Outdoor Worker Stress Monitoring Electronics with Nanofabric Radiative Cooler‐Based Thermal Management

Severe stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies quantify stress levels on the human skin, they still rely on rigid, bulky sensor modules, causing data loss from motion artifacts and limited field‐deployability for continuous health monitoring....

Full description

Saved in:
Bibliographic Details
Published inAdvanced healthcare materials Vol. 12; no. 28; p. e2301104
Main Authors Kim, Hojoong, Yoo, Young Jin, Yun, Joo Ho, Heo, Se‐Yeon, Song, Young Min, Yeo, Woon‐Hong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Severe stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies quantify stress levels on the human skin, they still rely on rigid, bulky sensor modules, causing data loss from motion artifacts and limited field‐deployability for continuous health monitoring. Moreover, no prior work shows a wearable device that can endure heat exposure while showing continuous monitoring of a subject's stress under realistic working environments. Herein, a soft, field‐deployable, wearable bioelectronic system is introduced for detecting outdoor workers' stress levels with negligible motion artifacts and controllable thermal management. A nanofabric radiative cooler (NFRC) and miniaturized sensors with a nanomembrane soft electronic platform are integrated to measure stable electrodermal activities and temperature in hot outdoor conditions. The NFRC exhibits outstanding cooling performance in sub‐ambient air with high solar reflectivity and high thermal emissivity. The integrated wearable device with all embedded electronic components and the NFRC shows a lower temperature (41.1%) in sub‐ambient air than the NFRC‐less device while capturing improved operation time (18.2%). In vivo human study of the bioelectronics with agricultural activities demonstrates the device's capability for portable, continuous, real‐time health monitoring of outdoor workers with field deployability.
AbstractList Severe stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies quantify stress levels on the human skin, they still rely on rigid, bulky sensor modules, causing data loss from motion artifacts and limited field‐deployability for continuous health monitoring. Moreover, no prior work shows a wearable device that can endure heat exposure while showing continuous monitoring of a subject's stress under realistic working environments. Herein, a soft, field‐deployable, wearable bioelectronic system is introduced for detecting outdoor workers' stress levels with negligible motion artifacts and controllable thermal management. A nanofabric radiative cooler (NFRC) and miniaturized sensors with a nanomembrane soft electronic platform are integrated to measure stable electrodermal activities and temperature in hot outdoor conditions. The NFRC exhibits outstanding cooling performance in sub‐ambient air with high solar reflectivity and high thermal emissivity. The integrated wearable device with all embedded electronic components and the NFRC shows a lower temperature (41.1%) in sub‐ambient air than the NFRC‐less device while capturing improved operation time (18.2%). In vivo human study of the bioelectronics with agricultural activities demonstrates the device's capability for portable, continuous, real‐time health monitoring of outdoor workers with field deployability.
Severe stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies quantify stress levels on the human skin, they still rely on rigid, bulky sensor modules, causing data loss from motion artifacts and limited field-deployability for continuous health monitoring. Moreover, no prior work shows a wearable device that can endure heat exposure while showing continuous monitoring of a subject's stress under realistic working environments. Herein, a soft, field-deployable, wearable bioelectronic system is introduced for detecting outdoor workers' stress levels with negligible motion artifacts and controllable thermal management. A nanofabric radiative cooler (NFRC) and miniaturized sensors with a nanomembrane soft electronic platform are integrated to measure stable electrodermal activities and temperature in hot outdoor conditions. The NFRC exhibits outstanding cooling performance in sub-ambient air with high solar reflectivity and high thermal emissivity. The integrated wearable device with all embedded electronic components and the NFRC shows a lower temperature (41.1%) in sub-ambient air than the NFRC-less device while capturing improved operation time (18.2%). In vivo human study of the bioelectronics with agricultural activities demonstrates the device's capability for portable, continuous, real-time health monitoring of outdoor workers with field deployability.Severe stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies quantify stress levels on the human skin, they still rely on rigid, bulky sensor modules, causing data loss from motion artifacts and limited field-deployability for continuous health monitoring. Moreover, no prior work shows a wearable device that can endure heat exposure while showing continuous monitoring of a subject's stress under realistic working environments. Herein, a soft, field-deployable, wearable bioelectronic system is introduced for detecting outdoor workers' stress levels with negligible motion artifacts and controllable thermal management. A nanofabric radiative cooler (NFRC) and miniaturized sensors with a nanomembrane soft electronic platform are integrated to measure stable electrodermal activities and temperature in hot outdoor conditions. The NFRC exhibits outstanding cooling performance in sub-ambient air with high solar reflectivity and high thermal emissivity. The integrated wearable device with all embedded electronic components and the NFRC shows a lower temperature (41.1%) in sub-ambient air than the NFRC-less device while capturing improved operation time (18.2%). In vivo human study of the bioelectronics with agricultural activities demonstrates the device's capability for portable, continuous, real-time health monitoring of outdoor workers with field deployability.
A significant threat of health problems with serious stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies promise to quantify stress levels on the human skin, they still rely on rigid, bulky sensor modules, causing data loss from motion artifacts and limited field-deployability for continuous health monitoring. Moreover, no prior work shows a wearable device that can endure heat exposure while showing continuous monitoring of a subject's stress under realistic working environments. Here, we introduce a soft, field-deployable, wearable bioelectronic system for detecting outdoor workers' stress levels with negligible motion artifacts and controllable thermal management. We integrate a nanofabric radiative cooler (NFRC) and miniaturized sensors with a nanomembrane soft electronic platform to measure stable electrodermal activities and temperature in hot outdoor conditions. The NFRC exhibits outstanding cooling performance in sub-ambient air with high solar reflectivity and high thermal emissivity. The integrated wearable device with all embedded electronic components and the NFRC shows a lower temperature (41.1%) in sub-ambient air than the NFRC-less device while capturing improved operation time (18.2%). In vivo human study of the bioelectronics with agricultural activities demonstrates the device's capability for portable, continuous, real-time health monitoring of outdoor workers with field deployability. This article is protected by copyright. All rights reserved.
Author Yun, Joo Ho
Kim, Hojoong
Yeo, Woon‐Hong
Song, Young Min
Yoo, Young Jin
Heo, Se‐Yeon
Author_xml – sequence: 1
  givenname: Hojoong
  surname: Kim
  fullname: Kim, Hojoong
  organization: George W. Woodruff School of Mechanical Engineering College of Engineering Georgia Institute of Technology Atlanta GA 30332 USA, IEN Center for Human‐Centric Interfaces and Engineering Institute for Electronics and Nanotechnology Georgia Institute of Technology Atlanta GA 30332 USA
– sequence: 2
  givenname: Young Jin
  surname: Yoo
  fullname: Yoo, Young Jin
  organization: School of Electrical Engineering and Computer Science Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
– sequence: 3
  givenname: Joo Ho
  surname: Yun
  fullname: Yun, Joo Ho
  organization: School of Electrical Engineering and Computer Science Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
– sequence: 4
  givenname: Se‐Yeon
  surname: Heo
  fullname: Heo, Se‐Yeon
  organization: School of Electrical Engineering and Computer Science Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
– sequence: 5
  givenname: Young Min
  surname: Song
  fullname: Song, Young Min
  organization: School of Electrical Engineering and Computer Science Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea, Anti‐Viral Research Center Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea, AI Graduate School Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
– sequence: 6
  givenname: Woon‐Hong
  orcidid: 0000-0002-5526-3882
  surname: Yeo
  fullname: Yeo, Woon‐Hong
  organization: George W. Woodruff School of Mechanical Engineering College of Engineering Georgia Institute of Technology Atlanta GA 30332 USA, IEN Center for Human‐Centric Interfaces and Engineering Institute for Electronics and Nanotechnology Georgia Institute of Technology Atlanta GA 30332 USA, Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University School of Medicine Atlanta GA 30332 USA, Parker H. Petit Institute for Bioengineering and Biosciences Institute for Materials Neural Engineering Center Institute for Robotics and Intelligent Machines Georgia Institute of Technology Atlanta GA 30332 USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37548604$$D View this record in MEDLINE/PubMed
BookMark eNp10U1rVDEUBuAgFVtrty4l4MbNjPm-maUO9QNaC1pxeTmTnNtJvTepSa6lO3-Cv9FfYkrrLApmkwSeN4TzPiV7MUUk5DlnS86YeA1-Oy0FE5JxztQjciD4SiyE0au93VmxfXJUyiVry2huLH9C9mWnlTVMHZDt2Vx9Spl-S_k7ZvqlZiyFnqYYasohXtDjEV3N7e4KvQ51Sz9BTANscnD0M_gANfxEuk5pxPzn1--3UNDT8y3mCUZ6ChEucMJYn5HHA4wFj-73Q_L13fH5-sPi5Oz9x_Wbk4WTQtYFcq8drIwaVkxL7sEOXoEAj9ZLZw1uQHrFFMeuCeM0mM5rIwavO2ktyEPy6u7dq5x-zFhqP4XicBwhYppLL6zqpOJ6xRp9-YBepjnH9rumrFXKKG2aenGv5s2Evr_KYYJ80_-bYQPLO-ByKiXjsCOc9bc99bc99bueWkA9CLhQ2xhTrBnC-L_YX_Sml7w
CitedBy_id crossref_primary_10_1002_advs_202403238
crossref_primary_10_1115_1_4064211
crossref_primary_10_1002_anbr_202300169
crossref_primary_10_1002_adma_202406424
crossref_primary_10_1021_acsnano_4c15530
crossref_primary_10_3390_mi15070884
crossref_primary_10_1021_acsnano_4c00967
crossref_primary_10_1002_smsc_202400046
crossref_primary_10_1080_15599612_2024_2334293
crossref_primary_10_1002_adfm_202400987
crossref_primary_10_1007_s42765_024_00412_w
Cites_doi 10.2196/jmir.5112
10.1002/advs.202004885
10.1126/science.abi5484
10.3390/bios12060427
10.1038/s41467-022-32409-7
10.1073/pnas.1917762116
10.1126/sciadv.abb1906
10.1016/S2542-5196(18)30237-7
10.1016/j.bios.2020.112764
10.1126/science.abf7136
10.1002/adhm.202200170
10.1038/s41565-020-00800-4
10.1109/JBHI.2017.2780252
10.1073/pnas.1205276109
10.1016/j.joule.2022.10.009
10.1016/j.ssci.2021.105395
10.1073/pnas.2207353119
10.1002/advs.202202549
10.1126/sciadv.abj9756
10.1007/s00484-013-0752-x
10.1016/j.bios.2020.112404
10.1287/mnsc.2014.2115
10.1109/TAFFC.2015.2509985
10.1080/1059924X.2013.826607
10.1002/advs.202000810
10.1016/j.jbi.2019.103139
10.1021/acsami.0c13177
10.1038/s41893-021-00688-5
10.1364/OE.438662
10.1126/sciadv.abq0411
10.1126/science.aat9513
10.1126/science.aai7899
10.1016/j.joule.2019.03.015
10.1016/j.buildenv.2022.109533
10.1021/acsami.1c05364
10.1007/s41233-020-00043-0
10.1016/j.heliyon.2019.e01351
10.5271/sjweh.1054
10.1109/TAFFC.2016.2625250
10.1080/00330124.2018.1547978
10.1126/science.aaf5471
10.1016/j.envint.2019.05.026
10.1007/978-1-4614-1126-0
10.1016/j.jneumeth.2010.04.028
10.1007/s00779-011-0463-4
10.1038/s41893-018-0023-2
10.3390/s18020503
10.1126/science.abg0291
10.1002/aenm.202103258
10.1126/science.abb0971
10.1038/nclimate2631
ContentType Journal Article
Copyright This article is protected by copyright. All rights reserved.
2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: This article is protected by copyright. All rights reserved.
– notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
DOI 10.1002/adhm.202301104
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Immunology Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
ExternalDocumentID 37548604
10_1002_adhm_202301104
Genre Journal Article
GroupedDBID 05W
0R~
1OC
31~
33P
53G
8-0
8-1
AAESR
AAHHS
AAHQN
AAIHA
AAIPD
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
C45
CITATION
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
G-S
GODZA
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
O9-
OVD
P2W
PQQKQ
ROL
SUPJJ
SV3
TEORI
WBKPD
WOHZO
WXSBR
ZZTAW
A00
NPM
WYJ
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c323t-e1d5ca964f90531da8fd4a2ade8d3c86eba3d4041e7f906c5a67d562fd57388a3
ISSN 2192-2640
2192-2659
IngestDate Fri Jul 11 09:37:29 EDT 2025
Fri Jul 25 12:06:54 EDT 2025
Wed Feb 19 02:23:02 EST 2025
Thu Apr 24 23:02:21 EDT 2025
Tue Jul 01 03:06:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords outdoor workers stress
nanofabric radiative cooler
Soft bioelectronics
galvanic skin response
wearable wireless sensor
Language English
License This article is protected by copyright. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-e1d5ca964f90531da8fd4a2ade8d3c86eba3d4041e7f906c5a67d562fd57388a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5526-3882
PMID 37548604
PQID 2888446456
PQPubID 2032434
ParticipantIDs proquest_miscellaneous_2847341590
proquest_journals_2888446456
pubmed_primary_37548604
crossref_primary_10_1002_adhm_202301104
crossref_citationtrail_10_1002_adhm_202301104
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231101
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv Healthc Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
Jacklitsch B. L. (e_1_2_9_1_1) 2016
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_7_1
  doi: 10.2196/jmir.5112
– ident: e_1_2_9_42_1
  doi: 10.1002/advs.202004885
– ident: e_1_2_9_25_1
  doi: 10.1126/science.abi5484
– year: 2016
  ident: e_1_2_9_1_1
  publication-title: NIOSH Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments
– ident: e_1_2_9_20_1
  doi: 10.3390/bios12060427
– ident: e_1_2_9_37_1
  doi: 10.1038/s41467-022-32409-7
– ident: e_1_2_9_41_1
  doi: 10.1073/pnas.1917762116
– ident: e_1_2_9_31_1
  doi: 10.1126/sciadv.abb1906
– ident: e_1_2_9_10_1
  doi: 10.1016/S2542-5196(18)30237-7
– ident: e_1_2_9_22_1
  doi: 10.1016/j.bios.2020.112764
– ident: e_1_2_9_32_1
  doi: 10.1126/science.abf7136
– ident: e_1_2_9_44_1
  doi: 10.1002/adhm.202200170
– ident: e_1_2_9_47_1
  doi: 10.1038/s41565-020-00800-4
– ident: e_1_2_9_50_1
  doi: 10.1109/JBHI.2017.2780252
– ident: e_1_2_9_5_1
  doi: 10.1073/pnas.1205276109
– ident: e_1_2_9_38_1
  doi: 10.1016/j.joule.2022.10.009
– ident: e_1_2_9_21_1
  doi: 10.1016/j.ssci.2021.105395
– ident: e_1_2_9_40_1
  doi: 10.1073/pnas.2207353119
– ident: e_1_2_9_43_1
  doi: 10.1002/advs.202202549
– ident: e_1_2_9_48_1
  doi: 10.1126/sciadv.abj9756
– ident: e_1_2_9_2_1
  doi: 10.1007/s00484-013-0752-x
– ident: e_1_2_9_45_1
  doi: 10.1016/j.bios.2020.112404
– ident: e_1_2_9_4_1
  doi: 10.1287/mnsc.2014.2115
– ident: e_1_2_9_12_1
  doi: 10.1109/TAFFC.2015.2509985
– ident: e_1_2_9_49_1
  doi: 10.1080/1059924X.2013.826607
– ident: e_1_2_9_17_1
  doi: 10.1002/advs.202000810
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jbi.2019.103139
– ident: e_1_2_9_36_1
  doi: 10.1021/acsami.0c13177
– ident: e_1_2_9_29_1
  doi: 10.1038/s41893-021-00688-5
– ident: e_1_2_9_35_1
  doi: 10.1364/OE.438662
– ident: e_1_2_9_39_1
  doi: 10.1126/sciadv.abq0411
– ident: e_1_2_9_23_1
  doi: 10.1126/science.aat9513
– ident: e_1_2_9_24_1
  doi: 10.1126/science.aai7899
– ident: e_1_2_9_27_1
  doi: 10.1016/j.joule.2019.03.015
– ident: e_1_2_9_19_1
  doi: 10.1016/j.buildenv.2022.109533
– ident: e_1_2_9_46_1
  doi: 10.1021/acsami.1c05364
– ident: e_1_2_9_52_1
  doi: 10.1007/s41233-020-00043-0
– ident: e_1_2_9_18_1
  doi: 10.1016/j.heliyon.2019.e01351
– ident: e_1_2_9_9_1
  doi: 10.5271/sjweh.1054
– ident: e_1_2_9_15_1
  doi: 10.1109/TAFFC.2016.2625250
– ident: e_1_2_9_51_1
  doi: 10.1080/00330124.2018.1547978
– ident: e_1_2_9_26_1
  doi: 10.1126/science.aaf5471
– ident: e_1_2_9_3_1
  doi: 10.1016/j.envint.2019.05.026
– ident: e_1_2_9_13_1
  doi: 10.1007/978-1-4614-1126-0
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jneumeth.2010.04.028
– ident: e_1_2_9_16_1
  doi: 10.1007/s00779-011-0463-4
– ident: e_1_2_9_28_1
  doi: 10.1038/s41893-018-0023-2
– ident: e_1_2_9_11_1
  doi: 10.3390/s18020503
– ident: e_1_2_9_33_1
  doi: 10.1126/science.abg0291
– ident: e_1_2_9_34_1
  doi: 10.1002/aenm.202103258
– ident: e_1_2_9_30_1
  doi: 10.1126/science.abb0971
– ident: e_1_2_9_6_1
  doi: 10.1038/nclimate2631
SSID ssj0000651681
Score 2.446343
Snippet Severe stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies quantify stress levels on the human skin, they still...
A significant threat of health problems with serious stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies promise...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage e2301104
SubjectTerms Air temperature
Bioelectricity
Controllability
Data loss
Electronic components
Hot working
In vivo methods and tests
Portable equipment
Thermal management
Wearable computers
Wearable technology
Workers
Title Outdoor Worker Stress Monitoring Electronics with Nanofabric Radiative Cooler‐Based Thermal Management
URI https://www.ncbi.nlm.nih.gov/pubmed/37548604
https://www.proquest.com/docview/2888446456
https://www.proquest.com/docview/2847341590
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgk9D2gPimMJCRkHhAhsZ2HPdxjKFqYvCwTdqeIsd2tKFST136wl_P-SNON1YJeImq-Jq0vp9_Pp_vzgi9LVptikJLopkwhDfcEF8ShVDaTKjWUlTBoX_4TUxP-MFpeTqkK4bskq75oH_dmlfyP1qFe6BXnyX7D5rND4Ub8Bn0C1fQMFz_Ssffl51xbhE83nYRdpiBt-IwDXF1-_mQm5TFBmTqWtWE8HlflSAEDu05N7ML8gkmNONDMICrZzfjYvpCtX3IwPkQNwY2b_yzw35-ANnU_XAuTYyBV4JXNtDL-4OLDMqzZUwPcQ6-Mbhmg_CRJWc2ASe5JihLOXphZgkUBnRICRWp5nekSEs9p8Qzh__g71gPVplzXyTgFkHo_8ufQZv-6F4pYuuNitl90120SWHxAOy3ufv58OtR9r2B2VUIWfQ1PMf04_U3bqF7_TOumytr1iDBFjl-gO6nRQTejYh4iO7Y-SO0vVJa8jFqEzZwxAaO2MADNvAKNrDHBh6wgTM28Co2cMIGHrDxBJ182T_em5J0pgYMRso6YgtTajURvJ14-jVKtoYrqoyVhsHQtI1iho95YSuQELpUojJgI7emrJiUij1FG3M3t88R1rYpOaOlMppxoWCloSrGmTFCaTAE5QiRvutqnQrO-3NPZnUslU1r3-t17vURepflL2OplbWSO70m6jQcr2oqpeR-n16M0JvcDGTpd8DU3Lqll-HwE8GCH4_Qs6jB_Kpe4y_WtrxEWwPKd9BGt1jaV2CSds3rhLDfPeeMnA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outdoor+Worker+Stress+Monitoring+Electronics+with+Nanofabric+Radiative+Cooler-Based+Thermal+Management&rft.jtitle=Advanced+healthcare+materials&rft.au=Kim%2C+Hojoong&rft.au=Yoo%2C+Young+Jin&rft.au=Yun%2C+Joo+Ho&rft.au=Heo%2C+Se-Yeon&rft.date=2023-11-01&rft.eissn=2192-2659&rft.spage=e2301104&rft_id=info:doi/10.1002%2Fadhm.202301104&rft_id=info%3Apmid%2F37548604&rft.externalDocID=37548604
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon