Lie Algebras of Infinitesimal Affine Transformations of Tangent Bundles

In this paper, we examine maximal dimensions of Lie algebras of infinitesimal affine transformations of tangent bundles with a complete lift connection over spaces with a semisymmetric connection. Keywords and phrases: tangent bundle, infinitesimal affine transformation, Lie algebra, semisymmetric c...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 276; no. 4; pp. 570 - 575
Main Author Sultanova, G. A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we examine maximal dimensions of Lie algebras of infinitesimal affine transformations of tangent bundles with a complete lift connection over spaces with a semisymmetric connection. Keywords and phrases: tangent bundle, infinitesimal affine transformation, Lie algebra, semisymmetric connection. AMS Subject Classification: 53B05, 53A55
AbstractList In this paper, we examine maximal dimensions of Lie algebras of infinitesimal affine transformations of tangent bundles with a complete lift connection over spaces with a semisymmetric connection. Keywords and phrases: tangent bundle, infinitesimal affine transformation, Lie algebra, semisymmetric connection. AMS Subject Classification: 53B05, 53A55
In this paper, we examine maximal dimensions of Lie algebras of infinitesimal affine transformations of tangent bundles with a complete lift connection over spaces with a semisymmetric connection.
Audience Academic
Author Sultanova, G. A.
Author_xml – sequence: 1
  givenname: G. A.
  surname: Sultanova
  fullname: Sultanova, G. A.
  email: sultgaliya@yandex.ru
  organization: Military Logistic Academy
BookMark eNp9kU1LwzAch4MouE2_gKeCJw-ZeWmb9DiHzsFA0N1D2vwzMrp0Jh3otzfbBBkMySEvPL-E_J4huvSdB4TuKBlTQsRjpKQqJCaMY1IKUWF2gQa0EBxLURWXaU0Ew5yL_BoNY1yTFColH6DZwkE2aVdQBx2zzmZzb513PUS30W02sWkH2TJoH20XNrp3nT9wS-1X4PvsaedNC_EGXVndRrj9nUdo-fK8nL7ixdtsPp0scMNZzrChFdVgWCXKhkleWrC0ZlCIgpYF2LxsDOHApGHUGlmVXDd1XnPQdW7BGD5C98drt6H73EHs1brbBZ9eVExWlBZSCP5HrXQLynnb9UE3GxcbNRGiSE3lkiUKn6HSpyDoNtVrXTo-4cdn-DQMbFxzNvBwEkhMD1_9Su9iVPOP91OWHdkmdDEGsGobkoHwrShRe8XqqFglxeqgWO1D_BiKCU46wl8b_6R-AJN3qHs
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-023-06779-2
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 575
ExternalDocumentID A775958482
10_1007_s10958_023_06779_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c3242-d191aed2976c2836fef1b2e575165ef46cd03e28d21fd8963acb4b3eab4fedd3
IEDL.DBID U2A
ISSN 1072-3374
IngestDate Fri Jul 25 11:04:11 EDT 2025
Tue Jun 17 22:03:35 EDT 2025
Fri Jun 13 00:07:58 EDT 2025
Tue Jun 10 21:02:56 EDT 2025
Fri Jun 27 05:27:02 EDT 2025
Tue Jul 01 01:42:24 EDT 2025
Fri Feb 21 02:41:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 53A55
53B05
tangent bundle
semisymmetric connection
Lie algebra
infinitesimal affine transformation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3242-d191aed2976c2836fef1b2e575165ef46cd03e28d21fd8963acb4b3eab4fedd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2891158773
PQPubID 2043545
PageCount 6
ParticipantIDs proquest_journals_2891158773
gale_infotracmisc_A775958482
gale_infotracgeneralonefile_A775958482
gale_infotracacademiconefile_A775958482
gale_incontextgauss_ISR_A775958482
crossref_primary_10_1007_s10958_023_06779_2
springer_journals_10_1007_s10958_023_06779_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231100
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2023
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References A. P. Norden, Affinely Connected Spaces [in Russian], Nauka, Moscow (1976).
YanoKTangent and Cotangent Bundles1973New YorkMarcel Dekker0262.53024
ShadyevKhAffine collineation of a synectic connection in the tangent bundleTr. Geom. Semin.1984161171278089570602.53014
I. P. Egorov, Geometry [in Russian], Prosveshchenie, Moscow (1979).
A. Ya. Sultanov, “Prolongation of tensor fields and connections to the Weil bundle,” Izv. Vyssh. Ucheb. Zaved. Mat., No. 9, 64–72 (1999).
G. A. Sultanova, “On some subalgebras of the Lie algebra of infinitesimal affine transformations of the tangent bundle TM with the connection of total lift,” in: Proc. Int. Conf. “Lomonosov Readings in Altai: Fundamental Problems of Science and Education”, Izd-vo Altai. Univ., Barnaul (2014), pp. 378–381.
I. P. Egorov, Motions in Affinely Connected Spaces [in Russian], Librokom, Moscow (2016).
Kh Shadyev (6779_CR4) 1984; 16
6779_CR1
6779_CR2
6779_CR3
6779_CR5
6779_CR6
K Yano (6779_CR7) 1973
References_xml – reference: YanoKTangent and Cotangent Bundles1973New YorkMarcel Dekker0262.53024
– reference: G. A. Sultanova, “On some subalgebras of the Lie algebra of infinitesimal affine transformations of the tangent bundle TM with the connection of total lift,” in: Proc. Int. Conf. “Lomonosov Readings in Altai: Fundamental Problems of Science and Education”, Izd-vo Altai. Univ., Barnaul (2014), pp. 378–381.
– reference: A. Ya. Sultanov, “Prolongation of tensor fields and connections to the Weil bundle,” Izv. Vyssh. Ucheb. Zaved. Mat., No. 9, 64–72 (1999).
– reference: ShadyevKhAffine collineation of a synectic connection in the tangent bundleTr. Geom. Semin.1984161171278089570602.53014
– reference: I. P. Egorov, Motions in Affinely Connected Spaces [in Russian], Librokom, Moscow (2016).
– reference: A. P. Norden, Affinely Connected Spaces [in Russian], Nauka, Moscow (1976).
– reference: I. P. Egorov, Geometry [in Russian], Prosveshchenie, Moscow (1979).
– ident: 6779_CR1
– ident: 6779_CR2
– ident: 6779_CR3
– ident: 6779_CR5
– volume: 16
  start-page: 117
  year: 1984
  ident: 6779_CR4
  publication-title: Tr. Geom. Semin.
– ident: 6779_CR6
– volume-title: Tangent and Cotangent Bundles
  year: 1973
  ident: 6779_CR7
SSID ssj0007683
Score 2.296087
Snippet In this paper, we examine maximal dimensions of Lie algebras of infinitesimal affine transformations of tangent bundles with a complete lift connection over...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 570
SubjectTerms Affine transformations
Algebra
Lie groups
Mathematics
Mathematics and Statistics
Title Lie Algebras of Infinitesimal Affine Transformations of Tangent Bundles
URI https://link.springer.com/article/10.1007/s10958-023-06779-2
https://www.proquest.com/docview/2891158773
Volume 276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYquNADooWKpRRFqIIDWNrYTpwcs4gFWuDQLhI9WX6uVoJsRXb_PzN5AKH0wCmK_CVKxvP4rPGMCfnu-DDPUumpk0JTIZ0BkxKBagexXqcmZxbrna-u0_Mb8eM2uW2Lwqput3uXkqw99YtitzzJKMQYil3PcgqOdzXBtTto8Q0rnvwvEOhmW71klHMp2lKZt9_RC0evnfI_2dE66Iw3yHrLFqOimd5P5IMvP5OPV0-tVqtNcnY581FxN8UEcBXNQ3RRhhkSyWp2j48GuPPR5AU_BT1D3ETXZVXRaIl9FqotMhmfTk7OaXs6ArVIgqiDlZb2jgGfsMAR0uBDbJjHPEqa-CBS64bcs8yxOLgM7ExbIwz32ojgneNfyEo5L_02iUCZZGzNkBsWRGJtLq2NRawTnQy51GFAjjoZqb9NDwz13O0YJapAoqqWqGIDso9iVNhcosTdK1O9rCp18fuXKqRMAC0yAB22oDBfPGir22IA-CDsR9VDHvSQ06Yb91vA3R4QzMT2h7tpVa2ZVgpWm8CIMyn5gBx3U_08_P-f3Hkf_CtZw2PqmxrGXbKyeFj6b0BmFmaPrBbj0egar2d_fp7u1br8CD0B7T0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYmdhg7IDZAK2MjmhA7gKXGduLkGBCsHW0PECRuln9WlSCdmvb_5zk_KBlw4Bj5S5Q8-z1_0XvvM0JHhvbTJOYWG84kZtwocCnmsDSw18tYpUT7fufxJB7csr930V3TFFa21e5tSrKK1M-a3dIowbDHYK96lmIIvB-BDCS-kOuWZE_xFwh0XVbPCaaUs6ZV5vVndLaj_4Pyi-xotelcbqOthi0GWT29X9AHW3xFn8dPUqvlDvozmtkgu5_6BHAZzF0wLNzME8ly9uBvdXBlg_wZP4V15nG5rNqqgrOV11kod1F-eZGfD3BzOgLWngRhA39a0hoCfEIDR4iddaEi1udR4sg6FmvTp5YkhoTOJOBnUiumqJWKOWsM3UMbxbyw31AAi4mHWvWpIo5FWqdc65CFMpJRn3LpeuiktZH4V2tgiLXasbeoAIuKyqKC9NAvb0bhxSUKX70ylauyFMOba5FxHgGaJQD63YDcfLmQWjbNAPBCXo-qgzzuIKe1GvdrwIMOENxEd4fbaRWNm5YC_jaBESec0x46bad6Pfz2R-6_D36IPg3y8UiMhpOr72jTH1lf9zMeoI3lYmV_ALFZqp_VOn4EtWLtIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSKg9IB6tujxKhCo4tBYb24mT4xa6sOWhql0kbpafq5Ugi8ju_2cmycKmpQeOkb9Eydgz80Xj-UzIF8e7eZZKT50UmgrpDLiUCFQ7yPU6NTmz2O98dZ2e34ift8ntQhd_tdt9XpKsexpQpamYHj-4cLzQ-JYnGYV8Q1EBLacQhFcgHMe4rm9Y7zkWA5mut9hLRjmXommbef0ZrdT0d4D-p1JaJaD-OllrmGPUq6d6gyz5YpO8v3qWXS23yNnl2Ee9uxEWg8toEqJBEcZIKsvxPd4a4MpHwwWuCmsOcUNdtVhF32eouVB-IMP-j-HJOW1OSqAWCRF18NelvWPALSzwhTT4EBvmsaaSJj6I1Lou9yxzLA4uA5_T1gjDvTYieOf4R7JcTAr_iUSwsGRsTZcbFkRibS6tjUWsE510udShQ77ObaQeaj0M9aJ8jBZVYFFVWVSxDjlAMyoUmihwJ8tIz8pSDf78Vj0pE0CLDEBHDShMpo_a6qYxAF4ItalayMMWclQrc78G3G0BwWVse3g-rapx2VLBnyew40xK3iHf5lP9Mvz_j9x-G3yfrP467avLwfXFDnmHp9fXrY27ZHn6OPN7wHGm5nO1jJ8AbmHxXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LIE+ALGEBRAS+OF+INFINITESIMAL+AFFINE+TRANSFORMATIONS+OF+TANGENT+BUNDLES&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Sultanova%2C+G.A&rft.date=2023-11-01&rft.pub=Springer&rft.issn=1072-3374&rft.volume=276&rft.issue=4&rft.spage=563&rft_id=info:doi/10.1007%2Fs10958-023-06779-2&rft.externalDocID=A775958482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon