On Ground States and Compactly Supported Solutions of Elliptic Equations with Non-Lipschitz Nonlinearities
In a bounded domain Ω ⊂ ℝ N , we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the form Δ u = λ u − u α − 1 u , λ ∈ ℝ , 0 < α < 1 . The problem of the existence of a solution of the ground-state-type with compact support is examined...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 258; no. 1; pp. 110 - 114 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1072-3374 1573-8795 |
DOI | 10.1007/s10958-021-05539-4 |
Cover
Abstract | In a bounded domain Ω ⊂ ℝ
N
, we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the form
Δ
u
=
λ
u
−
u
α
−
1
u
,
λ
∈
ℝ
,
0
<
α
<
1
.
The problem of the existence of a solution of the ground-state-type with compact support is examined. |
---|---|
AbstractList | In a bounded domain [OMEGA] [subset] [??], we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the form In a bounded domain Ω ⊂ ℝ N , we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the form Δ u = λ u − u α − 1 u , λ ∈ ℝ , 0 < α < 1 . The problem of the existence of a solution of the ground-state-type with compact support is examined. In a bounded domain Ω ⊂ ℝN, we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the formΔu=λu−uα−1u,λ∈ℝ,0<α<1.The problem of the existence of a solution of the ground-state-type with compact support is examined. In a bounded domain [OMEGA] [subset] [??], we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the form [DELTA]u = [lambda]u - [|u|.sup.[alpha]-1] u, [lambda] [member of] [??], 0 <[alpha] < 1. The problem of the existence of a solution of the ground-state-type with compact support is examined. Keywords and phrases: elliptic equation, solution with compact support, non-Lipschitz nonlinearity. AMS Subject Classification: 35B44, 35B32, 35K59, 35J60, 35J70 |
Audience | Academic |
Author | Kholodnov, E. E. |
Author_xml | – sequence: 1 givenname: E. E. surname: Kholodnov fullname: Kholodnov, E. E. email: emil.kholod@gmail.com organization: Institute of Mathematics with Computing Center, Ufa Federal Research Center of the Russian Academy of Sciences |
BookMark | eNp9kk1rGzEQhkVJoUnaP9DTQk89KNXXStpjMG4aMAnU7VnI8qwjs5Y2kpY2_fVVuoFgMEUHzYyedwZJ7wU6CzEAQh8puaKEqC-Zkq7VmDCKSdvyDos36Jy2imOtuvasxkQxzLkS79BFzntSRVLzc7S_D81NilPYNutiC-TG1nARD6N1ZXhq1tM4xlSgHsdhKj6G3MS-WQ6DH4t3zfJxsnP1ly8PzV0MeOXH7B58-fOcDT6ATb54yO_R294OGT687Jfo59flj8U3vLq_uV1cr7DjTAjcb6zkzjrJQWxYp7VS0pKaaslFt6VUMmqdEpRQXW9qW8ek2kCnNKEUWs0v0ae575ji4wS5mH2cUqgjDWuV7LgUmrxSOzuA8aGPJVl38NmZa8U0rbOUrBQ-Qe0gQLJD_YLe1_IRf3WCr2sLB-9OCj4fCSpT4HfZ2Slnc7v-fsyymXUp5pygN2PyB5ueDCXm2QZmtoGpNjD_bGBEFfFZlCscdpBeX-M_qr-gALQZ |
Cites_doi | 10.1007/s002050050162 10.1016/j.na.2009.12.015 10.13108/2017-9-4-44 10.57262/die/1370021911 10.1016/j.na.2014.11.019 10.1007/s11401-016-1073-2 10.57262/die/1371586149 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2021 Springer Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10958-021-05539-4 |
DatabaseName | CrossRef Science in Context |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 114 |
ExternalDocumentID | A728134976 10_1007_s10958_021_05539_4 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c3244-fba63cac63e4b2988776a0c6386349d11621ac741018539a5c267be978011e583 |
IEDL.DBID | AGYKE |
ISSN | 1072-3374 |
IngestDate | Fri Jul 25 11:09:25 EDT 2025 Tue Jun 17 20:35:23 EDT 2025 Thu Jun 12 23:43:03 EDT 2025 Tue Jun 10 20:48:05 EDT 2025 Fri Jun 27 03:54:20 EDT 2025 Tue Jul 01 01:42:19 EDT 2025 Fri Feb 21 02:48:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | solution with compact support 35J60 35J70 35B44 35B32 non-Lipschitz nonlinearity 35K59 elliptic equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3244-fba63cac63e4b2988776a0c6386349d11621ac741018539a5c267be978011e583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2576936480 |
PQPubID | 2043545 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2576936480 gale_infotracmisc_A728134976 gale_infotracgeneralonefile_A728134976 gale_infotracacademiconefile_A728134976 gale_incontextgauss_ISR_A728134976 crossref_primary_10_1007_s10958_021_05539_4 springer_journals_10_1007_s10958_021_05539_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211000 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2021 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Ya. Sh. Il’yasov and Yu. V. Egorov, “Hopf maximum principle violation for elliptic equations with non-Lipschitz nonlinearity,” Nonlin. Anal., 72, 3346–3355 (2010). Ya. Sh. Il’yasov, “On critical exponent for an elliptic equation with non-Lipschitz nonlinearity,” Dynam. Syst., 698–706 (2011). KaperHKwongMKLiYSymmetry results for reaction-diffusion equationsDiffer. Integr. Equations199361045105612304800799.35083 J. I. Díaz, J. Hernández, and Ya. Il’yasov, “Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for N ≥ 3,” Chin. Ann. Math. Ser. B., 38 (1), 345–378 (2017). J. I. Díaz, J. Hernández, and Ya. Il’yasov, “On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption,” Nonlin. Anal. Theory Meth. Appl., 119, 484–500 (2015). SerrinJZouHSymmetry of ground states of quasilinear elliptic equationsArch. Rat. Mech. Anal.19991484265290171666510.1007/s002050050162 Ya. Sh. Il’yasov and E. E. Kholodnov, “On the global instability of solutions of hyperbolic equations with non-Lipschitzian nonlinearities,” Ufim. Mat. Zh., 9, No. 4, 45–54 (2017). KaperHGKwongMKFree boundary problems for Emden–Fowler equationsDiffer. Integr. Equations19903235336210251840726.34024 HG Kaper (5539_CR6) 1990; 3 5539_CR5 5539_CR4 5539_CR3 5539_CR2 5539_CR1 H Kaper (5539_CR7) 1993; 6 J Serrin (5539_CR8) 1999; 148 |
References_xml | – reference: Ya. Sh. Il’yasov and Yu. V. Egorov, “Hopf maximum principle violation for elliptic equations with non-Lipschitz nonlinearity,” Nonlin. Anal., 72, 3346–3355 (2010). – reference: SerrinJZouHSymmetry of ground states of quasilinear elliptic equationsArch. Rat. Mech. Anal.19991484265290171666510.1007/s002050050162 – reference: Ya. Sh. Il’yasov, “On critical exponent for an elliptic equation with non-Lipschitz nonlinearity,” Dynam. Syst., 698–706 (2011). – reference: KaperHGKwongMKFree boundary problems for Emden–Fowler equationsDiffer. Integr. Equations19903235336210251840726.34024 – reference: Ya. Sh. Il’yasov and E. E. Kholodnov, “On the global instability of solutions of hyperbolic equations with non-Lipschitzian nonlinearities,” Ufim. Mat. Zh., 9, No. 4, 45–54 (2017). – reference: J. I. Díaz, J. Hernández, and Ya. Il’yasov, “Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for N ≥ 3,” Chin. Ann. Math. Ser. B., 38 (1), 345–378 (2017). – reference: KaperHKwongMKLiYSymmetry results for reaction-diffusion equationsDiffer. Integr. Equations199361045105612304800799.35083 – reference: J. I. Díaz, J. Hernández, and Ya. Il’yasov, “On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption,” Nonlin. Anal. Theory Meth. Appl., 119, 484–500 (2015). – volume: 148 start-page: 265 issue: 4 year: 1999 ident: 5539_CR8 publication-title: Arch. Rat. Mech. Anal. doi: 10.1007/s002050050162 – ident: 5539_CR4 doi: 10.1016/j.na.2009.12.015 – ident: 5539_CR5 doi: 10.13108/2017-9-4-44 – volume: 6 start-page: 1045 year: 1993 ident: 5539_CR7 publication-title: Differ. Integr. Equations doi: 10.57262/die/1370021911 – ident: 5539_CR2 doi: 10.1016/j.na.2014.11.019 – ident: 5539_CR1 doi: 10.1007/s11401-016-1073-2 – ident: 5539_CR3 – volume: 3 start-page: 353 issue: 2 year: 1990 ident: 5539_CR6 publication-title: Differ. Integr. Equations doi: 10.57262/die/1371586149 |
SSID | ssj0007683 |
Score | 2.2215862 |
Snippet | In a bounded domain Ω ⊂ ℝ
N
, we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the form
Δ
u
=
λ
u... In a bounded domain [OMEGA] [subset] [??], we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the... In a bounded domain Ω ⊂ ℝN, we consider the Dirichlet boundary-value problem for an elliptic equation with a non-Lipschitz nonlinearity of the... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 110 |
SubjectTerms | Boundary value problems Dirichlet problem Elliptic functions Mathematics Mathematics and Statistics Nonlinearity |
Title | On Ground States and Compactly Supported Solutions of Elliptic Equations with Non-Lipschitz Nonlinearities |
URI | https://link.springer.com/article/10.1007/s10958-021-05539-4 https://www.proquest.com/docview/2576936480 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH5qpxc4AGURA2VkIQQHSJV4S3KcwkzLViRgpHKyHMepWJQpk8yB_nrey9I2pRx6i-WnyMvz82f782eAZ7gk8SpyeeCck7RASQLrcxcUWZQULtW4fmsIsof6YCHfHamj7lJY1bPd-yPJJlJfuOyWqiQgSkGoFJ1fbsKWipI0GcHWdP_b-9lZBEYI3RLrYx4IEcvusszVfxlMSJfD8j_no820M78Ni77ALdvk5-66znbd6SUtx-vW6A7c6nAom7aOsw0bvrwLNz-eibhW9-DHp5LR1lSZsxaSMoufTQBx9a8_jB4EJaouZvf-y5YFIxYIxiHHZr9bGfGK0WYvO1yWwYfvJxUdXJxSigCuXTWKrvdhMZ99fX0QdE8zBA4RmMSutFo467TwMuMpRqpY2xCTiRYyzaNI88g6RCsh4YHUKsd1nHmSO4oirxLxAEblsvQPgZHkHc955kSRybgobCasQBwi4tB65cMxvOz7x5y0ChzmXGuZWtBgC5qmBY0cw1PqQkPSFiVxZ47tuqrM2y-fzTTmCYkxxnoMLzqjYlmvLNajvYqABSI1rIHl84HlcasFfpXhzsAQB6kbZvcuZbogURla66VCywTr-Kr3kPPs_1fy0fXMH8MNTk7WUBB3YFSv1v4JQqk6m-DI2XuzN590I2gCmws-_QuTXRVZ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y4H2AAVadYG2FkLtoQ1KYsdJjqtqYSnLIrWsRE-W4zioD2XpJnuAX89MHtDwOHBL5FEU25PJN57PnwF2MSWxgWdSxxgjKEGJHG1T42SJF2Umlpi_VQTZiRxNxbez4KzZFFa0bPe2JFlF6v82u8VB5BClwA0Cql8-hyWBObjbg6XBwc-j4U0ERghdE-tD3-E8FM1mmYef0vkh3Q3L9-qj1W9nfxWm7QvXbJM_e4sy2TNXd7Qcn9qjV7DS4FA2qB1nDZ7ZfB1eHt-IuBYb8PskZ7Q0laeshqRM42UVQEz595LRgaBE1cXm1n_ZLGPEAsE4ZNjwXy0jXjBa7GWTWe6Mf10UVLi4ojsCuHpeKbq-hun-8PTryGmOZnAMIjCBU6klN9pIbkXixxipQqldvI0kF3HqedL3tEG04hIeiHVgfBkmluSOPM8GEX8DvXyW27fASPLOT_3E8CwRYZbphGuOOISHrraBdfvwuZ0fdVErcKhbrWUaQYUjqKoRVKIPOzSFiqQtcuLOnOtFUajDH9_VIPQjEmMMZR8-NUbZrJxr7Ee9FQFfiNSwOpYfO5bntRb4Q4bbHUP8SE23uXUp1QSJQlGuF3MpIuzjl9ZDbpsf7-Tm08w_wPLo9HisxoeToy144ZPDVXTEbeiV84V9h7CqTN43X9E1U2QV2w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKlRA9oJaHWEpbCyE4QERiO05yXLWsWB4LAlbiZjmOg6hQdrsJB_j1zOSxS-j20Fsij6J4PB5_9sx8JmQXtiTW90ziGGMEblBCR9vEOGnshamJJOzfygTZgTwZitM7_-5NFX-Z7d6EJKuaBmRpyoqjcZIevSl8i_zQwfQC1_cxlrlAPoI79tDSh6w79cUApqsU-4A5nAeiLpuZ_43W0vTeQf8VKS0XoN5nslIjR9qthvoL-WCzVfLpYkq7mq-R35cZxcOkLKEViKQaHsspb4rHZ4pXeGJyLTQ3FkdHKcW8DfAchh7_qYi_c4rHs3Qwypzzh3GOoYYXfENIqiclB-s6GfaOb3-eOPVlCo4BzCRA-Vpyo43kVsQsAt8SSO3Cayi5iBLPk8zTBvCFiyt4pH3DZBBbJCjyPOuHfIMsZqPMbhKKJHUsYbHhaSyCNNUx1xyQAw9cbX3rdshBo0c1rjgz1IwdGbWuQOuq1LoSHbKDqlZIRpFhtsu9fspz1b-5Vt2AhUifGMgO2a-F0lEx0dCPqngAfgj5q1qSey3J-4q9e57gdksQppVpNzdDr-ppnSvcnUVcihD6eNiYw6z5353c-j_xH2Tp6ldPnfcHZ1_JMkMbLfMHt8liMXmy3wAHFfH30tRfASiR_Qw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+GROUND+STATES+AND+COMPACTLY+SUPPORTED+SOLUTIONS+OF+ELLIPTIC+EQUATIONS+WITH+NON-LIPSCHITZ+NONLINEARITIES&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kholodnov%2C+E.E&rft.date=2021-10-01&rft.pub=Springer&rft.issn=1072-3374&rft.volume=258&rft.issue=1&rft.spage=110&rft_id=info:doi/10.1007%2Fs10958-021-05539-4&rft.externalDBID=ISR&rft.externalDocID=A728134976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |