CR5
5534_CR11
5534_CR10
GV Dunne (5534_CR3) 2000; 1
5534_CR8
5534_CR12
AV Timofeev (5534_CR15) 1978; 75
OM Kiselev (5534_CR7) 2012; 18
References_xml – reference: NewcombSAn Investigation of the Orbit of Uranus with General Ttables of Its Motion1873KnowledgeSmithsonian Contrib
– reference: KaplunSFluid Mechanics and Singular Perturbations1967New YorkAcademic Press
– reference: E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge (1927).
– reference: Maxima. A Computer Algebra System, http://maxima.sourceforge.net.
– reference: NeishtadtAIPassing through a separatrix in the resonance problem with a slowly varying parameterPrikl. Mat. Mekh.1975394621632
– reference: TimofeevAVOn the constancy of an adiabatic invariant when the nature of the motion changesZh. Eksp. Teor. Fiz.197875413031308
– reference: Wolfram Research, http://functions.wolfram.com/EllipticFunctions/JacobiSN/06/03/.
– reference: KuznetsovEAMikhailovAVStability of stationary waves in nonlinear media with weak dispersionZh. Eksp. Teor. Fiz.197467517171727
– reference: A. Lindstedt, “Beitrag zur Integration der Differentialgleichungen der Strungstheorie,” Mem. Acad. Imper. Sci. St. Petersbourg, 31, No. 4, 20 (1883).
– reference: C. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Regiomontanus (1829).
– reference: AkhiezerNIElements of the Theory of Elliptic Functions1990Providence, Rhode IslandAMS10.1090/mmono/079
– reference: D. Mumford, Tata Lectures of Theta I, II, Birkh¨auser, Boston–Basel–Stuttgart (1983).
– reference: GlebovSGKiselevOMTarkhanovNNonlinear Equations with Small Parameter2017Berlinde Gryuter1377.34001
– reference: DunneGVRaoKLame instantonsJ. High Energy Phys.200010191917433000989.81028
– reference: KiselevOMOscillations near the separatrix of the Duffing equationTr. Inst. Mat. Ural. Otdel. Ross. Akad. Nauk2012182141153
– reference: AbramowitzMStegunIAHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables1984New YorkWiley0643.33001
– reference: O. M. Kiselev, Uniform asymptotic behaviour of Jacobi sn near a singular point. The lost formula from handbooks for elliptic functions, arxiv 1510.06602 (2015).
– reference: A. M. Zhuravsky, Handbook of Elliptic Functions [in Russian], Akad. Nauk SSSR, Moscow (1941).
– volume-title: Nonlinear Equations with Small Parameter
  year: 2017
  ident: 5534_CR4
– volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  year: 1984
  ident: 5534_CR1
– volume-title: Elements of the Theory of Elliptic Functions
  year: 1990
  ident: 5534_CR2
  doi: 10.1090/mmono/079
– volume: 1
  start-page: 1
  issue: 019
  year: 2000
  ident: 5534_CR3
  publication-title: J. High Energy Phys.
– volume-title: An Investigation of the Orbit of Uranus with General Ttables of Its Motion
  year: 1873
  ident: 5534_CR14
  doi: 10.5962/bhl.title.30963
– volume: 67
  start-page: 1717
  issue: 5
  year: 1974
  ident: 5534_CR9
  publication-title: Zh. Eksp. Teor. Fiz.
– ident: 5534_CR5
– volume-title: Fluid Mechanics and Singular Perturbations
  year: 1967
  ident: 5534_CR6
– volume: 18
  start-page: 141
  issue: 2
  year: 2012
  ident: 5534_CR7
  publication-title: Tr. Inst. Mat. Ural. Otdel. Ross. Akad. Nauk
– volume: 39
  start-page: 621
  issue: 4
  year: 1975
  ident: 5534_CR13
  publication-title: Prikl. Mat. Mekh.
– ident: 5534_CR16
– ident: 5534_CR17
– ident: 5534_CR18
– ident: 5534_CR8
– ident: 5534_CR10
– ident: 5534_CR11
– volume: 75
  start-page: 1303
  issue: 4
  year: 1978
  ident: 5534_CR15
  publication-title: Zh. Eksp. Teor. Fiz.
– ident: 5534_CR12
  doi: 10.1007/978-1-4899-2843-6
SSID ssj0007683
Score 2.2210932
Snippet Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions....
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 23
SubjectTerms Approximation
Asymptotic methods
Asymptotic properties
Degeneration
Elliptic functions
Hyperbolic functions
Independent variables
Mathematics
Mathematics and Statistics
Trigonometric functions
Title Uniform Asymptotics of the Elliptic Sine
URI https://link.springer.com/article/10.1007/s10958-021-05534-9
https://www.proquest.com/docview/2576935634
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPQgPnF9UURU0MJ2k7TNsYrrCz2oC3oKedWTu2LXg__emT7U-jh4KjQfoZ0kk2_IzBeAHcfiSLtuHiZepCHnRoZG4FwWSEVinkcucnSie3Udnw34xb24r4vCiibbvTmSLD31l2I3id1RSkFXCMZDOQnTAmN3Wo6DXvbhf5FAV2n1SS9kLOF1qczvfbS2o-9O-cfpaLnp9OdhrmaLQVYN7wJM-OEizF59SK0WS7CPrJGIZ5AVb0_P4xG9DUZ5gJCAEjLQJdjgFrnkMgz6J3fHZ2F9_UFokeXIMLIYPUYmsrQrW89yHes45daK1DhPMuylWFcifc8ya6XE4EdwqqFypDgTsRWYGo6GfhUC77RPLWPGOOwgTrXzqeddo6XgxsWuAweNFdRzpXKhPvWMyWYKbaZKmynZgW0ylCL5iCHlpzzq16JQ57c3Kkt6KQkeJlEH9mpQPhq_aKvrdH_8IFKcaiF3W8jHSm_7N-BGC4gLwbabm4FT9UIsFMVTkomY8Q4cNoP52fz3T679D74OMzQVqzS_DZgav7z6TaQrY7MF01n_6OianqcPlydb5Wx9B9ZA36o
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADYhVljRACJIjUxHYSHysEKks5AJW4Wd7SEy0i5cDfM5MmQFgOXJMnKxnb42f5zTPAgWNJpF07D1MvspBzI0MjcCwLpCIJzyMXOTrR7d0m3T6_ehSPVVFYUavd6yPJMlN_KXaT2BxJCtpCMB7KaZhFMpDRvQX9uPORf5FAT2T1aRwylvKqVOb3NhrL0fek_ON0tFx0LpZgsWKLQWfSvcsw5YcrsND7sFotVuEYWSMRz6BTvD09j0f0NBjlAUICEmRgSrDBPXLJNehfnD-cdcPq-oPQIsuRYWRx9xiZyNKqbD3LdaKTjFsrMuM82bCXZl2p9LFl1kqJmx_BqYbKkeNMxNZhZjga-g0IvNM-s4wZ47CBJNPOZ563jZaCG5e4FpzUUVDPE5cL9elnTDFTGDNVxkzJFuxToBTZRwxJnzLQr0WhLu_vVCeNMzI8TKMWHFWgfDR-0VZXcn_8IHKcaiAPG8jBxG_7N-B2A4gTwTZf1x2nqolYKNpPSSYSxltwWnfm5-u_f3Lzf_A9mOs-9G7UzeXt9RbMxzTESsnfNsyMX179DlKXsdktR-o7hBLfjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61Wwm1h6rlIbbdtlGFoFKJWMd2Eh9XbVdQHkLQlbhZfoUT2RUJB_49M0kWCKWHXuORlcyMx5_lb74AbHmeMuPHRZwFmcdCWBVbibksEYqkomCeebrRPT5J92fi94W8eNTF37Ddl1eSbU8DqTSV9d7CF3uPGt8UTk30grGUXMTqJbzCcswo02fJ5L4WI5huKfZZEnOeia5t5vk5elvT0wL9101pswFN38HbDjlGkzbU7-FFKFfhzfG97Gq1Bt8QQRIIjSbV7dWintPTaF5EaBIROQPLg4vOEVeuw2z668-P_bj7FULsEPGomDk8STLLHO3QLvDCpCbNhXMytz6QJHsj3JWpkDjunFJ4EJKC-qk8qc8wvgGDcl6GTYiCNyF3nFvrcYI0Nz7kQYytUVJYn_ohfF96QS9axQv9oG1MPtPoM934TKshfCVHaZKSKImrcmluqkofnJ_pSZbkJH6YsSHsdEbFvL42znTUf3whUp_qWW73LC9b7e3nDEc9Q1wUrj-8DJzuFmWl6WyluEy5GMLuMpgPw__-yA__Z_4FVk5_TvXRwcnhR3idUIY17L8RDOrrm_AJUUxtPzeJege6buPJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniform+Asymptotics+of+the+Elliptic+Sine&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kiselev%2C+O.+M.&rft.date=2021-10-01&rft.pub=Springer+US&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=258&rft.issue=1&rft.spage=23&rft.epage=36&rft_id=info:doi/10.1007%2Fs10958-021-05534-9&rft.externalDocID=10_1007_s10958_021_05534_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon