Boundary-Value Problem for Systems of Convolutional Equations in Anisotropic Functional Spaces

In this paper, anisotropic classes of well-posed Cauchy problems and boundary-value problems for systems of convolutions equations are obtained. For a particular case of differential equations, a hypersurface of conjugate orders of the corresponding polynomial is used, and various classes of well-po...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 277; no. 5; pp. 770 - 773
Main Author Makarov, A. A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 22.12.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1072-3374
1573-8795
DOI10.1007/s10958-023-06886-0

Cover

Abstract In this paper, anisotropic classes of well-posed Cauchy problems and boundary-value problems for systems of convolutions equations are obtained. For a particular case of differential equations, a hypersurface of conjugate orders of the corresponding polynomial is used, and various classes of well-posed problems are obtained.
AbstractList In this paper, anisotropic classes of well-posed Cauchy problems and boundary-value problems for systems of convolutions equations are obtained. For a particular case of differential equations, a hypersurface of conjugate orders of the corresponding polynomial is used, and various classes of well-posed problems are obtained. Keywords and phrases: convolution equation, boundary-value problem, Fourier transform, hypersurface of conjugate orders, anisotropic space of functions. AMS Subject Classification: 35A05, 35S10
In this paper, anisotropic classes of well-posed Cauchy problems and boundary-value problems for systems of convolutions equations are obtained. For a particular case of differential equations, a hypersurface of conjugate orders of the corresponding polynomial is used, and various classes of well-posed problems are obtained.
Audience Academic
Author Makarov, A. A.
Author_xml – sequence: 1
  givenname: A. A.
  surname: Makarov
  fullname: Makarov, A. A.
  email: natvasmak@ukr.net
  organization: Kharkov National University
BookMark eNp9kV1rFDEUhoNUsK3-Aa8CXnmRNh8zk-RyXVotFBRXvTRkMidLykyyTWbE_ntTt1gWFslFDuF5wjnnPUMnMUVA6C2jF4xSeVkY1a0ilAtCO6U6Ql-gU9ZKQZTU7UmtqeRECNm8Qmel3NEqdUqcop8f0hIHmx_IDzsugL_k1I8wYZ8y3jyUGaaCk8frFH-lcZlDinbEV_eLfSwLDhGvYihpzmkXHL5eontiNjvroLxGL70dC7x5us_R9-urb-tP5Pbzx5v16pY4wRtKlIeWqaZplATNgIu2d8PA27bnrVBKuh6s1Nr3vVMd034QoLXoVWc1l9CAOEfv9v_ucrpfoMzmLi259lEM10x0um3quP-orR3BhOhr39ZNoTizkopqrgVrKkWOUFuIkO1Y1-5DfT7gL47w9QwwBXdUeH8gVGaG3_PWLqWYm83XQ5bvWZdTKRm82eUw1bwMo-YxerOP3tTozd_oDa2S2EulwnEL-Xkb_7H-AJoTsPY
Cites_doi 10.1070/RM1972v027n04ABEH003368
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-023-06886-0
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 773
ExternalDocumentID A780929314
10_1007_s10958_023_06886_0
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c3240-8fe51844487e91e235bcdd255b253887cbea799fbbc8619fd3e993b86a927e4e3
IEDL.DBID AGYKE
ISSN 1072-3374
IngestDate Fri Jul 25 10:55:01 EDT 2025
Tue Jun 17 21:59:40 EDT 2025
Fri Jun 13 00:00:44 EDT 2025
Tue Jun 10 20:55:58 EDT 2025
Fri Jun 27 05:17:29 EDT 2025
Tue Jul 01 01:42:25 EDT 2025
Fri Feb 21 02:41:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 35A05
35S10
Fourier transform
anisotropic space of functions
boundary-value problem
convolution equation
hypersurface of conjugate orders
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3240-8fe51844487e91e235bcdd255b253887cbea799fbbc8619fd3e993b86a927e4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2913695468
PQPubID 2043545
PageCount 4
ParticipantIDs proquest_journals_2913695468
gale_infotracmisc_A780929314
gale_infotracgeneralonefile_A780929314
gale_infotracacademiconefile_A780929314
gale_incontextgauss_ISR_A780929314
crossref_primary_10_1007_s10958_023_06886_0
springer_journals_10_1007_s10958_023_06886_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231222
PublicationDateYYYYMMDD 2023-12-22
PublicationDate_xml – month: 12
  year: 2023
  text: 20231222
  day: 22
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2023
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References L. R. Volevich and S. G. Gindikin, “Cauchy problem and related problems for convolution-type equations,” Usp. Mat. Nauk, 27, No. 4 (166), 65–143 (1972).
G. P. Serdyuk, On the uniqueness of solutions of linear differential equations [in Russian], Ph.D. Thesis, Kharkov (1983).
VolevichLRGindikinSGGeneralized Functions and Convolution Equations1994MoscowFizmatlit[in Russian]
A. A. Makarov, “Solvability criterion for boundary-value problems in a layer for a system of linear convolution equations in topological spaces,” in: Theoretical and Applied Problems of Differential Equations and Algebra, Naukova Dumka, Kiev (1978), pp. 178–180.
MakarovAAOn necessary and sufficient solvability conditions for boundary-value problems in a layer for a system of partial differential equationsDiffer. Uravn.1981172320324
6886_CR1
6886_CR3
LR Volevich (6886_CR2) 1994
AA Makarov (6886_CR4) 1981; 17
6886_CR5
References_xml – reference: L. R. Volevich and S. G. Gindikin, “Cauchy problem and related problems for convolution-type equations,” Usp. Mat. Nauk, 27, No. 4 (166), 65–143 (1972).
– reference: MakarovAAOn necessary and sufficient solvability conditions for boundary-value problems in a layer for a system of partial differential equationsDiffer. Uravn.1981172320324
– reference: VolevichLRGindikinSGGeneralized Functions and Convolution Equations1994MoscowFizmatlit[in Russian]
– reference: G. P. Serdyuk, On the uniqueness of solutions of linear differential equations [in Russian], Ph.D. Thesis, Kharkov (1983).
– reference: A. A. Makarov, “Solvability criterion for boundary-value problems in a layer for a system of linear convolution equations in topological spaces,” in: Theoretical and Applied Problems of Differential Equations and Algebra, Naukova Dumka, Kiev (1978), pp. 178–180.
– ident: 6886_CR3
– ident: 6886_CR1
  doi: 10.1070/RM1972v027n04ABEH003368
– volume-title: Generalized Functions and Convolution Equations
  year: 1994
  ident: 6886_CR2
– volume: 17
  start-page: 320
  issue: 2
  year: 1981
  ident: 6886_CR4
  publication-title: Differ. Uravn.
– ident: 6886_CR5
SSID ssj0007683
Score 2.3003092
Snippet In this paper, anisotropic classes of well-posed Cauchy problems and boundary-value problems for systems of convolutions equations are obtained. For a...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 770
SubjectTerms Anisotropy
Boundary value problems
Cauchy problems
Differential equations
Hyperspaces
Mathematical analysis
Mathematics
Mathematics and Statistics
Polynomials
Well posed problems
Title Boundary-Value Problem for Systems of Convolutional Equations in Anisotropic Functional Spaces
URI https://link.springer.com/article/10.1007/s10958-023-06886-0
https://www.proquest.com/docview/2913695468
Volume 277
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZY9wIP3BGFUVkIwQN4Snxp4sd0tAwQCDGKxguW7dpTBUpK0yLBr-c4cTYyxsOkvPmT5cvxuSjnfAehJ9J7Q70TRGjrCbeZIFJqRhK9SIyFQfhCtsX78eGcvzkWx7EorO6y3btfko2m_qvYTYqcgI1pGqVAHLyDdkWay3yAdotXX95OTzUwuNBtYn1GCWMZj8UyF8_SM0jn1fI__0cbszO7gebdgttsk2_7243Zt7_PcTledkc30fXoh-KiFZxb6Iorb6Nr705JXOs76Oukabm0_kU-6-9bhz-0vWcwuLk4Ep3jyuODqvwZ5RcmnP5oucNrvCxxUS7rarOuVkuLZ2BAI-ZoFfLA7qL5bPrp4JDEdgzEBtY-ksOVQjwI8VzmZOooE8YuFhCSGApaM8-scTqT0htjcwjL_II5cH5MPtaSZo47dg8Nyqp09xHW4HR66XzCueEi0dqBbtCGcWGYFsYP0fPuTtSqZd1QZ_zK4dQUnJpqTk0lQ_Q4XJsKdBZlyJc50du6Vq-PPqoiyxNwAFnKh-hZBHnYuLY6lh_AggIDVg_5tIc8afm_LwLu9YDwMG1_uBMjFRVDrahM2VgKPs6H6EUnFWfD_9_kg8vBH6KrNAhWSgmle2iwWW_dI3CfNmYEr2XycjIbxVczQjtzWvwBRuATQQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BOQAHVF4i0IKFEBzA0saP7PqYVo1SaCtEG9QTlu3YVSS0G7IJEv-e8a637UI5IO3NI2s9tme-kWe-AXijQrAseEmlcYEKl0uqlOE0M_PMOhzEL2ZbnIymM_HxXJ6norC6y3bvniQbS32t2E3JgqKPaRqlYBx8G-4gGChi34IZG1_aXwTQbVp9zijnuUilMjfP0XNHfxrlv15HG6cz2YYHCS2Scbu9D-GWLx_B_eNLqtX6MXzbaxojrX7Rr-b7xpPPbYcYgmCUJDpyUgWyX5U_0ynDCQ9-tAzfNVmUZFwu6mq9qpYLRybo5pLM6TJmaz2B2eTgbH9KU9ME6iK3Hi1Q8Ri1YdSVezX0jEvr5nMMHCxD21bkznqTKxWsdQUGT2HOPUIUW4yMYrkXnj-FrbIq_TMgBqFhUD5kQlghM2M83mBjuZCWG2nDAN53utPLlhtDX7EgR01r1LRuNK2zAbyO6tWRdKKMWS0XZlPX-vD0ix7nRYYwjQ_FAN4loYALN86kIgH8ochT1ZN825O8aFm6bxLc6Qni9XH94W67dbq-tWZqyEdKilExgA_dEbga_vcin_-f-Cu4Oz07PtJHhyefXsC92Mo-psowtgNb69XG7yLgWduXzfn-DYuM9rQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-0guiD-IlXqwYRfdDQvXzcbh7P2qP1oxTrSZ8MSTYpB2X3vL0T-t93sptru1ofhH3LEDYzk_kgM78BeK1CsCx4SaVxgQqXS6qU4TQzZWYdLuIXqy0ORntT8elYHl_p4m-r3ddPkl1PQ0Rpqpbb8zJsX2l8U7Kg6G_aoSmYE9-EW2iOh1HTp2x8YYsxmO5K7HNGOc9Fapu5fo-ea_rTQP_1Uto6oMl9uJciRzLuRP0AbvjqIdz9egG72jyCnx_aIUmLM_rDnK48OeymxRAMTEmCJid1IDt19TtpHG64-6tD-27IrCLjatbUy0U9nzkyQZeXaI7msXLrMUwnu9939mgaoEBdxNmjBQoBMzjMwHKvhp5xaV1ZYhJhGdq5InfWm1ypYK0rMJEKJfcYrthiZBTLvfD8CWxUdeWfAjEYJgblQyaEFTIzxuNtNpYLabmRNgzg3Zp3et7hZOhLROTIaY2c1i2ndTaAV5G9OgJQVLHC5cSsmkbvH33T47zIMGTjQzGAt4ko4MGNM6lhAH8oYlb1KN_0KE86xO7rCLd6hHiVXH95LW6drnKjmRrykZJiVAzg_VoFLpf_fcjN_yN_CbcPP070l_2Dz8_gTpxqH6tmGNuCjeVi5Z9j7LO0L1r1Pge44_rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BOUNDARY-VALUE+PROBLEM+FOR+SYSTEMS+OF+CONVOLUTIONAL+EQUATIONS+IN+ANISOTROPIC+FUNCTIONAL+SPACES&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Makarov%2C+A.+A&rft.date=2023-12-22&rft.pub=Springer&rft.issn=1072-3374&rft.volume=277&rft.issue=5&rft.spage=770&rft_id=info:doi/10.1007%2Fs10958-023-06886-0&rft.externalDocID=A780929314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon