On Ground States and Compactly Supported Solutions of Elliptic Equations with Non-Lipschitz Nonlinearities

In a bounded domain Ω ⊂ ℝ N , we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the form Δ u = λ u − u α − 1 u , λ ∈ ℝ , 0 < α < 1 . The problem of the existence of a solution of the ground-state-type with compact support is examined...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 258; no. 1; pp. 110 - 114
Main Author Kholodnov, E. E.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1072-3374
1573-8795
DOI10.1007/s10958-021-05539-4

Cover

Abstract In a bounded domain Ω ⊂ ℝ N , we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the form Δ u = λ u − u α − 1 u , λ ∈ ℝ , 0 < α < 1 . The problem of the existence of a solution of the ground-state-type with compact support is examined.
AbstractList In a bounded domain [OMEGA] [subset] [??], we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the form
In a bounded domain Ω ⊂ ℝ N , we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the form Δ u = λ u − u α − 1 u , λ ∈ ℝ , 0 < α < 1 . The problem of the existence of a solution of the ground-state-type with compact support is examined.
In a bounded domain Ω ⊂ ℝN, we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the formΔu=λu−uα−1u,λ∈ℝ,0<α<1.The problem of the existence of a solution of the ground-state-type with compact support is examined.
In a bounded domain [OMEGA] [subset] [??], we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the form [DELTA]u = [lambda]u - [|u|.sup.[alpha]-1] u, [lambda] [member of] [??], 0 <[alpha] < 1. The problem of the existence of a solution of the ground-state-type with compact support is examined. Keywords and phrases: elliptic equation, solution with compact support, non-Lipschitz nonlinearity. AMS Subject Classification: 35B44, 35B32, 35K59, 35J60, 35J70
Audience Academic
Author Kholodnov, E. E.
Author_xml – sequence: 1
  givenname: E. E.
  surname: Kholodnov
  fullname: Kholodnov, E. E.
  email: emil.kholod@gmail.com
  organization: Institute of Mathematics with Computing Center, Ufa Federal Research Center of the Russian Academy of Sciences
BookMark eNp9kk1rGzEQhkVJoUnaP9DTQk89KNXXStpjMG4aMAnU7VnI8qwjs5Y2kpY2_fVVuoFgMEUHzYyedwZJ7wU6CzEAQh8puaKEqC-Zkq7VmDCKSdvyDos36Jy2imOtuvasxkQxzLkS79BFzntSRVLzc7S_D81NilPYNutiC-TG1nARD6N1ZXhq1tM4xlSgHsdhKj6G3MS-WQ6DH4t3zfJxsnP1ly8PzV0MeOXH7B58-fOcDT6ATb54yO_R294OGT687Jfo59flj8U3vLq_uV1cr7DjTAjcb6zkzjrJQWxYp7VS0pKaaslFt6VUMmqdEpRQXW9qW8ek2kCnNKEUWs0v0ae575ji4wS5mH2cUqgjDWuV7LgUmrxSOzuA8aGPJVl38NmZa8U0rbOUrBQ-Qe0gQLJD_YLe1_IRf3WCr2sLB-9OCj4fCSpT4HfZ2Slnc7v-fsyymXUp5pygN2PyB5ueDCXm2QZmtoGpNjD_bGBEFfFZlCscdpBeX-M_qr-gALQZ
Cites_doi 10.1007/s002050050162
10.1016/j.na.2009.12.015
10.13108/2017-9-4-44
10.57262/die/1370021911
10.1016/j.na.2014.11.019
10.1007/s11401-016-1073-2
10.57262/die/1371586149
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-021-05539-4
DatabaseName CrossRef
Science in Context
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 114
ExternalDocumentID A728134976
10_1007_s10958_021_05539_4
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c3244-fba63cac63e4b2988776a0c6386349d11621ac741018539a5c267be978011e583
IEDL.DBID AGYKE
ISSN 1072-3374
IngestDate Fri Jul 25 11:09:25 EDT 2025
Tue Jun 17 20:35:23 EDT 2025
Thu Jun 12 23:43:03 EDT 2025
Tue Jun 10 20:48:05 EDT 2025
Fri Jun 27 03:54:20 EDT 2025
Tue Jul 01 01:42:19 EDT 2025
Fri Feb 21 02:48:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords solution with compact support
35J60
35J70
35B44
35B32
non-Lipschitz nonlinearity
35K59
elliptic equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3244-fba63cac63e4b2988776a0c6386349d11621ac741018539a5c267be978011e583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2576936480
PQPubID 2043545
PageCount 5
ParticipantIDs proquest_journals_2576936480
gale_infotracmisc_A728134976
gale_infotracgeneralonefile_A728134976
gale_infotracacademiconefile_A728134976
gale_incontextgauss_ISR_A728134976
crossref_primary_10_1007_s10958_021_05539_4
springer_journals_10_1007_s10958_021_05539_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211000
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Ya. Sh. Il’yasov and Yu. V. Egorov, “Hopf maximum principle violation for elliptic equations with non-Lipschitz nonlinearity,” Nonlin. Anal., 72, 3346–3355 (2010).
Ya. Sh. Il’yasov, “On critical exponent for an elliptic equation with non-Lipschitz nonlinearity,” Dynam. Syst., 698–706 (2011).
KaperHKwongMKLiYSymmetry results for reaction-diffusion equationsDiffer. Integr. Equations199361045105612304800799.35083
J. I. Díaz, J. Hernández, and Ya. Il’yasov, “Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for N ≥ 3,” Chin. Ann. Math. Ser. B., 38 (1), 345–378 (2017).
J. I. Díaz, J. Hernández, and Ya. Il’yasov, “On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption,” Nonlin. Anal. Theory Meth. Appl., 119, 484–500 (2015).
SerrinJZouHSymmetry of ground states of quasilinear elliptic equationsArch. Rat. Mech. Anal.19991484265290171666510.1007/s002050050162
Ya. Sh. Il’yasov and E. E. Kholodnov, “On the global instability of solutions of hyperbolic equations with non-Lipschitzian nonlinearities,” Ufim. Mat. Zh., 9, No. 4, 45–54 (2017).
KaperHGKwongMKFree boundary problems for Emden–Fowler equationsDiffer. Integr. Equations19903235336210251840726.34024
HG Kaper (5539_CR6) 1990; 3
5539_CR5
5539_CR4
5539_CR3
5539_CR2
5539_CR1
H Kaper (5539_CR7) 1993; 6
J Serrin (5539_CR8) 1999; 148
References_xml – reference: Ya. Sh. Il’yasov and Yu. V. Egorov, “Hopf maximum principle violation for elliptic equations with non-Lipschitz nonlinearity,” Nonlin. Anal., 72, 3346–3355 (2010).
– reference: SerrinJZouHSymmetry of ground states of quasilinear elliptic equationsArch. Rat. Mech. Anal.19991484265290171666510.1007/s002050050162
– reference: Ya. Sh. Il’yasov, “On critical exponent for an elliptic equation with non-Lipschitz nonlinearity,” Dynam. Syst., 698–706 (2011).
– reference: KaperHGKwongMKFree boundary problems for Emden–Fowler equationsDiffer. Integr. Equations19903235336210251840726.34024
– reference: Ya. Sh. Il’yasov and E. E. Kholodnov, “On the global instability of solutions of hyperbolic equations with non-Lipschitzian nonlinearities,” Ufim. Mat. Zh., 9, No. 4, 45–54 (2017).
– reference: J. I. Díaz, J. Hernández, and Ya. Il’yasov, “Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for N ≥ 3,” Chin. Ann. Math. Ser. B., 38 (1), 345–378 (2017).
– reference: KaperHKwongMKLiYSymmetry results for reaction-diffusion equationsDiffer. Integr. Equations199361045105612304800799.35083
– reference: J. I. Díaz, J. Hernández, and Ya. Il’yasov, “On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption,” Nonlin. Anal. Theory Meth. Appl., 119, 484–500 (2015).
– volume: 148
  start-page: 265
  issue: 4
  year: 1999
  ident: 5539_CR8
  publication-title: Arch. Rat. Mech. Anal.
  doi: 10.1007/s002050050162
– ident: 5539_CR4
  doi: 10.1016/j.na.2009.12.015
– ident: 5539_CR5
  doi: 10.13108/2017-9-4-44
– volume: 6
  start-page: 1045
  year: 1993
  ident: 5539_CR7
  publication-title: Differ. Integr. Equations
  doi: 10.57262/die/1370021911
– ident: 5539_CR2
  doi: 10.1016/j.na.2014.11.019
– ident: 5539_CR1
  doi: 10.1007/s11401-016-1073-2
– ident: 5539_CR3
– volume: 3
  start-page: 353
  issue: 2
  year: 1990
  ident: 5539_CR6
  publication-title: Differ. Integr. Equations
  doi: 10.57262/die/1371586149
SSID ssj0007683
Score 2.2215862
Snippet In a bounded domain Ω ⊂ ℝ N , we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the form Δ u = λ u...
In a bounded domain [OMEGA] [subset] [??], we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the...
In a bounded domain Ω ⊂ ℝN, we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 110
SubjectTerms Boundary value problems
Dirichlet problem
Elliptic functions
Mathematics
Mathematics and Statistics
Nonlinearity
Title On Ground States and Compactly Supported Solutions of Elliptic Equations with Non-Lipschitz Nonlinearities
URI https://link.springer.com/article/10.1007/s10958-021-05539-4
https://www.proquest.com/docview/2576936480
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH5qpxc4AGURA2VkIQQHSJV4S3KcwkzLViRgpHKyHMepWJQpk8yB_nrey9I2pRx6i-WnyMvz82f782eAZ7gk8SpyeeCck7RASQLrcxcUWZQULtW4fmsIsof6YCHfHamj7lJY1bPd-yPJJlJfuOyWqiQgSkGoFJ1fbsKWipI0GcHWdP_b-9lZBEYI3RLrYx4IEcvusszVfxlMSJfD8j_no820M78Ni77ALdvk5-66znbd6SUtx-vW6A7c6nAom7aOsw0bvrwLNz-eibhW9-DHp5LR1lSZsxaSMoufTQBx9a8_jB4EJaouZvf-y5YFIxYIxiHHZr9bGfGK0WYvO1yWwYfvJxUdXJxSigCuXTWKrvdhMZ99fX0QdE8zBA4RmMSutFo467TwMuMpRqpY2xCTiRYyzaNI88g6RCsh4YHUKsd1nHmSO4oirxLxAEblsvQPgZHkHc955kSRybgobCasQBwi4tB65cMxvOz7x5y0ChzmXGuZWtBgC5qmBY0cw1PqQkPSFiVxZ47tuqrM2y-fzTTmCYkxxnoMLzqjYlmvLNajvYqABSI1rIHl84HlcasFfpXhzsAQB6kbZvcuZbogURla66VCywTr-Kr3kPPs_1fy0fXMH8MNTk7WUBB3YFSv1v4JQqk6m-DI2XuzN590I2gCmws-_QuTXRVZ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y4H2AAVadYG2FkLtoQ1KYsdJjqtqYSnLIrWsRE-W4zioD2XpJnuAX89MHtDwOHBL5FEU25PJN57PnwF2MSWxgWdSxxgjKEGJHG1T42SJF2Umlpi_VQTZiRxNxbez4KzZFFa0bPe2JFlF6v82u8VB5BClwA0Cql8-hyWBObjbg6XBwc-j4U0ERghdE-tD3-E8FM1mmYef0vkh3Q3L9-qj1W9nfxWm7QvXbJM_e4sy2TNXd7Qcn9qjV7DS4FA2qB1nDZ7ZfB1eHt-IuBYb8PskZ7Q0laeshqRM42UVQEz595LRgaBE1cXm1n_ZLGPEAsE4ZNjwXy0jXjBa7GWTWe6Mf10UVLi4ojsCuHpeKbq-hun-8PTryGmOZnAMIjCBU6klN9pIbkXixxipQqldvI0kF3HqedL3tEG04hIeiHVgfBkmluSOPM8GEX8DvXyW27fASPLOT_3E8CwRYZbphGuOOISHrraBdfvwuZ0fdVErcKhbrWUaQYUjqKoRVKIPOzSFiqQtcuLOnOtFUajDH9_VIPQjEmMMZR8-NUbZrJxr7Ee9FQFfiNSwOpYfO5bntRb4Q4bbHUP8SE23uXUp1QSJQlGuF3MpIuzjl9ZDbpsf7-Tm08w_wPLo9HisxoeToy144ZPDVXTEbeiV84V9h7CqTN43X9E1U2QV2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKlRA9oJaHWEpbCyE4QERiO05yXLWsWB4LAlbiZjmOg6hQdrsJB_j1zOSxS-j20Fsij6J4PB5_9sx8JmQXtiTW90ziGGMEblBCR9vEOGnshamJJOzfygTZgTwZitM7_-5NFX-Z7d6EJKuaBmRpyoqjcZIevSl8i_zQwfQC1_cxlrlAPoI79tDSh6w79cUApqsU-4A5nAeiLpuZ_43W0vTeQf8VKS0XoN5nslIjR9qthvoL-WCzVfLpYkq7mq-R35cZxcOkLKEViKQaHsspb4rHZ4pXeGJyLTQ3FkdHKcW8DfAchh7_qYi_c4rHs3Qwypzzh3GOoYYXfENIqiclB-s6GfaOb3-eOPVlCo4BzCRA-Vpyo43kVsQsAt8SSO3Cayi5iBLPk8zTBvCFiyt4pH3DZBBbJCjyPOuHfIMsZqPMbhKKJHUsYbHhaSyCNNUx1xyQAw9cbX3rdshBo0c1rjgz1IwdGbWuQOuq1LoSHbKDqlZIRpFhtsu9fspz1b-5Vt2AhUifGMgO2a-F0lEx0dCPqngAfgj5q1qSey3J-4q9e57gdksQppVpNzdDr-ppnSvcnUVcihD6eNiYw6z5353c-j_xH2Tp6ldPnfcHZ1_JMkMbLfMHt8liMXmy3wAHFfH30tRfASiR_Qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+GROUND+STATES+AND+COMPACTLY+SUPPORTED+SOLUTIONS+OF+ELLIPTIC+EQUATIONS+WITH+NON-LIPSCHITZ+NONLINEARITIES&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kholodnov%2C+E.E&rft.date=2021-10-01&rft.pub=Springer&rft.issn=1072-3374&rft.volume=258&rft.issue=1&rft.spage=110&rft_id=info:doi/10.1007%2Fs10958-021-05539-4&rft.externalDBID=ISR&rft.externalDocID=A728134976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon