Robust design of an asymmetrically absorbing Willis acoustic metasurface subject to manufacturing-induced dimensional variations
Advancements in additive manufacturing (AM) technology are promising for the creation of acoustic materials. Acoustic metamaterials and metasurfaces are of particular interest for the application of AM technologies as theoretical predictions suggest the need for precise arrangements of dissimilar ma...
Saved in:
Published in | The Journal of the Acoustical Society of America Vol. 151; no. 1; pp. 216 - 231 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Advancements in additive manufacturing (AM) technology are promising for the creation of acoustic materials. Acoustic metamaterials and metasurfaces are of particular interest for the application of AM technologies as theoretical predictions suggest the need for precise arrangements of dissimilar materials within specified regions of space to reflect, transmit, guide, or absorb acoustic waves in ways that exceed the capabilities of currently available acoustic materials. This work presents the design of an acoustic metasurface (AMS) with Willis constitutive behavior, which is created from an array of multi-material inclusions embedded in an elastomeric matrix, which displays the asymmetric acoustic absorption. The finite element models of the AMS show that the asymmetric absorption is dependent on asymmetry in the distribution of materials within the inclusion and highly sensitive to small changes in the inclusion geometry. It is shown that the performance variability can be used to place constraints on the manufacturing-induced variability to ensure that an as-built AMS will perform using the as-designed parameters. The evaluation of the AMS performance is computationally expensive, thus, the design is performed with a classifier-based metamodel to support more efficient Monte Carlo simulations and quantify the sensitivity of the candidate design performance to the manufacturing variability. This work explores combinations of material choices and dimensional accuracies to demonstrate how a robust design approach can be used to help select AM fabrication methods or guide process development toward an AM process that is capable of fabricating acoustic material structures. |
---|---|
AbstractList | Advancements in additive manufacturing (AM) technology are promising for the creation of acoustic materials. Acoustic metamaterials and metasurfaces are of particular interest for the application of AM technologies as theoretical predictions suggest the need for precise arrangements of dissimilar materials within specified regions of space to reflect, transmit, guide, or absorb acoustic waves in ways that exceed the capabilities of currently available acoustic materials. This work presents the design of an acoustic metasurface (AMS) with Willis constitutive behavior, which is created from an array of multi-material inclusions embedded in an elastomeric matrix, which displays the asymmetric acoustic absorption. The finite element models of the AMS show that the asymmetric absorption is dependent on asymmetry in the distribution of materials within the inclusion and highly sensitive to small changes in the inclusion geometry. It is shown that the performance variability can be used to place constraints on the manufacturing-induced variability to ensure that an as-built AMS will perform using the as-designed parameters. The evaluation of the AMS performance is computationally expensive, thus, the design is performed with a classifier-based metamodel to support more efficient Monte Carlo simulations and quantify the sensitivity of the candidate design performance to the manufacturing variability. This work explores combinations of material choices and dimensional accuracies to demonstrate how a robust design approach can be used to help select AM fabrication methods or guide process development toward an AM process that is capable of fabricating acoustic material structures. Advancements in additive manufacturing (AM) technology are promising for the creation of acoustic materials. Acoustic metamaterials and metasurfaces are of particular interest for the application of AM technologies as theoretical predictions suggest the need for precise arrangements of dissimilar materials within specified regions of space to reflect, transmit, guide, or absorb acoustic waves in ways that exceed the capabilities of currently available acoustic materials. This work presents the design of an acoustic metasurface (AMS) with Willis constitutive behavior, which is created from an array of multi-material inclusions embedded in an elastomeric matrix, which displays the asymmetric acoustic absorption. The finite element models of the AMS show that the asymmetric absorption is dependent on asymmetry in the distribution of materials within the inclusion and highly sensitive to small changes in the inclusion geometry. It is shown that the performance variability can be used to place constraints on the manufacturing-induced variability to ensure that an as-built AMS will perform using the as-designed parameters. The evaluation of the AMS performance is computationally expensive, thus, the design is performed with a classifier-based metamodel to support more efficient Monte Carlo simulations and quantify the sensitivity of the candidate design performance to the manufacturing variability. This work explores combinations of material choices and dimensional accuracies to demonstrate how a robust design approach can be used to help select AM fabrication methods or guide process development toward an AM process that is capable of fabricating acoustic material structures.Advancements in additive manufacturing (AM) technology are promising for the creation of acoustic materials. Acoustic metamaterials and metasurfaces are of particular interest for the application of AM technologies as theoretical predictions suggest the need for precise arrangements of dissimilar materials within specified regions of space to reflect, transmit, guide, or absorb acoustic waves in ways that exceed the capabilities of currently available acoustic materials. This work presents the design of an acoustic metasurface (AMS) with Willis constitutive behavior, which is created from an array of multi-material inclusions embedded in an elastomeric matrix, which displays the asymmetric acoustic absorption. The finite element models of the AMS show that the asymmetric absorption is dependent on asymmetry in the distribution of materials within the inclusion and highly sensitive to small changes in the inclusion geometry. It is shown that the performance variability can be used to place constraints on the manufacturing-induced variability to ensure that an as-built AMS will perform using the as-designed parameters. The evaluation of the AMS performance is computationally expensive, thus, the design is performed with a classifier-based metamodel to support more efficient Monte Carlo simulations and quantify the sensitivity of the candidate design performance to the manufacturing variability. This work explores combinations of material choices and dimensional accuracies to demonstrate how a robust design approach can be used to help select AM fabrication methods or guide process development toward an AM process that is capable of fabricating acoustic material structures. |
Author | Seepersad, Carolyn Conner Wiest, Tyler Haberman, Michael R. |
Author_xml | – sequence: 1 givenname: Tyler surname: Wiest fullname: Wiest, Tyler – sequence: 2 givenname: Carolyn Conner surname: Seepersad fullname: Seepersad, Carolyn Conner – sequence: 3 givenname: Michael R. orcidid: 0000-0002-7159-9773 surname: Haberman fullname: Haberman, Michael R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35105018$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcFrFTEQxoNU7Gv14h8gOYqwmmQ32ZejlGoLBUEUj8tkdrakZJOaZIV38083tU8P4umbGX7fwDdzxk5iisTYSyneSqnku6ZCCCuNesJ2UivR7bUaTtiuTWU3WGNO2Vkpd63V-94-Y6e9lkILud-xn5-T20rlMxV_G3laOEQO5bCuVLNHCOHAwZWUnY-3_JsPwRcOmJrHI28QlC0vgMTL5u4IK6-JrxC3NqtbbqbOx3lDmvnsV4rFpwiB_4Dsoba6PGdPFwiFXhz1nH39cPnl4qq7-fTx-uL9TYe96mtHsuXbD8KNQqNWIyorBlxIuRFtP4MVo51JOjMabTX2g7HgNC7WjhaNof6cvX7ce5_T941KnVZfkEKASC3NpIwa7GCFFA19dUQ3t9I83We_Qj5Mf67WgDePAOZUSqblLyLF9PCSBz2-pMHiHxh9_Z29ZvDhf5Zfa8-O4w |
CitedBy_id | crossref_primary_10_1016_j_apm_2023_02_017 crossref_primary_10_1063_5_0086859 crossref_primary_10_1115_1_4055898 crossref_primary_10_1121_10_0009281 crossref_primary_10_1016_j_ijmecsci_2022_107325 crossref_primary_10_3389_fphy_2023_1141129 crossref_primary_10_1063_5_0194467 crossref_primary_10_1038_s41467_022_33652_8 crossref_primary_10_1115_1_4064811 crossref_primary_10_1063_5_0166720 crossref_primary_10_1016_j_mattod_2023_06_019 |
Cites_doi | 10.1007/s11837-018-3242-0 10.1007/s00170-015-8147-2 10.1121/1.5115019 10.3390/polym11101581 10.1121/10.0005874 10.1103/PhysRevE.99.013001 10.1038/ncomms15625 10.1115/1.4031470 10.1007/s00158-009-0420-2 10.1016/j.cma.2008.05.004 10.1121/10.0002137 10.1121/1.4985195 10.1063/1.5031513 10.1103/PhysRevB.99.220301 10.1038/323533a0 10.1002/advs.201800730 10.1007/s00158-009-0449-2 10.1016/j.compstruct.2013.08.023 10.1038/natrevmats.2016.1 10.1063/PT.3.3198 10.1103/PhysRevB.99.064305 10.1103/PhysRevB.96.104303 10.1115/1.4041251 10.1016/j.future.2003.07.011 10.1016/j.cma.2011.08.006 10.1007/s00500-015-1739-9 10.1115/1.1334596 10.1016/j.snb.2017.08.086 10.1016/j.ultras.2018.10.002 10.1108/RPJ-07-2017-0137 10.1103/PhysRevLett.106.253901 10.1038/s41467-020-17529-2 10.1038/s41578-020-0206-0 10.1093/comjnl/24.2.167 10.1126/science.1246957 10.1038/ncomms13012 10.1103/PhysRevB.88.024303 10.1177/0361198105192100113 10.1016/j.jmps.2014.07.004 10.3390/polym11010062 10.1088/0964-1726/25/2/02LT01 10.1115/1.2429697 10.1103/PhysRevLett.120.254301 10.1121/10.0003629 10.1016/j.jmps.2017.01.010 10.1063/1.4902129 10.1121/1.5087133 10.1115/1.4044524 10.1002/cnm.1488 10.1109/36.124218 10.1038/s41467-018-03778-9 10.1137/0915077 10.1121/10.0004819 10.1016/0165-2125(81)90008-1 10.4416/JCST2015-00018 10.1063/1.4938121 10.1002/adfm.200600434 10.1063/5.0055789 10.1103/PhysRevB.95.180104 10.1121/1.2764471 10.2514/2.805 10.1006/jcph.1994.1159 10.1063/1.5007682 10.1038/s41578-018-0061-4 10.1088/1367-2630/ac0b7d 10.1063/1.4998516 10.1016/j.triboint.2020.106530 10.1038/s41467-018-07809-3 10.1098/rspa.2018.0571 10.1007/s10409-009-0240-z |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1121/10.0009162 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1520-8524 |
EndPage | 231 |
ExternalDocumentID | 35105018 10_1121_10_0009162 |
Genre | Journal Article |
GroupedDBID | --- --Z -~X .DC 123 29L 4.4 5-Q 5RE 5VS 85S AAAAW AAGWI AAPUP AAYIH AAYXX ABDNZ ABJGX ABJNI ABNAN ABPPZ ABZEH ACBRY ACCUC ACGFO ACGFS ACNCT ADCTM ADMLS AEGXH AEILP AENEX AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AGVCI AHSDT AIAGR AIDUJ ALMA_UNASSIGNED_HOLDINGS AQWKA BAUXJ CITATION CS3 D0L DU5 EBS F5P H~9 M71 M73 P2P RAZ RIP RNS RQS SC5 SJN TN5 TWZ UHB UPT UQL WH7 XSW YQT ~02 .GJ 186 3O- 41~ 53G 6TJ AAEUA ABDPE ABEFU ABTAH ACBNA ACXMS ACYGS AHPGS AI. AIZTS EJD ESX MVM NEJ NHB NPM OHT OK1 PKN ROL S10 UCJ VH1 VOH VQA XJT XOL ZCG ZXP ZY4 ~G0 7X8 |
ID | FETCH-LOGICAL-c323t-e1916840b705c527c2904cfe2b7c93da9079de1b676595c3469ab5cf9979c66e3 |
ISSN | 0001-4966 1520-8524 |
IngestDate | Sun Aug 24 03:53:07 EDT 2025 Wed Feb 19 02:27:18 EST 2025 Tue Jul 01 01:02:29 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c323t-e1916840b705c527c2904cfe2b7c93da9079de1b676595c3469ab5cf9979c66e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7159-9773 s0000000271599773 |
OpenAccessLink | https://pubs.aip.org/asa/jasa/article-pdf/151/1/216/16522814/216_1_online.pdf |
PMID | 35105018 |
PQID | 2624949010 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2624949010 pubmed_primary_35105018 crossref_primary_10_1121_10_0009162 crossref_citationtrail_10_1121_10_0009162 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 2022-Jan 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of the Acoustical Society of America |
PublicationTitleAlternate | J Acoust Soc Am |
PublicationYear | 2022 |
References | (2023081002565080100_c39) 2019; 71 (2023081002565080100_c69) 1981; 24 (2023081002565080100_c22) 2014; 343 (2023081002565080100_c3) 2016; 69 (2023081002565080100_c62) 2011 (2023081002565080100_c72) 2014 (2023081002565080100_c29) 2021; 23 (2023081002565080100_c64) 2007; 122 (2023081002565080100_c35) 2019; 146 (2023081002565080100_c79) 2013 (2023081002565080100_c30) 2019; 99 (2023081002565080100_c40) 2015; 6 (2023081002565080100_c65) 2015; 43 (2023081002565080100_c8) 2019; 99 (2023081002565080100_c73) 1994; 15 (2023081002565080100_c37) 2019; 6 (2023081002565080100_c50) 2019; 11 (2023081002565080100_c46) 2009; 25 (2023081002565080100_c9) 2019; 146 (2023081002565080100_c24) 1981; 3 (2023081002565080100_c15) 2021; 149 (2023081002565080100_c51) 2015 (2023081002565080100_c54) 2019; 11 (2023081002565080100_c45) 2008; 198 (2023081002565080100_c23) 2020; 5 (2023081002565080100_c16) 2017; 95 (2023081002565080100_c44) 2011; 200 (2023081002565080100_c21) 2018; 120 Grama (2023081002565080100_c71) 2020 (2023081002565080100_c4) 2018; 123 (2023081002565080100_c56) 2007; 129 (2023081002565080100_c12) 2019; 99 (2023081002565080100_c31) 2017; 101 (2023081002565080100_c53) 2018; 24 (2023081002565080100_c58) 2014; 107 (2023081002565080100_c60) 2010 (2023081002565080100_c38) 2016; 25 (2023081002565080100_c18) 2017; 8 (2023081002565080100_c19) 2016; 7 (2023081002565080100_c6) 2018; 9 (2023081002565080100_c11) 2014; 105 (2023081002565080100_c78) 1986; 323 (2023081002565080100_c13) 2014; 71 (2023081002565080100_c25) 2017; 96 (2023081002565080100_c32) 2015; 137 (2023081002565080100_c57) 2010; 41 (2023081002565080100_c63) 1994; 114 (2023081002565080100_c42) 1999; 37 (2023081002565080100_c80) 2018 (2023081002565080100_c34) 2015; 107 (2023081002565080100_c1) 2016; 1 (2023081002565080100_c59) 2019; 141 (2023081002565080100_c77) 2011; 12 (2023081002565080100_c76) 2016; 20 (2023081002565080100_c70) 2004; 20 (2023081002565080100_c74) 2005; 1921 (2023081002565080100_c2) 2018; 3 (2023081002565080100_c75) 1992; 30 (2023081002565080100_c66) 2019; 94 (2023081002565080100_c52) 2017; 93 (2023081002565080100_c68) 2021; 149 (2023081002565080100_c14) 2011; 106 (2023081002565080100_c17) 2017; 141 (2023081002565080100_c67) 2012; 28 (2023081002565080100_c10) 2021; 150 (2023081002565080100_c41) 2018; 255 (2023081002565080100_c47) 2010; 41 (2023081002565080100_c27) 2020; 148 (2023081002565080100_c5) 2013; 88 (2023081002565080100_c61) 2018; 1949 (2023081002565080100_c28) 2021; 119 (2023081002565080100_c49) 2000 (2023081002565080100_c7) 2020; 11 (2023081002565080100_c43) 2001; 123 (2023081002565080100_c48) 2018; 140 (2023081002565080100_c55) 2020; 152 (2023081002565080100_c36) 2006; 16 (2023081002565080100_c20) 2018; 9 (2023081002565080100_c26) 2018; 474 (2023081002565080100_c33) 2017; 111 |
References_xml | – volume-title: Fundamentals of Physical Acoustics year: 2000 ident: 2023081002565080100_c49 – volume: 71 start-page: 626 issue: 2 year: 2019 ident: 2023081002565080100_c39 article-title: Low-field alignment of anisotropic bonded magnets for additive manufacturing of permanent magnet motors publication-title: JOM doi: 10.1007/s11837-018-3242-0 – year: 2010 ident: 2023081002565080100_c60 article-title: Making the most out of surrogate models: Tricks of the trade – volume: 93 start-page: 175 year: 2017 ident: 2023081002565080100_c52 article-title: A prediction model of layer geometrical size in wire and arc additive manufacture using response surface methodology publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-8147-2 – volume: 146 start-page: 782 year: 2019 ident: 2023081002565080100_c9 article-title: Non-reciprocal wave propagation in mechanically-modulated continuous elastic metamaterials publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5115019 – volume: 11 start-page: 1581 issue: 10 year: 2019 ident: 2023081002565080100_c54 article-title: Analysis of PLA geometric properties processed by FFF additive manufacturing: Effects of process parameters and plate-extruder precision motion publication-title: Polymers doi: 10.3390/polym11101581 – volume: 150 start-page: 1092 year: 2021 ident: 2023081002565080100_c10 article-title: Experimental realization of an active non-reciprocal metamaterial using an eigen-structure assignment control strategy publication-title: J. Acoust. Soc. Am. doi: 10.1121/10.0005874 – volume: 99 start-page: 013001 year: 2019 ident: 2023081002565080100_c8 article-title: Nonreciprocal wave phenomena in spring-mass chains with effective stiffness modulation induced by geometric nonlinearity publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.99.013001 – volume: 8 start-page: 15625 year: 2017 ident: 2023081002565080100_c18 article-title: Experimental evidence of Willis coupling in a one-dimensional effective material element publication-title: Nat. Commun. doi: 10.1038/ncomms15625 – volume: 137 start-page: 110301 issue: 11 year: 2015 ident: 2023081002565080100_c32 article-title: Design for additive manufacturing: A paradigm shift in design, fabrication, and qualification publication-title: J. Mech. Des. doi: 10.1115/1.4031470 – year: 2018 ident: 2023081002565080100_c80 article-title: Born qualified grand challenge LDRD final report – volume: 41 start-page: 219 issue: 2 year: 2010 ident: 2023081002565080100_c57 article-title: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0420-2 – volume: 198 start-page: 2 issue: 1 year: 2008 ident: 2023081002565080100_c45 article-title: Computational methods in optimization considering uncertainties—An overview publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.05.004 – volume: 148 start-page: EL365 year: 2020 ident: 2023081002565080100_c27 article-title: Numerical study of acoustic focusing using a bianisotropic acoustic lens publication-title: J. Acoust. Soc. Am. doi: 10.1121/10.0002137 – volume: 141 start-page: 4408 year: 2017 ident: 2023081002565080100_c17 article-title: Broadband focusing of underwater sound using a transparent pentamode lens publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4985195 – volume: 1949 start-page: 020016 year: 2018 ident: 2023081002565080100_c61 article-title: Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides publication-title: AIP Conf. Proc. doi: 10.1063/1.5031513 – volume: 99 start-page: 220301(R) year: 2019 ident: 2023081002565080100_c30 article-title: Active Willis metamaterials for ultracompact nonreciprocal linear acoustic devices publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.220301 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 2023081002565080100_c78 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 6 start-page: 1800730 year: 2019 ident: 2023081002565080100_c37 article-title: Multimaterial microfluidic 3D printing of textured composites with liquid inclusions publication-title: Adv. Sci. doi: 10.1002/advs.201800730 – volume: 41 start-page: 507 issue: 4 year: 2010 ident: 2023081002565080100_c47 article-title: Level set based robust shape and topology optimization under random field uncertainties publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0449-2 – volume: 107 start-page: 494 year: 2014 ident: 2023081002565080100_c58 article-title: A comparative study of metamodeling methods for the design optimization of variable stiffness composites publication-title: Composite Struct. doi: 10.1016/j.compstruct.2013.08.023 – volume-title: Multiphysics Modeling Using COMSOL: A First Principles Approach year: 2011 ident: 2023081002565080100_c62 – volume: 1 start-page: 16001 year: 2016 ident: 2023081002565080100_c1 article-title: Controlling sound with acoustic metamaterials publication-title: Nat. Rev. Mat. doi: 10.1038/natrevmats.2016.1 – volume: 69 start-page: 42 issue: 6 year: 2016 ident: 2023081002565080100_c3 article-title: Acoustic metamaterials publication-title: Phys. Today doi: 10.1063/PT.3.3198 – volume: 99 start-page: 064305 year: 2019 ident: 2023081002565080100_c12 article-title: Bragg scattering based acoustic topological transition controlled by local resonance publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.064305 – volume: 96 start-page: 104303 issue: 10 year: 2017 ident: 2023081002565080100_c25 article-title: Origins of Willis coupling (bianisotropy) in acoustic metamaterials through source-driven homogenization publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.96.104303 – volume: 140 start-page: 111415 year: 2018 ident: 2023081002565080100_c48 article-title: Design exploration of reliably manufacturable materials and structures with applications to negative stiffness metamaterials and microstereolithography publication-title: J. Mech. Des doi: 10.1115/1.4041251 – volume: 20 start-page: 475 issue: 3 year: 2004 ident: 2023081002565080100_c70 article-title: Solving unsymmetric sparse systems of linear equations with PARDISO publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2003.07.011 – volume: 200 start-page: 3613 year: 2011 ident: 2023081002565080100_c44 article-title: Robust topology optimization accounting for spatially varying manufacturing errors publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2011.08.006 – volume: 20 start-page: 4753 issue: 12 year: 2016 ident: 2023081002565080100_c76 article-title: An efficient radial basis function neural network for hyperspectral remote sensing image classification publication-title: Soft Comput. doi: 10.1007/s00500-015-1739-9 – volume: 123 start-page: 1 issue: 1 year: 2001 ident: 2023081002565080100_c43 article-title: A comprehensive robust design approach for decision trade-offs in complex system design publication-title: J. Mech. Des. doi: 10.1115/1.1334596 – volume: 255 start-page: 1031 year: 2018 ident: 2023081002565080100_c41 article-title: Printed-sensor-on-chip devices—Aerosol jet deposition of thin film relative humidity sensors onto packaged integrated circuits publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.08.086 – volume: 94 start-page: 152 year: 2019 ident: 2023081002565080100_c66 article-title: A PDMS-based broadband acoustic impedance matched material for underwater applications publication-title: Ultrasonics doi: 10.1016/j.ultras.2018.10.002 – volume: 24 start-page: 1524 issue: 9 year: 2018 ident: 2023081002565080100_c53 article-title: Geometrical deviation identification and prediction method for additive manufacturing publication-title: Rapid Prototyping J. doi: 10.1108/RPJ-07-2017-0137 – volume: 106 start-page: 253901 year: 2011 ident: 2023081002565080100_c14 article-title: Experimental acoustic ground cloak in air publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.253901 – start-page: 3 volume-title: Parallel Algorithms in Computational Science and Engineering. Modeling and Simulation in Science, Engineering and Technology year: 2020 ident: 2023081002565080100_c71 article-title: State-of-the-art sparse direct solvers – volume: 11 start-page: 3681 year: 2020 ident: 2023081002565080100_c7 article-title: An active mechanical Willis meta-layer with asymmetric polarizabilities publication-title: Nat. Commun. doi: 10.1038/s41467-020-17529-2 – volume: 5 start-page: 667 year: 2020 ident: 2023081002565080100_c23 article-title: Nonreciprocity in acoustic and elastic materials publication-title: Nat. Rev. Mat. doi: 10.1038/s41578-020-0206-0 – volume: 24 start-page: 167 issue: 2 year: 1981 ident: 2023081002565080100_c69 article-title: Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes publication-title: Comput. J. doi: 10.1093/comjnl/24.2.167 – volume: 343 start-page: 516 issue: 6170 year: 2014 ident: 2023081002565080100_c22 article-title: Sound isolation and giant linear nonreciprocity in a compact acoustic circulator publication-title: Science doi: 10.1126/science.1246957 – volume: 7 start-page: 13012 year: 2016 ident: 2023081002565080100_c19 article-title: Acoustic omni meta-atom for decoupled access to all octants of a wave parameter space publication-title: Nat. Commun. doi: 10.1038/ncomms13012 – volume: 88 start-page: 024303 year: 2013 ident: 2023081002565080100_c5 article-title: Tunable active acoustic metamaterials publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.024303 – volume: 1921 start-page: 112 issue: 1 year: 2005 ident: 2023081002565080100_c74 article-title: Simulation estimation of mixed discrete choice models with the use of randomized quasi-Monte Carlo sequences: A comparative study publication-title: J. Transp. Res. Board doi: 10.1177/0361198105192100113 – volume: 71 start-page: 179 year: 2014 ident: 2023081002565080100_c13 article-title: Towards optimal design of locally resonant acoustic metamaterials publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2014.07.004 – volume: 11 start-page: 62 issue: 1 year: 2019 ident: 2023081002565080100_c50 article-title: Multi-material additive manufacturing of sustainable innovative materials and structures publication-title: Polymers doi: 10.3390/polym11010062 – volume: 25 start-page: 02LT01 year: 2016 ident: 2023081002565080100_c38 article-title: 3D printed components with ultrasonically arranged microscale structure publication-title: Smart Mater. Struct.. doi: 10.1088/0964-1726/25/2/02LT01 – volume: 129 start-page: 370 issue: 4 year: 2007 ident: 2023081002565080100_c56 article-title: Review of metamodeling techniques in support of engineering design optimization publication-title: J. Mech. Des. doi: 10.1115/1.2429697 – volume: 120 start-page: 254301 year: 2018 ident: 2023081002565080100_c21 article-title: Maximum Willis coupling in acoustic scatterers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.254301 – volume: 149 start-page: 1829 year: 2021 ident: 2023081002565080100_c15 article-title: Characterization of an underwater metamaterial made of aluminum honeycomb panels at low frequencies publication-title: J. Acoust. Soc. Am. doi: 10.1121/10.0003629 – volume: 101 start-page: 10 year: 2017 ident: 2023081002565080100_c31 article-title: Modulated phononic crystals: Non-reciprocal wave propagation and Willis materials publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.01.010 – volume: 105 start-page: 191907 year: 2014 ident: 2023081002565080100_c11 article-title: Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps publication-title: Appl. Phys. Lett. doi: 10.1063/1.4902129 – volume: 43 issue: 3 year: 2015 ident: 2023081002565080100_c65 article-title: Ultrasonic dry coupling through tissue publication-title: Can. Acoust. – volume-title: An Introduction to Statistical Learning year: 2013 ident: 2023081002565080100_c79 – volume: 12 start-page: 2825 year: 2011 ident: 2023081002565080100_c77 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 146 start-page: 873 year: 2019 ident: 2023081002565080100_c35 article-title: Non-symmetric flexural wave scattering and one-way extreme absorption publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5087133 – volume-title: Additive Manufacturing Technologies year: 2014 ident: 2023081002565080100_c72 – volume: 141 start-page: 121403 issue: 12 year: 2019 ident: 2023081002565080100_c59 article-title: A comparative evaluation of supervised machine learning classification techniques for engineering design applications publication-title: J. Mech. Des. doi: 10.1115/1.4044524 – volume: 28 start-page: 678 issue: 6-7 year: 2012 ident: 2023081002565080100_c67 article-title: Modeling shear waves through a viscoelastic medium induced by acoustic radiation force publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.1488 – volume: 30 start-page: 81 issue: 1 year: 1992 ident: 2023081002565080100_c75 article-title: Classification of multispectral remote sensing data using a back-propagation neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.124218 – volume: 9 start-page: 1342 year: 2018 ident: 2023081002565080100_c20 article-title: Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts publication-title: Nat. Commun. doi: 10.1038/s41467-018-03778-9 – volume: 15 start-page: 1251 issue: 6 year: 1994 ident: 2023081002565080100_c73 article-title: Quasi-random sequences and their discrepancies publication-title: SIAM J. Sci. Comput. doi: 10.1137/0915077 – volume: 149 start-page: 3010 year: 2021 ident: 2023081002565080100_c68 article-title: Transient level-set topology optimization of a planar acoustic lens working with short-duration pulse publication-title: J. Acoust. Soc. Am. doi: 10.1121/10.0004819 – volume: 3 start-page: 1 issue: 1 year: 1981 ident: 2023081002565080100_c24 article-title: Variational principles for dynamic problems for inhomogeneous elastic media publication-title: Wave Motion doi: 10.1016/0165-2125(81)90008-1 – volume: 6 start-page: 147 issue: 3 year: 2015 ident: 2023081002565080100_c40 article-title: An overview of the aerosol deposition method: Process fundamentals and new trends in materials applications publication-title: J. Ceram. Sci. Tech. doi: 10.4416/JCST2015-00018 – volume: 107 start-page: 244102 year: 2015 ident: 2023081002565080100_c34 article-title: Control of acoustic absorption in one-dimensional scattering by resonant scatterers publication-title: Appl. Phys. Lett. doi: 10.1063/1.4938121 – volume: 16 start-page: 2193 year: 2006 ident: 2023081002565080100_c36 article-title: Direct ink writing of 3D functional materials publication-title: Adv. Funct. Mater.. doi: 10.1002/adfm.200600434 – volume: 119 start-page: 051903 year: 2021 ident: 2023081002565080100_c28 article-title: Topological valley states in sonic crystals with Willis coupling publication-title: Appl. Phys. Lett. doi: 10.1063/5.0055789 – volume: 95 start-page: 180104(R) year: 2017 ident: 2023081002565080100_c16 article-title: Broadband solid cloak for underwater acoustics publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.180104 – volume: 122 start-page: 1472 year: 2007 ident: 2023081002565080100_c64 article-title: A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2764471 – volume: 37 start-page: 982 issue: 8 year: 1999 ident: 2023081002565080100_c42 article-title: A robust design approach for achieving flexibility in multidisciplinary design publication-title: AIAA J. doi: 10.2514/2.805 – volume: 114 start-page: 185 issue: 2 year: 1994 ident: 2023081002565080100_c63 article-title: A perfectly matched layer for the absorption of electromagnetic waves publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1159 – volume: 123 start-page: 090901 year: 2018 ident: 2023081002565080100_c4 article-title: Perspective: Acoustic metamaterials intransition publication-title: J. Appl. Phys. doi: 10.1063/1.5007682 – volume: 3 start-page: 460 year: 2018 ident: 2023081002565080100_c2 article-title: Acoustic metasurfaces publication-title: Nat. Rev. Mat. doi: 10.1038/s41578-018-0061-4 – volume: 23 start-page: 073004 year: 2021 ident: 2023081002565080100_c29 article-title: Willis coupling in water waves publication-title: New J. Phys. doi: 10.1088/1367-2630/ac0b7d – volume: 111 start-page: 143502 year: 2017 ident: 2023081002565080100_c33 article-title: Asymmetric absorber with multiband and broadband for low-frequency sound publication-title: Appl. Phys. Lett. doi: 10.1063/1.4998516 – volume: 152 start-page: 106530 year: 2020 ident: 2023081002565080100_c55 article-title: A review of methods of random surface topography modeling publication-title: Tribol. Int. doi: 10.1016/j.triboint.2020.106530 – volume: 9 start-page: 5299 year: 2018 ident: 2023081002565080100_c6 article-title: Broadband sound barriers with bianisotropic metasurfaces publication-title: Nat. Commun. doi: 10.1038/s41467-018-07809-3 – volume: 474 start-page: 20180571 issue: 2220 year: 2018 ident: 2023081002565080100_c26 article-title: Acoustic scattering from a fluid cylinder with Willis constitutive properties publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2018.0571 – year: 2015 ident: 2023081002565080100_c51 article-title: Out-of-plane geometric error prediction for additive manufacturing – volume: 25 start-page: 227 year: 2009 ident: 2023081002565080100_c46 article-title: Manufacturing tolerant topology optimization publication-title: Acta Mech. Sin. doi: 10.1007/s10409-009-0240-z |
SSID | ssj0005839 |
Score | 2.444974 |
Snippet | Advancements in additive manufacturing (AM) technology are promising for the creation of acoustic materials. Acoustic metamaterials and metasurfaces are of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 216 |
Title | Robust design of an asymmetrically absorbing Willis acoustic metasurface subject to manufacturing-induced dimensional variations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35105018 https://www.proquest.com/docview/2624949010 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3La9swGBdZymCXsfeyFxrbZRh3sixb0bHsQRjrDm0KvQVJlg8lcUpjD9JT_6n9f_v0iO0sGXS7GGMkC-v7-XvpeyD0Pi-ALWrGY1VmJGaMslhxw2OjhByTIiGpsv6O4x_55Ix9O8_OB4NfvailplaH-npvXsn_UBWeAV1tluw_ULZ9KTyAe6AvXIHCcL0VjU-WqlnVUeGiMNyJfhXJ1XqxsG2yYPPn60iq1fJKWX-A86ysIuCAroGX7R1t3YOltEVmG2X9MVYRXciqsdkOLn0xBou9sREChW0C4At4RD_BvO75-S46vPW0W5exEpayBUdCcKjVe_0ZUefwMT7tZLqed5HCp8ZcgmLq8eeCUtYuO7HqhkykslKlH_wfnRz2vRiU9rwYG84MtqzIQ1nswIzBtB1nPse65dZZsgPLDe_Ne2KceuGyKyFo4p0VVrtMgiTYKsP9h3hsgxaduUSTWWILqrq5d9ABBeuEDtHB0efj76ddbNE4DXaX_6hQFxdmf-xW3taE_mLeODVn-gDdDxTERx5sD9HAVI_QXRcnrFeP0Y2HHPaQw8sSywpvQw63kMMecngDOdyDHA6Qw_US74Uc7kEOd5B7gs6-fpl-msShiUesU5rWsUngW8eMKE4ynVGuqSBMl4YqrkVaSEG4KEyicm4rW-qU5UKqTJdCcKHz3KRP0bBaVuY5wqlWME9IXmSMcWGk0qXKhC5zw0oi2Qh92GzoTIcK97bRyny2S7oReteOvfR1XfaOeruhywzYrj1Lk5WBPZvRnNq6TiQhI_TME6x9T2qNFpKMX9xqjZfoXvdDvELD-qoxr0HRrdWbAKvfMe2uag |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+design+of+an+asymmetrically+absorbing+Willis+acoustic+metasurface+subject+to+manufacturing-induced+dimensional+variations&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Wiest%2C+Tyler&rft.au=Seepersad%2C+Carolyn+Conner&rft.au=Haberman%2C+Michael+R.&rft.date=2022-01-01&rft.issn=0001-4966&rft.eissn=1520-8524&rft.volume=151&rft.issue=1&rft.spage=216&rft.epage=231&rft_id=info:doi/10.1121%2F10.0009162&rft.externalDBID=n%2Fa&rft.externalDocID=10_1121_10_0009162 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4966&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4966&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4966&client=summon |