Boundary-Value Problem for Systems of Convolutional Equations in Anisotropic Functional Spaces
In this paper, anisotropic classes of well-posed Cauchy problems and boundary-value problems for systems of convolutions equations are obtained. For a particular case of differential equations, a hypersurface of conjugate orders of the corresponding polynomial is used, and various classes of well-po...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 277; no. 5; pp. 770 - 773 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
22.12.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1072-3374 1573-8795 |
DOI | 10.1007/s10958-023-06886-0 |
Cover
Abstract | In this paper, anisotropic classes of well-posed Cauchy problems and boundary-value problems for systems of convolutions equations are obtained. For a particular case of differential equations, a hypersurface of conjugate orders of the corresponding polynomial is used, and various classes of well-posed problems are obtained. |
---|---|
AbstractList | In this paper, anisotropic classes of well-posed Cauchy problems and boundary-value problems for systems of convolutions equations are obtained. For a particular case of differential equations, a hypersurface of conjugate orders of the corresponding polynomial is used, and various classes of well-posed problems are obtained. Keywords and phrases: convolution equation, boundary-value problem, Fourier transform, hypersurface of conjugate orders, anisotropic space of functions. AMS Subject Classification: 35A05, 35S10 In this paper, anisotropic classes of well-posed Cauchy problems and boundary-value problems for systems of convolutions equations are obtained. For a particular case of differential equations, a hypersurface of conjugate orders of the corresponding polynomial is used, and various classes of well-posed problems are obtained. |
Audience | Academic |
Author | Makarov, A. A. |
Author_xml | – sequence: 1 givenname: A. A. surname: Makarov fullname: Makarov, A. A. email: natvasmak@ukr.net organization: Kharkov National University |
BookMark | eNp9kV1rFDEUhoNUsK3-Aa8CXnmRNh8zk-RyXVotFBRXvTRkMidLykyyTWbE_ntTt1gWFslFDuF5wjnnPUMnMUVA6C2jF4xSeVkY1a0ilAtCO6U6Ql-gU9ZKQZTU7UmtqeRECNm8Qmel3NEqdUqcop8f0hIHmx_IDzsugL_k1I8wYZ8y3jyUGaaCk8frFH-lcZlDinbEV_eLfSwLDhGvYihpzmkXHL5eontiNjvroLxGL70dC7x5us_R9-urb-tP5Pbzx5v16pY4wRtKlIeWqaZplATNgIu2d8PA27bnrVBKuh6s1Nr3vVMd034QoLXoVWc1l9CAOEfv9v_ucrpfoMzmLi259lEM10x0um3quP-orR3BhOhr39ZNoTizkopqrgVrKkWOUFuIkO1Y1-5DfT7gL47w9QwwBXdUeH8gVGaG3_PWLqWYm83XQ5bvWZdTKRm82eUw1bwMo-YxerOP3tTozd_oDa2S2EulwnEL-Xkb_7H-AJoTsPY |
Cites_doi | 10.1070/RM1972v027n04ABEH003368 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer |
Copyright_xml | – notice: Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10958-023-06886-0 |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 773 |
ExternalDocumentID | A780929314 10_1007_s10958_023_06886_0 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c3240-8fe51844487e91e235bcdd255b253887cbea799fbbc8619fd3e993b86a927e4e3 |
IEDL.DBID | AGYKE |
ISSN | 1072-3374 |
IngestDate | Fri Jul 25 10:55:01 EDT 2025 Tue Jun 17 21:59:40 EDT 2025 Fri Jun 13 00:00:44 EDT 2025 Tue Jun 10 20:55:58 EDT 2025 Fri Jun 27 05:17:29 EDT 2025 Tue Jul 01 01:42:25 EDT 2025 Fri Feb 21 02:41:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 35A05 35S10 Fourier transform anisotropic space of functions boundary-value problem convolution equation hypersurface of conjugate orders |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3240-8fe51844487e91e235bcdd255b253887cbea799fbbc8619fd3e993b86a927e4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2913695468 |
PQPubID | 2043545 |
PageCount | 4 |
ParticipantIDs | proquest_journals_2913695468 gale_infotracmisc_A780929314 gale_infotracgeneralonefile_A780929314 gale_infotracacademiconefile_A780929314 gale_incontextgauss_ISR_A780929314 crossref_primary_10_1007_s10958_023_06886_0 springer_journals_10_1007_s10958_023_06886_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231222 |
PublicationDateYYYYMMDD | 2023-12-22 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231222 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | L. R. Volevich and S. G. Gindikin, “Cauchy problem and related problems for convolution-type equations,” Usp. Mat. Nauk, 27, No. 4 (166), 65–143 (1972). G. P. Serdyuk, On the uniqueness of solutions of linear differential equations [in Russian], Ph.D. Thesis, Kharkov (1983). VolevichLRGindikinSGGeneralized Functions and Convolution Equations1994MoscowFizmatlit[in Russian] A. A. Makarov, “Solvability criterion for boundary-value problems in a layer for a system of linear convolution equations in topological spaces,” in: Theoretical and Applied Problems of Differential Equations and Algebra, Naukova Dumka, Kiev (1978), pp. 178–180. MakarovAAOn necessary and sufficient solvability conditions for boundary-value problems in a layer for a system of partial differential equationsDiffer. Uravn.1981172320324 6886_CR1 6886_CR3 LR Volevich (6886_CR2) 1994 AA Makarov (6886_CR4) 1981; 17 6886_CR5 |
References_xml | – reference: L. R. Volevich and S. G. Gindikin, “Cauchy problem and related problems for convolution-type equations,” Usp. Mat. Nauk, 27, No. 4 (166), 65–143 (1972). – reference: MakarovAAOn necessary and sufficient solvability conditions for boundary-value problems in a layer for a system of partial differential equationsDiffer. Uravn.1981172320324 – reference: VolevichLRGindikinSGGeneralized Functions and Convolution Equations1994MoscowFizmatlit[in Russian] – reference: G. P. Serdyuk, On the uniqueness of solutions of linear differential equations [in Russian], Ph.D. Thesis, Kharkov (1983). – reference: A. A. Makarov, “Solvability criterion for boundary-value problems in a layer for a system of linear convolution equations in topological spaces,” in: Theoretical and Applied Problems of Differential Equations and Algebra, Naukova Dumka, Kiev (1978), pp. 178–180. – ident: 6886_CR3 – ident: 6886_CR1 doi: 10.1070/RM1972v027n04ABEH003368 – volume-title: Generalized Functions and Convolution Equations year: 1994 ident: 6886_CR2 – volume: 17 start-page: 320 issue: 2 year: 1981 ident: 6886_CR4 publication-title: Differ. Uravn. – ident: 6886_CR5 |
SSID | ssj0007683 |
Score | 2.3003092 |
Snippet | In this paper, anisotropic classes of well-posed Cauchy problems and boundary-value problems for systems of convolutions equations are obtained. For a... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 770 |
SubjectTerms | Anisotropy Boundary value problems Cauchy problems Differential equations Hyperspaces Mathematical analysis Mathematics Mathematics and Statistics Polynomials Well posed problems |
Title | Boundary-Value Problem for Systems of Convolutional Equations in Anisotropic Functional Spaces |
URI | https://link.springer.com/article/10.1007/s10958-023-06886-0 https://www.proquest.com/docview/2913695468 |
Volume | 277 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZY9wIP3BGFUVkIwQN4Snxp4sd0tAwQCDGKxguW7dpTBUpK0yLBr-c4cTYyxsOkvPmT5cvxuSjnfAehJ9J7Q70TRGjrCbeZIFJqRhK9SIyFQfhCtsX78eGcvzkWx7EorO6y3btfko2m_qvYTYqcgI1pGqVAHLyDdkWay3yAdotXX95OTzUwuNBtYn1GCWMZj8UyF8_SM0jn1fI__0cbszO7gebdgttsk2_7243Zt7_PcTledkc30fXoh-KiFZxb6Iorb6Nr705JXOs76Oukabm0_kU-6-9bhz-0vWcwuLk4Ep3jyuODqvwZ5RcmnP5oucNrvCxxUS7rarOuVkuLZ2BAI-ZoFfLA7qL5bPrp4JDEdgzEBtY-ksOVQjwI8VzmZOooE8YuFhCSGApaM8-scTqT0htjcwjL_II5cH5MPtaSZo47dg8Nyqp09xHW4HR66XzCueEi0dqBbtCGcWGYFsYP0fPuTtSqZd1QZ_zK4dQUnJpqTk0lQ_Q4XJsKdBZlyJc50du6Vq-PPqoiyxNwAFnKh-hZBHnYuLY6lh_AggIDVg_5tIc8afm_LwLu9YDwMG1_uBMjFRVDrahM2VgKPs6H6EUnFWfD_9_kg8vBH6KrNAhWSgmle2iwWW_dI3CfNmYEr2XycjIbxVczQjtzWvwBRuATQQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BOQAHVF4i0IKFEBzA0saP7PqYVo1SaCtEG9QTlu3YVSS0G7IJEv-e8a637UI5IO3NI2s9tme-kWe-AXijQrAseEmlcYEKl0uqlOE0M_PMOhzEL2ZbnIymM_HxXJ6norC6y3bvniQbS32t2E3JgqKPaRqlYBx8G-4gGChi34IZG1_aXwTQbVp9zijnuUilMjfP0XNHfxrlv15HG6cz2YYHCS2Scbu9D-GWLx_B_eNLqtX6MXzbaxojrX7Rr-b7xpPPbYcYgmCUJDpyUgWyX5U_0ynDCQ9-tAzfNVmUZFwu6mq9qpYLRybo5pLM6TJmaz2B2eTgbH9KU9ME6iK3Hi1Q8Ri1YdSVezX0jEvr5nMMHCxD21bkznqTKxWsdQUGT2HOPUIUW4yMYrkXnj-FrbIq_TMgBqFhUD5kQlghM2M83mBjuZCWG2nDAN53utPLlhtDX7EgR01r1LRuNK2zAbyO6tWRdKKMWS0XZlPX-vD0ix7nRYYwjQ_FAN4loYALN86kIgH8ochT1ZN825O8aFm6bxLc6Qni9XH94W67dbq-tWZqyEdKilExgA_dEbga_vcin_-f-Cu4Oz07PtJHhyefXsC92Mo-psowtgNb69XG7yLgWduXzfn-DYuM9rQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-0guiD-IlXqwYRfdDQvXzcbh7P2qP1oxTrSZ8MSTYpB2X3vL0T-t93sptru1ofhH3LEDYzk_kgM78BeK1CsCx4SaVxgQqXS6qU4TQzZWYdLuIXqy0ORntT8elYHl_p4m-r3ddPkl1PQ0Rpqpbb8zJsX2l8U7Kg6G_aoSmYE9-EW2iOh1HTp2x8YYsxmO5K7HNGOc9Fapu5fo-ea_rTQP_1Uto6oMl9uJciRzLuRP0AbvjqIdz9egG72jyCnx_aIUmLM_rDnK48OeymxRAMTEmCJid1IDt19TtpHG64-6tD-27IrCLjatbUy0U9nzkyQZeXaI7msXLrMUwnu9939mgaoEBdxNmjBQoBMzjMwHKvhp5xaV1ZYhJhGdq5InfWm1ypYK0rMJEKJfcYrthiZBTLvfD8CWxUdeWfAjEYJgblQyaEFTIzxuNtNpYLabmRNgzg3Zp3et7hZOhLROTIaY2c1i2ndTaAV5G9OgJQVLHC5cSsmkbvH33T47zIMGTjQzGAt4ko4MGNM6lhAH8oYlb1KN_0KE86xO7rCLd6hHiVXH95LW6drnKjmRrykZJiVAzg_VoFLpf_fcjN_yN_CbcPP070l_2Dz8_gTpxqH6tmGNuCjeVi5Z9j7LO0L1r1Pge44_rw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BOUNDARY-VALUE+PROBLEM+FOR+SYSTEMS+OF+CONVOLUTIONAL+EQUATIONS+IN+ANISOTROPIC+FUNCTIONAL+SPACES&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Makarov%2C+A.+A&rft.date=2023-12-22&rft.pub=Springer&rft.issn=1072-3374&rft.volume=277&rft.issue=5&rft.spage=770&rft_id=info:doi/10.1007%2Fs10958-023-06886-0&rft.externalDocID=A780929314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |