Lie Algebras of Infinitesimal Affine Transformations of Tangent Bundles
In this paper, we examine maximal dimensions of Lie algebras of infinitesimal affine transformations of tangent bundles with a complete lift connection over spaces with a semisymmetric connection. Keywords and phrases: tangent bundle, infinitesimal affine transformation, Lie algebra, semisymmetric c...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 276; no. 4; pp. 570 - 575 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.11.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we examine maximal dimensions of Lie algebras of infinitesimal affine transformations of tangent bundles with a complete lift connection over spaces with a semisymmetric connection. Keywords and phrases: tangent bundle, infinitesimal affine transformation, Lie algebra, semisymmetric connection. AMS Subject Classification: 53B05, 53A55 |
---|---|
AbstractList | In this paper, we examine maximal dimensions of Lie algebras of infinitesimal affine transformations of tangent bundles with a complete lift connection over spaces with a semisymmetric connection. Keywords and phrases: tangent bundle, infinitesimal affine transformation, Lie algebra, semisymmetric connection. AMS Subject Classification: 53B05, 53A55 In this paper, we examine maximal dimensions of Lie algebras of infinitesimal affine transformations of tangent bundles with a complete lift connection over spaces with a semisymmetric connection. |
Audience | Academic |
Author | Sultanova, G. A. |
Author_xml | – sequence: 1 givenname: G. A. surname: Sultanova fullname: Sultanova, G. A. email: sultgaliya@yandex.ru organization: Military Logistic Academy |
BookMark | eNp9kU1LwzAch4MouE2_gKeCJw-ZeWmb9DiHzsFA0N1D2vwzMrp0Jh3otzfbBBkMySEvPL-E_J4huvSdB4TuKBlTQsRjpKQqJCaMY1IKUWF2gQa0EBxLURWXaU0Ew5yL_BoNY1yTFColH6DZwkE2aVdQBx2zzmZzb513PUS30W02sWkH2TJoH20XNrp3nT9wS-1X4PvsaedNC_EGXVndRrj9nUdo-fK8nL7ixdtsPp0scMNZzrChFdVgWCXKhkleWrC0ZlCIgpYF2LxsDOHApGHUGlmVXDd1XnPQdW7BGD5C98drt6H73EHs1brbBZ9eVExWlBZSCP5HrXQLynnb9UE3GxcbNRGiSE3lkiUKn6HSpyDoNtVrXTo-4cdn-DQMbFxzNvBwEkhMD1_9Su9iVPOP91OWHdkmdDEGsGobkoHwrShRe8XqqFglxeqgWO1D_BiKCU46wl8b_6R-AJN3qHs |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer |
Copyright_xml | – notice: Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10958-023-06779-2 |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 575 |
ExternalDocumentID | A775958482 10_1007_s10958_023_06779_2 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c3242-d191aed2976c2836fef1b2e575165ef46cd03e28d21fd8963acb4b3eab4fedd3 |
IEDL.DBID | U2A |
ISSN | 1072-3374 |
IngestDate | Fri Jul 25 11:04:11 EDT 2025 Tue Jun 17 22:03:35 EDT 2025 Fri Jun 13 00:07:58 EDT 2025 Tue Jun 10 21:02:56 EDT 2025 Fri Jun 27 05:27:02 EDT 2025 Tue Jul 01 01:42:24 EDT 2025 Fri Feb 21 02:41:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 53A55 53B05 tangent bundle semisymmetric connection Lie algebra infinitesimal affine transformation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3242-d191aed2976c2836fef1b2e575165ef46cd03e28d21fd8963acb4b3eab4fedd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2891158773 |
PQPubID | 2043545 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2891158773 gale_infotracmisc_A775958482 gale_infotracgeneralonefile_A775958482 gale_infotracacademiconefile_A775958482 gale_incontextgauss_ISR_A775958482 crossref_primary_10_1007_s10958_023_06779_2 springer_journals_10_1007_s10958_023_06779_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231100 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | A. P. Norden, Affinely Connected Spaces [in Russian], Nauka, Moscow (1976). YanoKTangent and Cotangent Bundles1973New YorkMarcel Dekker0262.53024 ShadyevKhAffine collineation of a synectic connection in the tangent bundleTr. Geom. Semin.1984161171278089570602.53014 I. P. Egorov, Geometry [in Russian], Prosveshchenie, Moscow (1979). A. Ya. Sultanov, “Prolongation of tensor fields and connections to the Weil bundle,” Izv. Vyssh. Ucheb. Zaved. Mat., No. 9, 64–72 (1999). G. A. Sultanova, “On some subalgebras of the Lie algebra of infinitesimal affine transformations of the tangent bundle TM with the connection of total lift,” in: Proc. Int. Conf. “Lomonosov Readings in Altai: Fundamental Problems of Science and Education”, Izd-vo Altai. Univ., Barnaul (2014), pp. 378–381. I. P. Egorov, Motions in Affinely Connected Spaces [in Russian], Librokom, Moscow (2016). Kh Shadyev (6779_CR4) 1984; 16 6779_CR1 6779_CR2 6779_CR3 6779_CR5 6779_CR6 K Yano (6779_CR7) 1973 |
References_xml | – reference: YanoKTangent and Cotangent Bundles1973New YorkMarcel Dekker0262.53024 – reference: G. A. Sultanova, “On some subalgebras of the Lie algebra of infinitesimal affine transformations of the tangent bundle TM with the connection of total lift,” in: Proc. Int. Conf. “Lomonosov Readings in Altai: Fundamental Problems of Science and Education”, Izd-vo Altai. Univ., Barnaul (2014), pp. 378–381. – reference: A. Ya. Sultanov, “Prolongation of tensor fields and connections to the Weil bundle,” Izv. Vyssh. Ucheb. Zaved. Mat., No. 9, 64–72 (1999). – reference: ShadyevKhAffine collineation of a synectic connection in the tangent bundleTr. Geom. Semin.1984161171278089570602.53014 – reference: I. P. Egorov, Motions in Affinely Connected Spaces [in Russian], Librokom, Moscow (2016). – reference: A. P. Norden, Affinely Connected Spaces [in Russian], Nauka, Moscow (1976). – reference: I. P. Egorov, Geometry [in Russian], Prosveshchenie, Moscow (1979). – ident: 6779_CR1 – ident: 6779_CR2 – ident: 6779_CR3 – ident: 6779_CR5 – volume: 16 start-page: 117 year: 1984 ident: 6779_CR4 publication-title: Tr. Geom. Semin. – ident: 6779_CR6 – volume-title: Tangent and Cotangent Bundles year: 1973 ident: 6779_CR7 |
SSID | ssj0007683 |
Score | 2.296087 |
Snippet | In this paper, we examine maximal dimensions of Lie algebras of infinitesimal affine transformations of tangent bundles with a complete lift connection over... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 570 |
SubjectTerms | Affine transformations Algebra Lie groups Mathematics Mathematics and Statistics |
Title | Lie Algebras of Infinitesimal Affine Transformations of Tangent Bundles |
URI | https://link.springer.com/article/10.1007/s10958-023-06779-2 https://www.proquest.com/docview/2891158773 |
Volume | 276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYquNADooWKpRRFqIIDWNrYTpwcs4gFWuDQLhI9WX6uVoJsRXb_PzN5AKH0wCmK_CVKxvP4rPGMCfnu-DDPUumpk0JTIZ0BkxKBagexXqcmZxbrna-u0_Mb8eM2uW2Lwqput3uXkqw99YtitzzJKMQYil3PcgqOdzXBtTto8Q0rnvwvEOhmW71klHMp2lKZt9_RC0evnfI_2dE66Iw3yHrLFqOimd5P5IMvP5OPV0-tVqtNcnY581FxN8UEcBXNQ3RRhhkSyWp2j48GuPPR5AU_BT1D3ETXZVXRaIl9FqotMhmfTk7OaXs6ArVIgqiDlZb2jgGfsMAR0uBDbJjHPEqa-CBS64bcs8yxOLgM7ExbIwz32ojgneNfyEo5L_02iUCZZGzNkBsWRGJtLq2NRawTnQy51GFAjjoZqb9NDwz13O0YJapAoqqWqGIDso9iVNhcosTdK1O9rCp18fuXKqRMAC0yAB22oDBfPGir22IA-CDsR9VDHvSQ06Yb91vA3R4QzMT2h7tpVa2ZVgpWm8CIMyn5gBx3U_08_P-f3Hkf_CtZw2PqmxrGXbKyeFj6b0BmFmaPrBbj0egar2d_fp7u1br8CD0B7T0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYmdhg7IDZAK2MjmhA7gKXGduLkGBCsHW0PECRuln9WlSCdmvb_5zk_KBlw4Bj5S5Q8-z1_0XvvM0JHhvbTJOYWG84kZtwocCnmsDSw18tYpUT7fufxJB7csr930V3TFFa21e5tSrKK1M-a3dIowbDHYK96lmIIvB-BDCS-kOuWZE_xFwh0XVbPCaaUs6ZV5vVndLaj_4Pyi-xotelcbqOthi0GWT29X9AHW3xFn8dPUqvlDvozmtkgu5_6BHAZzF0wLNzME8ly9uBvdXBlg_wZP4V15nG5rNqqgrOV11kod1F-eZGfD3BzOgLWngRhA39a0hoCfEIDR4iddaEi1udR4sg6FmvTp5YkhoTOJOBnUiumqJWKOWsM3UMbxbyw31AAi4mHWvWpIo5FWqdc65CFMpJRn3LpeuiktZH4V2tgiLXasbeoAIuKyqKC9NAvb0bhxSUKX70ylauyFMOba5FxHgGaJQD63YDcfLmQWjbNAPBCXo-qgzzuIKe1GvdrwIMOENxEd4fbaRWNm5YC_jaBESec0x46bad6Pfz2R-6_D36IPg3y8UiMhpOr72jTH1lf9zMeoI3lYmV_ALFZqp_VOn4EtWLtIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSKg9IB6tujxKhCo4tBYb24mT4xa6sOWhql0kbpafq5Ugi8ju_2cmycKmpQeOkb9Eydgz80Xj-UzIF8e7eZZKT50UmgrpDLiUCFQ7yPU6NTmz2O98dZ2e34ift8ntQhd_tdt9XpKsexpQpamYHj-4cLzQ-JYnGYV8Q1EBLacQhFcgHMe4rm9Y7zkWA5mut9hLRjmXommbef0ZrdT0d4D-p1JaJaD-OllrmGPUq6d6gyz5YpO8v3qWXS23yNnl2Ee9uxEWg8toEqJBEcZIKsvxPd4a4MpHwwWuCmsOcUNdtVhF32eouVB-IMP-j-HJOW1OSqAWCRF18NelvWPALSzwhTT4EBvmsaaSJj6I1Lou9yxzLA4uA5_T1gjDvTYieOf4R7JcTAr_iUSwsGRsTZcbFkRibS6tjUWsE510udShQ77ObaQeaj0M9aJ8jBZVYFFVWVSxDjlAMyoUmihwJ8tIz8pSDf78Vj0pE0CLDEBHDShMpo_a6qYxAF4ItalayMMWclQrc78G3G0BwWVse3g-rapx2VLBnyew40xK3iHf5lP9Mvz_j9x-G3yfrP467avLwfXFDnmHp9fXrY27ZHn6OPN7wHGm5nO1jJ8AbmHxXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LIE+ALGEBRAS+OF+INFINITESIMAL+AFFINE+TRANSFORMATIONS+OF+TANGENT+BUNDLES&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Sultanova%2C+G.A&rft.date=2023-11-01&rft.pub=Springer&rft.issn=1072-3374&rft.volume=276&rft.issue=4&rft.spage=563&rft_id=info:doi/10.1007%2Fs10958-023-06779-2&rft.externalDocID=A775958482 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |