Is the high ¹⁵N natural abundance of trees in N-loaded forests caused by an internal ecosystem N isotope redistribution or a change in the ecosystem N isotope mass balance?
High δ¹⁵N of tree foliage in forests subject to high N supply has been attributed to ¹⁵N enrichment of plant available soil N pools after losses of N through processes involving N isotope fractionation (ammonia volatilization, nitrification followed by leaching and denitrification, and denitrificati...
Saved in:
Published in | Biogeochemistry Vol. 117; no. 2-3; pp. 351 - 358 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer-Verlag
01.03.2014
Springer Springer International Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High δ¹⁵N of tree foliage in forests subject to high N supply has been attributed to ¹⁵N enrichment of plant available soil N pools after losses of N through processes involving N isotope fractionation (ammonia volatilization, nitrification followed by leaching and denitrification, and denitrification in itself). However, in a long-term experiment with high annual additions of NH₄NO₃, we found no change in the weighted average δ¹⁵N of the soil, but attributed the high δ¹⁵N of trees to loss of ectomycorrhizal fungi and their function in tree N uptake, which involves redistribution of N isotopes in the ecosystem (Högberg et al. New Phytol 189:515–525, 2011), rather than a loss of isotopically light N. Here, we compare the effects of additions of urea and NH₄NO₃ on the δ¹⁵N of trees and the soil profile, because we have previously found higher δ¹⁵N in tree foliage in trees in the urea plots. Doing this, we found no differences between the NH₄NO₃ and urea treatments in the concentration of N in the foliage, or the amounts of N in the organic mor-layer of the soil. However, the foliage of trees receiving the highest N loads in the urea treatment were more enriched in ¹⁵N than the corresponding NH₄NO₃ plots, and, importantly, the weighted average δ¹⁵N of the soil showed that N losses had been associated with fractionation against ¹⁵N in the urea plots. Thus, our results in combination with those of Högberg et al. (New Phytol 189:515–525, 2011) show that high δ¹⁵N of the vegetation after high N load may be caused by both an internal redistribution of the N isotopes (as a result of change of the function of ectomycorrhiza) and by losses of isotopically light N through processes fractionating against ¹⁵N (in case of urea ammonia volatilization, nitrification followed by leaching and denitrification). |
---|---|
AbstractList | High δ¹⁵N of tree foliage in forests subject to high N supply has been attributed to ¹⁵N enrichment of plant available soil N pools after losses of N through processes involving N isotope fractionation (ammonia volatilization, nitrification followed by leaching and denitrification, and denitrification in itself). However, in a long-term experiment with high annual additions of NH₄NO₃, we found no change in the weighted average δ¹⁵N of the soil, but attributed the high δ¹⁵N of trees to loss of ectomycorrhizal fungi and their function in tree N uptake, which involves redistribution of N isotopes in the ecosystem (Högberg et al. New Phytol 189:515–525, 2011), rather than a loss of isotopically light N. Here, we compare the effects of additions of urea and NH₄NO₃ on the δ¹⁵N of trees and the soil profile, because we have previously found higher δ¹⁵N in tree foliage in trees in the urea plots. Doing this, we found no differences between the NH₄NO₃ and urea treatments in the concentration of N in the foliage, or the amounts of N in the organic morlayer of the soil. However, the foliage of trees receiving the highest N loads in the urea treatment were more enriched in ¹⁵N than the corresponding NH₄NO₃ plots, and, importantly, the weighted average δ¹⁵N of the soil showed that N losses had been associated with fractionation against ¹⁵N in the urea plots. Thus, our results in combination with those of Högberg et al. (New Phytol 189:515–525, 2011) show that high δ¹⁵N of the vegetation after high N load may be caused by both an internal redistribution of the N isotopes (as a result of change of the function of ectomycorrhiza) and by losses of isotopically light N through processes fractionating against ¹⁵N (in case of urea ammonia volatilization, nitrification followed by leaching and denitrification). High delta N-15 of tree foliage in forests subject to high N supply has been attributed to N-15 enrichment of plant available soil N pools after losses of N through processes involving N isotope fractionation (ammonia volatilization, nitrification followed by leaching and denitrification, and denitrification in itself). However, in a long-term experiment with high annual additions of NH4NO3, we found no change in the weighted average delta N-15 of the soil, but attributed the high delta N-15 of trees to loss of ectomycorrhizal fungi and their function in tree N uptake, which involves redistribution of N isotopes in the ecosystem (Hogberg et al. New Phytol 189:515-525, 2011), rather than a loss of isotopically light N. Here, we compare the effects of additions of urea and NH4NO3 on the delta N-15 of trees and the soil profile, because we have previously found higher delta N-15 in tree foliage in trees in the urea plots. Doing this, we found no differences between the NH4NO3 and urea treatments in the concentration of N in the foliage, or the amounts of N in the organic mor-layer of the soil. However, the foliage of trees receiving the highest N loads in the urea treatment were more enriched in N-15 than the corresponding NH4NO3 plots, and, importantly, the weighted average delta N-15 of the soil showed that N losses had been associated with fractionation against N-15 in the urea plots. Thus, our results in combination with those of Hogberg et al. (New Phytol 189:515-525, 2011) show that high delta N-15 of the vegetation after high N load may be caused by both an internal redistribution of the N isotopes (as a result of change of the function of ectomycorrhiza) and by losses of isotopically light N through processes fractionating against N-15 (in case of urea ammonia volatilization, nitrification followed by leaching and denitrification). High δ¹⁵N of tree foliage in forests subject to high N supply has been attributed to ¹⁵N enrichment of plant available soil N pools after losses of N through processes involving N isotope fractionation (ammonia volatilization, nitrification followed by leaching and denitrification, and denitrification in itself). However, in a long-term experiment with high annual additions of NH₄NO₃, we found no change in the weighted average δ¹⁵N of the soil, but attributed the high δ¹⁵N of trees to loss of ectomycorrhizal fungi and their function in tree N uptake, which involves redistribution of N isotopes in the ecosystem (Högberg et al. New Phytol 189:515–525, 2011), rather than a loss of isotopically light N. Here, we compare the effects of additions of urea and NH₄NO₃ on the δ¹⁵N of trees and the soil profile, because we have previously found higher δ¹⁵N in tree foliage in trees in the urea plots. Doing this, we found no differences between the NH₄NO₃ and urea treatments in the concentration of N in the foliage, or the amounts of N in the organic mor-layer of the soil. However, the foliage of trees receiving the highest N loads in the urea treatment were more enriched in ¹⁵N than the corresponding NH₄NO₃ plots, and, importantly, the weighted average δ¹⁵N of the soil showed that N losses had been associated with fractionation against ¹⁵N in the urea plots. Thus, our results in combination with those of Högberg et al. (New Phytol 189:515–525, 2011) show that high δ¹⁵N of the vegetation after high N load may be caused by both an internal redistribution of the N isotopes (as a result of change of the function of ectomycorrhiza) and by losses of isotopically light N through processes fractionating against ¹⁵N (in case of urea ammonia volatilization, nitrification followed by leaching and denitrification). High δ 15 N of tree foliage in forests subject to high N supply has been attributed to 15 N enrichment of plant available soil N pools after losses of N through processes involving N isotope fractionation (ammonia volatilization, nitrification followed by leaching and denitrification, and denitrification in itself). However, in a long-term experiment with high annual additions of NH 4 NO 3 , we found no change in the weighted average δ 15 N of the soil, but attributed the high δ 15 N of trees to loss of ectomycorrhizal fungi and their function in tree N uptake, which involves redistribution of N isotopes in the ecosystem (Högberg et al. New Phytol 189:515–525, 2011 ), rather than a loss of isotopically light N. Here, we compare the effects of additions of urea and NH 4 NO 3 on the δ 15 N of trees and the soil profile, because we have previously found higher δ 15 N in tree foliage in trees in the urea plots. Doing this, we found no differences between the NH 4 NO 3 and urea treatments in the concentration of N in the foliage, or the amounts of N in the organic mor-layer of the soil. However, the foliage of trees receiving the highest N loads in the urea treatment were more enriched in 15 N than the corresponding NH 4 NO 3 plots, and, importantly, the weighted average δ 15 N of the soil showed that N losses had been associated with fractionation against 15 N in the urea plots. Thus, our results in combination with those of Högberg et al. (New Phytol 189:515–525, 2011 ) show that high δ 15 N of the vegetation after high N load may be caused by both an internal redistribution of the N isotopes (as a result of change of the function of ectomycorrhiza) and by losses of isotopically light N through processes fractionating against 15 N (in case of urea ammonia volatilization, nitrification followed by leaching and denitrification). |
Author | Högberg, Peter Högberg, Mona N. Johannisson, Christian |
Author_xml | – sequence: 1 fullname: Högberg, Peter – sequence: 2 fullname: Johannisson, Christian – sequence: 3 fullname: Högberg, Mona N |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28609937$$DView record in Pascal Francis https://res.slu.se/id/publ/51988$$DView record from Swedish Publication Index |
BookMark | eNp9ksuKFDEUhguZAXtmfAAXYjaCm3JyqUuyEhm8DAw9Cx1wF05VJd1pqittTgq7lz6RKxdufRSfxBTVKojMKgnn-8_tz1l2MvjBZNljRl8wSutLZLQUIqdM5ErWIt8_yBasTJeSlR9PsgVllcx5WYmH2RnihlKqaioW2ddrJHFtyNqt1uTH959fvi3JAHEM0BNoxqGDoTXEWxKDMUjcQJZ576EzHbE-GIxIWhgxPZsDgSEB0YQhiU3r8YDRbMmSOPTR7wwJpnMYg2vG6PxAfCBA2jUMKzMlntr4n2oLiKSBfurk5UV2aqFH8-h4nmd3b15_uHqX39y-vb56dZO3got9rhQoWwC1jWxKS61kFXBjqko0gstWiqYrFOuYqAtJrRJKcsm7ImGiUBy4OM_yOS9-Nrux0bvgthAO2oPT2I8NhOnQaHTJlJSJfz7zu-A_jWkveuuwNX3q2vgRNUuly5qpokzosyMK2EJvQxrM4Z8KXFZUKVEnrp65NnjEYKxuXYRpczGA6zWjerJez9brZL2erNf7pGT_KH8nv0_DjwMnNjkS9MaPk5N4r-jJLNpg9OHvCEWdvlslUvzpHLfgNaxCGvPuPaesoJSVyQApfgEQjNpk |
CODEN | BIOGEP |
CitedBy_id | crossref_primary_10_5194_bg_14_2359_2017 crossref_primary_10_3389_fpls_2014_00288 crossref_primary_10_1016_j_scitotenv_2021_146581 crossref_primary_10_1016_j_agee_2016_09_021 crossref_primary_10_1016_j_foreco_2024_122336 crossref_primary_10_1186_s13717_022_00382_0 crossref_primary_10_3389_fevo_2022_929220 crossref_primary_10_1007_s00468_015_1186_3 crossref_primary_10_1186_s40663_020_00257_w crossref_primary_10_1016_j_scitotenv_2022_159580 crossref_primary_10_1007_s40725_021_00141_y crossref_primary_10_1002_ecy_3348 crossref_primary_10_1007_s00442_019_04528_4 crossref_primary_10_1007_s42729_024_01770_5 crossref_primary_10_1007_s10021_018_0245_1 crossref_primary_10_1007_s11104_025_07327_4 crossref_primary_10_1111_gcb_13862 crossref_primary_10_1016_j_foreco_2019_06_021 crossref_primary_10_1007_s11104_014_2228_0 crossref_primary_10_1007_s00442_016_3566_9 crossref_primary_10_1007_s11104_022_05355_y crossref_primary_10_1007_s11104_017_3485_5 crossref_primary_10_1002_ecy_70041 crossref_primary_10_1016_j_soilbio_2015_05_028 crossref_primary_10_1007_s11104_016_3081_0 crossref_primary_10_1016_j_soilbio_2023_109295 crossref_primary_10_1016_j_ecolind_2023_110604 crossref_primary_10_12677_IJE_2021_104051 crossref_primary_10_1111_nph_14603 crossref_primary_10_1111_geb_13042 |
Cites_doi | 10.1126/science.1136674 10.1016/S0378-1127(97)00121-7 10.1007/BF02202587 10.1002/(SICI)1097-0231(19960610)10:8<974::AID-RCM533>3.0.CO;2-Z 10.1007/s00442-006-0366-7 10.1111/j.1469-8137.2012.04300.x 10.1007/PL00008856 10.2136/sssaj1999.03615995006300020017x 10.1046/j.1469-8137.1997.00808.x 10.1007/BF00379113 10.1111/j.1469-8137.2004.01162.x 10.1007/s00442-008-1270-0 10.1007/s10533-006-9023-9 10.1007/s10533-009-9328-6 10.1007/BF00325257 10.1016/0016-7061(71)90064-4 10.1016/0038-0717(91)90188-P 10.1007/BF02390237 10.1007/s00442-006-0562-5 10.1046/j.1469-8137.1999.00404.x 10.1046/j.1469-8137.1999.00508.x 10.2136/sssaj1988.03615995005200060024x 10.1046/j.1469-8137.2003.00838.x 10.1111/j.1469-8137.2010.03485.x 10.1111/j.1365-2486.2006.01102.x 10.1046/j.1469-8137.1997.00788.x 10.1007/s10021-002-0149-x 10.1007/s004420100680 10.1111/j.1469-8137.2009.02917.x 10.1007/BF02180160 10.1007/BF00014798 10.1111/j.1469-8137.2006.01936.x 10.1016/j.foreco.2007.06.047 10.1007/978-3-642-75168-4_1 10.1007/BF01051008 10.1073/pnas.0609935104 10.2307/1313296 10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2 10.1007/BF00334643 10.1007/BF00318276 |
ContentType | Journal Article |
Copyright | The Author(s) 2013 2015 INIST-CNRS |
Copyright_xml | – notice: The Author(s) 2013 – notice: 2015 INIST-CNRS |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | FBQ C6C AAYXX CITATION IQODW 7S9 L.6 ADTPV AOWAS |
DOI | 10.1007/s10533-013-9873-x |
DatabaseName | AGRIS Springer Nature OA Free Journals CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic SwePub SwePub Articles |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Chemistry Biology Environmental Sciences |
EISSN | 1573-515X |
EndPage | 358 |
ExternalDocumentID | oai_slubar_slu_se_51988 28609937 10_1007_s10533_013_9873_x 24716863 US201400154918 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~F 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7X7 7XC 88A 88I 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGAY AAHKG AAHNG AAIAL AAJKR AAMRO AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAXTN AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBHK ABBXA ABDBF ABDZT ABECU ABEOS ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLY ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTLG ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADULT ADURQ ADYFF ADZKW ADZLD AEBTG AEEJZ AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESBF AESKC AESTI AETLH AEUPB AEVLU AEVTX AEXYK AFAZZ AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGUYK AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AICQM AIIXL AILAN AIMYW AIRJO AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANHSF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BVXVI CAG CBGCD CCPQU COF CS3 CSCUP CWIXF D1J DATOO DDRTE DFEDG DL5 DNIVK DOOOF DPUIP DU5 DWIUU DWQXO EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EPL EQZMY ESBYG ESX FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GTFYD GXS HCIFZ HF~ HG5 HG6 HGD HMCUK HMJXF HQYDN HRMNR HTVGU HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBS JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW LAK LK8 LLZTM M0L M2P M4Y M7P MA- ML0 MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SA0 SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z5O Z7U Z7Y Z7Z Z86 Z88 Z8O Z8S Z8T Z92 ZMTXR ~8M ~EX AAHBH AAJSJ AAKKN AASML AAYZH ABDBE ABEEZ ABFSG ABXSQ ACHIC ACSTC ACUHS AEFQL AEUYN AEZWR AFBBN AFGXO AFHIU AGQEE AGQPQ AGRTI AHPBZ AHWEU AHXOZ AIXLP ALIPV AQVQM AYFIA C6C H13 IPSME PHGZM PHGZT ABAKF ABMOR ABQSL ACACY ACULB ACZOJ C24 AAYXX ADHKG CITATION IQODW 7S9 L.6 PQGLB ADTPV AOWAS |
ID | FETCH-LOGICAL-c323x-99a9f4a0fb8b5f0f816a2ee663b328c83bd491d137480f9398282d48163492a23 |
IEDL.DBID | U2A |
ISSN | 0168-2563 1573-515X |
IngestDate | Thu Aug 21 07:04:24 EDT 2025 Thu Jul 10 22:31:07 EDT 2025 Wed Apr 02 07:20:33 EDT 2025 Tue Jul 01 02:08:47 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 Fri Feb 21 02:37:16 EST 2025 Thu Jul 03 21:32:27 EDT 2025 Wed Dec 27 19:05:34 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2-3 |
Keywords | Ectomycorrhiza Nitrogen deposition Forest soils N-15 natural abundance experimental studies minerals mass balance vegetation trees denitrification urea enrichment forest soils soil profiles soils Thallophyta ammonia compounds stable isotopes N-15/N-14 nitrogen Plantae N-15 concentration organic minerals leaching forests fungi ecosystems isotope fractionation volatilization |
Language | English |
License | http://creativecommons.org/licenses/by-nc/2.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c323x-99a9f4a0fb8b5f0f816a2ee663b328c83bd491d137480f9398282d48163492a23 |
Notes | http://dx.doi.org/10.1007/s10533-013-9873-x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s10533-013-9873-x |
PQID | 1663571945 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_51988 proquest_miscellaneous_1663571945 pascalfrancis_primary_28609937 crossref_citationtrail_10_1007_s10533_013_9873_x crossref_primary_10_1007_s10533_013_9873_x springer_journals_10_1007_s10533_013_9873_x jstor_primary_24716863 fao_agris_US201400154918 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140300 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 3 year: 2014 text: 20140300 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationSubtitle | An International Journal |
PublicationTitle | Biogeochemistry |
PublicationTitleAbbrev | Biogeochemistry |
PublicationYear | 2014 |
Publisher | Springer-Verlag Springer Springer International Publishing |
Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer International Publishing |
References | Lindahl, Ihrmark, Boberg, Trumbore, Högberg, Stenlid, Finlay (CR29) 2007; 173 Taylor, Fransson, Högberg, Högberg, Plamboeck (CR44) 2003; 159 Högberg (CR18) 1997; 137 Trudell, Rygiewicz, Edmonds (CR45) 2004; 164 Handley, Brendel, Scrimgeour, Schmidt, Raven, Turnbull, Stewart (CR10) 1996; 10 Riga, van Praag, Brigode (CR37) 1971; 6 Galloway, Townsend, Erisman, Bekunda, Cai, Freney, Martinelli, Seitzinger, Sutton (CR7) 2008; 320 Kohzu, Yoshioka, Ando, Takahashi, Koba, Wada (CR28) 1999; 144 Martinelli, Piccolo, Townsend, Vitousek, Cuevas, McDowell, Robertson, Santos, Treseder (CR30) 1999; 46 Tamm (CR41) 1991; 81 Houlton, Sigman, Hedin (CR25) 2006; 104 Sah, Rita, Ilvesniemi (CR38) 2006; 80 Högberg (CR17) 1991; 23 Johannisson, Myrold, Högberg (CR27) 1999; 63 Högberg, Fan, Quist, Binkley, Tamm (CR22) 2006; 12 Gebauer, Dietrich (CR8) 1993; 29 Pardo, Hemond, Montoya, Pett-Ridge (CR35) 2007; 251 Högberg (CR16) 1990; 84 Popovic (CR36) 1985; 6 Hobbie, Högberg (CR13) 2012; 196 Högberg, Högbom, Schinkel, Högberg, Johannisson, Wallmark (CR20) 1996; 108 Högberg, Johannisson, Yarwood, Callesen, Näsholm, Myrold, Högberg (CR24) 2011; 189 Nömmik (CR34) 1973; 39 Högberg, Högberg, Quist, Ekblad, Näsholm (CR21) 1999; 142 Aber, McDowell, Nadelhoffer, Magill, Berntson, Kamakea, McNulty, Currie, Rustad, Fernandez (CR1) 1998; 48 CR2 Taylor, Högbom, Högberg, Lyon, Näsholm, Högberg (CR43) 1997; 136 Franklin, Högberg, Ekblad, Ågren (CR6) 2003; 6 Johannisson, Högberg (CR26) 1994; 157 Wallander, Mörth, Giesler (CR47) 2009; 160 Gebauer, Schulze (CR9) 1991; 87 Craine, Elmore, Aidar, Bustamante, Dawson, Hobbie, Kahmen, Mack, McLauchlan, Michelsen, Nardoto, Pardo, Penueals, Reich, Schuur, Stock, Templer, Virginia, Welker, Weight (CR4) 2009; 183 Hobbie, Macko, Williams (CR15) 2000; 122 Vitousek, Shearer, Kohl (CR46) 1989; 78 Högberg, Johannisson (CR19) 1993; 157 Hobbie, Ouimette (CR14) 2009; 95 Emmett, Kjonaas, Gundersen, Koopmans, Tietema, Sleep (CR5) 1998; 101 Mizutani, Hasegawa, Wada (CR32) 1986; 2 Melillo, Aber, Linkins, Ricca, Fry, Nadelhoffer (CR31) 1989; 115 Smith, Read (CR40) 2008 Billings, Richter (CR3) 2006; 148 Högberg, Högberg, Myrold (CR23) 2007; 150 Hobbie, Hobbie (CR12) 2006; 87 Henn, Chapella (CR11) 2001; 128 Shearer, Kohl (CR39) 1986; 13 Nadelhoffer, Fry (CR33) 1988; 52 Tamm, Aronsson, Popovic, Flower-Ellis (CR42) 1999; 206 J Aber (9873_CR1) 1998; 48 CO Tamm (9873_CR41) 1991; 81 MR Henn (9873_CR11) 2001; 128 SA Trudell (9873_CR45) 2004; 164 P Högberg (9873_CR19) 1993; 157 C Johannisson (9873_CR27) 1999; 63 S Billings (9873_CR3) 2006; 148 BA Emmett (9873_CR5) 1998; 101 O Franklin (9873_CR6) 2003; 6 SE Smith (9873_CR40) 2008 JE Hobbie (9873_CR12) 2006; 87 P Högberg (9873_CR22) 2006; 12 A Kohzu (9873_CR28) 1999; 144 H Mizutani (9873_CR32) 1986; 2 9873_CR2 P Högberg (9873_CR18) 1997; 137 EA Hobbie (9873_CR15) 2000; 122 MN Högberg (9873_CR23) 2007; 150 H Wallander (9873_CR47) 2009; 160 P Högberg (9873_CR21) 1999; 142 JM Craine (9873_CR4) 2009; 183 EA Hobbie (9873_CR14) 2009; 95 P Högberg (9873_CR17) 1991; 23 P Högberg (9873_CR20) 1996; 108 B Lindahl (9873_CR29) 2007; 173 JN Galloway (9873_CR7) 2008; 320 A Riga (9873_CR37) 1971; 6 BZ Houlton (9873_CR25) 2006; 104 PM Vitousek (9873_CR46) 1989; 78 EA Hobbie (9873_CR13) 2012; 196 P Högberg (9873_CR16) 1990; 84 LA Martinelli (9873_CR30) 1999; 46 AFS Taylor (9873_CR43) 1997; 136 LL Handley (9873_CR10) 1996; 10 SP Sah (9873_CR38) 2006; 80 GB Shearer (9873_CR39) 1986; 13 G Gebauer (9873_CR9) 1991; 87 G Gebauer (9873_CR8) 1993; 29 JM Melillo (9873_CR31) 1989; 115 H Nömmik (9873_CR34) 1973; 39 AFS Taylor (9873_CR44) 2003; 159 B Popovic (9873_CR36) 1985; 6 C Johannisson (9873_CR26) 1994; 157 CO Tamm (9873_CR42) 1999; 206 KJ Nadelhoffer (9873_CR33) 1988; 52 P Högberg (9873_CR24) 2011; 189 LH Pardo (9873_CR35) 2007; 251 |
References_xml | – volume: 320 start-page: 889 year: 2008 end-page: 892 ident: CR7 article-title: Transformation of the nitrogen cycle: recent trends, questions and potential solutions publication-title: Science doi: 10.1126/science.1136674 – volume: 157 start-page: 147 year: 1994 end-page: 150 ident: CR26 article-title: N abundance of forests is correlated with losses of nitrogen publication-title: Plant Soil – volume: 101 start-page: 9 year: 1998 end-page: 18 ident: CR5 article-title: Natural abundance of N in forests across a nitrogen deposition gradient publication-title: Forest Ecol Manag doi: 10.1016/S0378-1127(97)00121-7 – volume: 115 start-page: 189 year: 1989 end-page: 198 ident: CR31 article-title: Carbon and nitrogen dynamics along the decay continuum – plant litter to soil organic matter publication-title: Plant Soil doi: 10.1007/BF02202587 – ident: CR2 – volume: 10 start-page: 974 year: 1996 end-page: 978 ident: CR10 article-title: The N natural abundance patterns of field-collected fungi from three kinds of ecosystems publication-title: Rapid Commun Mass Spectrom doi: 10.1002/(SICI)1097-0231(19960610)10:8<974::AID-RCM533>3.0.CO;2-Z – volume: 148 start-page: 325 year: 2006 end-page: 333 ident: CR3 article-title: Changes in stable isotopic signatures of nitrogen and carbon during 40 years of forest development publication-title: Oecologia doi: 10.1007/s00442-006-0366-7 – volume: 196 start-page: 367 year: 2012 end-page: 382 ident: CR13 article-title: Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04300.x – volume: 122 start-page: 273 year: 2000 end-page: 283 ident: CR15 article-title: Correlations between foliar and nitrogen concentrations may indicate plant-mycorrhizal interactions publication-title: Oecologia doi: 10.1007/PL00008856 – volume: 63 start-page: 383 year: 1999 end-page: 389 ident: CR27 article-title: Retention of nitrogen by a N-loaded scotch pine forest publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1999.03615995006300020017x – volume: 137 start-page: 179 year: 1997 end-page: 203 ident: CR18 article-title: N natural abundance in soil-plant systems publication-title: New Phytol doi: 10.1046/j.1469-8137.1997.00808.x – volume: 78 start-page: 383 year: 1989 end-page: 388 ident: CR46 article-title: Foliar N natural abundance in Hawaiian rainforest: patterns and possible mechanisms publication-title: Oecologia doi: 10.1007/BF00379113 – volume: 164 start-page: 317 year: 2004 end-page: 335 ident: CR45 article-title: Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01162.x – volume: 160 start-page: 87 year: 2009 end-page: 96 ident: CR47 article-title: Increasing abundance of soil fungi is a driver for N enrichment in soil profiles along a chronosequence undergoing isostatic rebound in northern Sweden publication-title: Oecologia doi: 10.1007/s00442-008-1270-0 – volume: 80 start-page: 277 year: 2006 end-page: 288 ident: CR38 article-title: N natural abundance of foliage and soil across boreal forests of Finland publication-title: Biogeochemistry doi: 10.1007/s10533-006-9023-9 – volume: 95 start-page: 355 year: 2009 end-page: 371 ident: CR14 article-title: Controls on nitrogen isotope patterns in soil profiles publication-title: Biogeochemistry doi: 10.1007/s10533-009-9328-6 – year: 2008 ident: CR40 publication-title: Mycorrhizal symbiosis – volume: 87 start-page: 198 year: 1991 end-page: 207 ident: CR9 article-title: Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining forest in the Fichtelgebirge, NE Bavaria publication-title: Oecologia doi: 10.1007/BF00325257 – volume: 6 start-page: 213 year: 1971 end-page: 222 ident: CR37 article-title: Rapports isotopique naturel de l’azote dans quelques sols forestiers et agricoles de Belgique soumis a divers traitments culturaux publication-title: Geoderma doi: 10.1016/0016-7061(71)90064-4 – volume: 23 start-page: 335 year: 1991 end-page: 338 ident: CR17 article-title: Development of N enrichment in a nitrogen-fertilized forest soil-plant system publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(91)90188-P – volume: 157 start-page: 147 year: 1993 end-page: 150 ident: CR19 article-title: N abundance of forests is correlated with losses of N publication-title: Plant Soil doi: 10.1007/BF02390237 – volume: 150 start-page: 590 year: 2007 end-page: 601 ident: CR23 article-title: Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? publication-title: Oecologia doi: 10.1007/s00442-006-0562-5 – volume: 142 start-page: 569 year: 1999 end-page: 576 ident: CR21 article-title: Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizal publication-title: New Phytol doi: 10.1046/j.1469-8137.1999.00404.x – volume: 144 start-page: 323 year: 1999 end-page: 330 ident: CR28 article-title: Natural C and N abundance of field-collected fungi and their ecological implications publication-title: New Phytol doi: 10.1046/j.1469-8137.1999.00508.x – volume: 29 start-page: 35 year: 1993 end-page: 44 ident: CR8 article-title: Nitrogen isotope ratios in different compartments of mixed stands of spruce, larch and beech trees and of understorey vegetation including fungi publication-title: Isotopenpraxis – volume: 52 start-page: 1633 year: 1988 end-page: 1640 ident: CR33 article-title: Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1988.03615995005200060024x – volume: 159 start-page: 757 year: 2003 end-page: 774 ident: CR44 article-title: Species level patterns in C-13 and N-15 abundance of ectomycorrhizal and saprotrophic fungal sporocarps publication-title: New Phytol doi: 10.1046/j.1469-8137.2003.00838.x – volume: 189 start-page: 515 year: 2011 end-page: 525 ident: CR24 article-title: Recovery of ectomycorrhiza after ‘nitrogen saturation’ of a conifer forest publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03485.x – volume: 12 start-page: 489 year: 2006 end-page: 499 ident: CR22 article-title: Tree growth and soil acidification in response to 30 years of experimental N loading publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2006.01102.x – volume: 136 start-page: 713 year: 1997 end-page: 720 ident: CR43 article-title: Natural N abundance in fruit bodies of ectomycorrhizal fungi from boreal forests publication-title: New Phytol doi: 10.1046/j.1469-8137.1997.00788.x – volume: 6 start-page: 644 year: 2003 end-page: 658 ident: CR6 article-title: Pine forest floor carbon accumulation in response to N and PK additions: bomb C modelling and respiration studies publication-title: Ecosystems doi: 10.1007/s10021-002-0149-x – volume: 128 start-page: 480 year: 2001 end-page: 487 ident: CR11 article-title: Ecophysiology of C-13 and N-15 isotopic fractionation in forest fungi and the saprotrophic-mycorrhizal divide publication-title: Oecologia doi: 10.1007/s004420100680 – volume: 108 start-page: 207 year: 1996 end-page: 214 ident: CR20 article-title: N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils publication-title: Oecologia – volume: 183 start-page: 980 year: 2009 end-page: 992 ident: CR4 article-title: Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability publication-title: New Phytol doi: 10.1111/j.1469-8137.2009.02917.x – volume: 2 start-page: 221 year: 1986 end-page: 247 ident: CR32 article-title: High nitrogen isotope ratio for seabird rookeries publication-title: Biogeochemistry doi: 10.1007/BF02180160 – volume: 39 start-page: 309 year: 1973 end-page: 318 ident: CR34 article-title: Effect of pellet size on ammonia loss from urea applied to a forest soil publication-title: Plant Soil doi: 10.1007/BF00014798 – volume: 206 start-page: 1 year: 1999 end-page: 126 ident: CR42 article-title: Optimum nutrition and nitrogen saturation in Scots pine stands publication-title: Stud For Suecica – volume: 13 start-page: 699 year: 1986 end-page: 756 ident: CR39 article-title: N -fixation in field settings: estimations based on N natural abundance publication-title: Austr J Plant Physiol – volume: 173 start-page: 611 year: 2007 end-page: 620 ident: CR29 article-title: Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in boreal forest publication-title: New Phytol doi: 10.1111/j.1469-8137.2006.01936.x – volume: 251 start-page: 217 year: 2007 end-page: 230 ident: CR35 article-title: Natural abundance N in soil and litter across a nitrate-output gradient in New Hampshire publication-title: Forest Ecol Manag doi: 10.1016/j.foreco.2007.06.047 – volume: 81 start-page: 1 year: 1991 end-page: 115 ident: CR41 article-title: Nitrogen in terrestrial ecosystems publication-title: Ecol Stud doi: 10.1007/978-3-642-75168-4_1 – volume: 6 start-page: 139 year: 1985 end-page: 147 ident: CR36 article-title: The effect of nitrogenous fertilizers on nitrification of forest soils publication-title: Fertil Res doi: 10.1007/BF01051008 – volume: 84 start-page: 229 year: 1990 end-page: 231 ident: CR16 article-title: Forests losing large quantities of nitrogen have elevated N/ N ratios publication-title: Oecologia – volume: 104 start-page: 8902 year: 2006 end-page: 8906 ident: CR25 article-title: Isotopic evidence of large gaseous nitrogen losses from tropical rainforests publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0609935104 – volume: 46 start-page: 45 year: 1999 end-page: 65 ident: CR30 article-title: Nitrogen stable isotope composition of leaves and soil: tropical versus temperate forests publication-title: Biogeochemistry – volume: 48 start-page: 921 year: 1998 end-page: 934 ident: CR1 article-title: Nitrogen saturation in temperate forest ecosystems publication-title: Bioscience doi: 10.2307/1313296 – volume: 87 start-page: 816 year: 2006 end-page: 822 ident: CR12 article-title: N in symbiotic fungi and plants estimate nitrogen and carbon flux rates in Arctic tundra publication-title: Ecology doi: 10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2 – volume: 150 start-page: 590 year: 2007 ident: 9873_CR23 publication-title: Oecologia doi: 10.1007/s00442-006-0562-5 – volume: 160 start-page: 87 year: 2009 ident: 9873_CR47 publication-title: Oecologia doi: 10.1007/s00442-008-1270-0 – volume: 87 start-page: 198 year: 1991 ident: 9873_CR9 publication-title: Oecologia doi: 10.1007/BF00325257 – volume: 87 start-page: 816 year: 2006 ident: 9873_CR12 publication-title: Ecology doi: 10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2 – volume: 63 start-page: 383 year: 1999 ident: 9873_CR27 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1999.03615995006300020017x – volume: 95 start-page: 355 year: 2009 ident: 9873_CR14 publication-title: Biogeochemistry doi: 10.1007/s10533-009-9328-6 – volume: 52 start-page: 1633 year: 1988 ident: 9873_CR33 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1988.03615995005200060024x – volume: 108 start-page: 207 year: 1996 ident: 9873_CR20 publication-title: Oecologia doi: 10.1007/BF00334643 – volume: 128 start-page: 480 year: 2001 ident: 9873_CR11 publication-title: Oecologia doi: 10.1007/s004420100680 – volume: 23 start-page: 335 year: 1991 ident: 9873_CR17 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(91)90188-P – volume: 6 start-page: 213 year: 1971 ident: 9873_CR37 publication-title: Geoderma doi: 10.1016/0016-7061(71)90064-4 – volume: 159 start-page: 757 year: 2003 ident: 9873_CR44 publication-title: New Phytol doi: 10.1046/j.1469-8137.2003.00838.x – volume: 10 start-page: 974 year: 1996 ident: 9873_CR10 publication-title: Rapid Commun Mass Spectrom doi: 10.1002/(SICI)1097-0231(19960610)10:8<974::AID-RCM533>3.0.CO;2-Z – volume: 122 start-page: 273 year: 2000 ident: 9873_CR15 publication-title: Oecologia doi: 10.1007/PL00008856 – volume: 144 start-page: 323 year: 1999 ident: 9873_CR28 publication-title: New Phytol doi: 10.1046/j.1469-8137.1999.00508.x – ident: 9873_CR2 – volume: 46 start-page: 45 year: 1999 ident: 9873_CR30 publication-title: Biogeochemistry – volume: 80 start-page: 277 year: 2006 ident: 9873_CR38 publication-title: Biogeochemistry doi: 10.1007/s10533-006-9023-9 – volume: 6 start-page: 139 year: 1985 ident: 9873_CR36 publication-title: Fertil Res doi: 10.1007/BF01051008 – volume: 164 start-page: 317 year: 2004 ident: 9873_CR45 publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01162.x – volume: 2 start-page: 221 year: 1986 ident: 9873_CR32 publication-title: Biogeochemistry doi: 10.1007/BF02180160 – volume: 251 start-page: 217 year: 2007 ident: 9873_CR35 publication-title: Forest Ecol Manag doi: 10.1016/j.foreco.2007.06.047 – volume: 148 start-page: 325 year: 2006 ident: 9873_CR3 publication-title: Oecologia doi: 10.1007/s00442-006-0366-7 – volume: 101 start-page: 9 year: 1998 ident: 9873_CR5 publication-title: Forest Ecol Manag doi: 10.1016/S0378-1127(97)00121-7 – volume: 189 start-page: 515 year: 2011 ident: 9873_CR24 publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03485.x – volume: 183 start-page: 980 year: 2009 ident: 9873_CR4 publication-title: New Phytol doi: 10.1111/j.1469-8137.2009.02917.x – volume: 81 start-page: 1 year: 1991 ident: 9873_CR41 publication-title: Ecol Stud doi: 10.1007/978-3-642-75168-4_1 – volume: 115 start-page: 189 year: 1989 ident: 9873_CR31 publication-title: Plant Soil doi: 10.1007/BF02202587 – volume: 84 start-page: 229 year: 1990 ident: 9873_CR16 publication-title: Oecologia doi: 10.1007/BF00318276 – volume: 29 start-page: 35 year: 1993 ident: 9873_CR8 publication-title: Isotopenpraxis – volume-title: Mycorrhizal symbiosis year: 2008 ident: 9873_CR40 – volume: 320 start-page: 889 year: 2008 ident: 9873_CR7 publication-title: Science doi: 10.1126/science.1136674 – volume: 173 start-page: 611 year: 2007 ident: 9873_CR29 publication-title: New Phytol doi: 10.1111/j.1469-8137.2006.01936.x – volume: 206 start-page: 1 year: 1999 ident: 9873_CR42 publication-title: Stud For Suecica – volume: 136 start-page: 713 year: 1997 ident: 9873_CR43 publication-title: New Phytol doi: 10.1046/j.1469-8137.1997.00788.x – volume: 6 start-page: 644 year: 2003 ident: 9873_CR6 publication-title: Ecosystems doi: 10.1007/s10021-002-0149-x – volume: 142 start-page: 569 year: 1999 ident: 9873_CR21 publication-title: New Phytol doi: 10.1046/j.1469-8137.1999.00404.x – volume: 12 start-page: 489 year: 2006 ident: 9873_CR22 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2006.01102.x – volume: 13 start-page: 699 year: 1986 ident: 9873_CR39 publication-title: Austr J Plant Physiol – volume: 78 start-page: 383 year: 1989 ident: 9873_CR46 publication-title: Oecologia doi: 10.1007/BF00379113 – volume: 104 start-page: 8902 year: 2006 ident: 9873_CR25 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0609935104 – volume: 157 start-page: 147 year: 1993 ident: 9873_CR19 publication-title: Plant Soil doi: 10.1007/BF02390237 – volume: 196 start-page: 367 year: 2012 ident: 9873_CR13 publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04300.x – volume: 137 start-page: 179 year: 1997 ident: 9873_CR18 publication-title: New Phytol doi: 10.1046/j.1469-8137.1997.00808.x – volume: 39 start-page: 309 year: 1973 ident: 9873_CR34 publication-title: Plant Soil doi: 10.1007/BF00014798 – volume: 157 start-page: 147 year: 1994 ident: 9873_CR26 publication-title: Plant Soil – volume: 48 start-page: 921 year: 1998 ident: 9873_CR1 publication-title: Bioscience doi: 10.2307/1313296 |
SSID | ssj0009703 |
Score | 2.0687466 |
Snippet | High δ¹⁵N of tree foliage in forests subject to high N supply has been attributed to ¹⁵N enrichment of plant available soil N pools after losses of N through... High δ 15 N of tree foliage in forests subject to high N supply has been attributed to 15 N enrichment of plant available soil N pools after losses of N... High delta N-15 of tree foliage in forests subject to high N supply has been attributed to N-15 enrichment of plant available soil N pools after losses of N... |
SourceID | swepub proquest pascalfrancis crossref springer jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 351 |
SubjectTerms | ammonia ammonium nitrate Animal and plant ecology Animal, plant and microbial ecology Biogeosciences Biological and medical sciences Boreal forests Coniferous forests denitrification Earth and Environmental Science Earth Sciences Earth, ocean, space Ecosystems ectomycorrhizae Environmental Chemistry Environmental Sciences Exact sciences and technology Forest ecosystems Forest soils forests Fundamental and applied biological sciences. Psychology Fungi isotope fractionation Isotope geochemistry Isotope geochemistry. Geochronology Isotopes leaching Leaves Life Sciences long term experiments Miljövetenskap nitrification Nitrogen nitrogen content Soil horizons soil profiles Soils Surficial geology Synecology Terrestrial ecosystems Trees urea volatilization |
Title | Is the high ¹⁵N natural abundance of trees in N-loaded forests caused by an internal ecosystem N isotope redistribution or a change in the ecosystem N isotope mass balance? |
URI | https://www.jstor.org/stable/24716863 https://link.springer.com/article/10.1007/s10533-013-9873-x https://www.proquest.com/docview/1663571945 https://res.slu.se/id/publ/51988 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9NAEF68O0RfDj09Lp6WEcQHJZAfm2TzJLX07lQsohbq07Kb7EqhJke3hev_5B_pTH60Vo4Dn0LDZrrtfN39pjvzDWOvIquNVWHii5xjgFLEkZ-XgfI5N4XmKhIqoXrnz5P0aso_zpJZV8ft-mz3_kiyWan_KnZDauJTNwKMk2MfieNRQqE7gngaDXdKu1nTDhmpDEIgSeP-KPM2E3ub0YFVdZ-VSCmSyuG3ZNv2Fnv8c3tk-o-8aLMlXTxixx2XhGHr_MfsnqlO2P22u-TmhD0Y9c3c8O5l08F384T9_uAASR-QTjGEyQQaaU80ozQVhSAGoLZAZ9UO5hUgja9VaUpAcovTclCotcOXegOqgnn7f-ICMIhtNaFhAnNXr-prA0sq-d021IJ6CQraOmMyTHO47alfyOZBU8JlYd49ZdOL8ffRld-1bPDRy_GNn-cqt1wFVgud2MCKMFWRMUhrdByJQsS65HlYhiR6E9g8zjHgi0qOw0glUUXxKTus6sqcMciSgodFXPJUpVyQLJ1QyIeMzS1yKmU8FvS-k0WnZ05tNRZyp8RM7pbobknuljcee7N95LoV87hr8BkCQqqfuNjK6beIQtFG0C4UHjttULI1EuEWn4o09thgDza7ASINiAl67GWPI4kIoMMZVZl67WRI1C8Lc5547G0PMNktKO6uab5uMbh9LxIMd4u1Vku6SGcksnQhnv2X2XP2kD5xm233nB2ulmvzAunXSg_YQTbLBuxoePnj0xiv78eTL1_x7igdDZqf4h-NFiqN |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEF7alJJeSps2RH2kUyg9tAj0WMmrUymmqdMmvjSG3JZZabcYXClYNsT_KT8yM3oZhxDoydisxmvPWPuNZ-b7hPgUOWMdhomvMkkJSh5HflYE6EtpcyMxUpjwvPP5NJ3M5K_L5LIji-ZZmDv1ex5xI0DiswYBZcexT3DxiaREmbv3xul4y687akSQCcCQ45M07guY95nYOYIeO6z6XkRujMSavhvXilrsoM6hUHqHVLQ5iE5eiOcdgoTvrctfike2PBBPW03JzYHYH_cSbvTqz0a3d_NK3JzWQFAPmJ0YwmQKDaEnmUHDoyDkeagccIW6hnkJBN4rLGwBBGlpWzXkuK7pqdkAljBv_0VcAKWuLRM0TGFeV6vqysKSB30HGS2oloDQThezYd7DfVf9IwwPhtssc_vttZid_LgYT_xOqMEn38bXfpZh5iQGziiTuMCpMMXIWgIzJo5UrmJTyCwsQqa6CVwWZ5TmRYWkZcyNiFF8KPbKqrRHAkZJLsM8LmSKqVRMRqeQUJB1mSMkhdYTQe87nXcs5iymsdBb_mV2tyZ3a3a3vvbEl-GSq5bC46HFRxQQGv_SLVbP_kScgDY0dqHyxGETJYORiA72VKWxJ453wma7QKUB4z9PfOzjSFMEcEkGS1utax0y4BuFmUw88bUPMN3dRuqHtvm5jcHhvZgmvF6sDS75QddWEzZX6s1_mf0g9icX52f67HT6-614xp--7bd7J_ZWy7V9TwBsZY6bn94thWAkbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagE5cXLoNp4TKMhHgAZcvFSZ0nNI11G4MKCSptT8ZObFRRkqpOpZXfxI_knDhp6TRNQjxVrZzTuP6afCc-5_sIeRUZpY0ME59nDBKUPI78rAikz5jOFZMRlwn2O38apscj9uEsOWt9Tm1X7d5tSbqeBlRpKuu9aWH2_mp8A5riozMB5MyxDyRyg6G0XY9s7B-dnx6udHf7jTkyEBsARJLG3cbmVUHWbk03jay6GkUsmJQWfjPjzC7W2OhyA_WS2GhzgxrcJ9-6qbm6lB-781rt5r8uqT7-x9wfkHsteaX7Dm0PyQ1dbpJbzs5ysUnuHHTucfDpUWMZvHhEfp9YCiyTojAyDZMhbbREIYxU2IUCoKOVobg5bum4pJA3VLLQBQU2DTO3NJdzC2_VgsqSjt0DzAmFrNmJUNMhHduqrqaazrDHeOngRasZldQ1NmNgPIerjvoJ6QNVWOGZ63ePyWhw-PXg2G89InyAVXzhZ5nMDJOBUVwlJjA8TGWkNfAoFUc857EqWBYWIarsBCaLM8gwo4LBMJRllFG8RXplVeptQvtJzsI8LlgqU8ZRB49LIGDaZAZInNQeCTp4iLwVUEcfj4lYST_j0ghYGoFLIy488mZ5yNSph1w3eBswJ-R3uLqL0ZcIc99GQS_kHtlqgLgMEgGnSHkae2RnDZmrATwNkHp65GUHVQEIwN0gWepqbkWIXLMfZizxyNsOdaK9gtnrTvO1g_nyu1Ch3E7mSs7wRVgtIC3g_Mk_hX1Bbn9-PxAfT4anT8ldnLyr9HtGevVsrp8D9avVTvv3_gN9pU58 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+the+high+15N+natural+abundance+of+trees+in+N-loaded+forests+caused+by+an+internal+ecosystem+N+isotope+redistribution+or+a+change+in+the+ecosystem+N+isotope+mass+balance%3F&rft.jtitle=Biogeochemistry&rft.au=H%C3%96GBERG%2C+Peter&rft.au=JOHANNISSON%2C+Christian&rft.au=H%C3%96GBERG%2C+Mona+N&rft.date=2014-03-01&rft.pub=Springer&rft.issn=0168-2563&rft.volume=117&rft.issue=2-3&rft.spage=351&rft.epage=358&rft_id=info:doi/10.1007%2Fs10533-013-9873-x&rft.externalDBID=n%2Fa&rft.externalDocID=28609937 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-2563&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-2563&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-2563&client=summon |