Effect of external flow velocity on momentum transfer of dielectric barrier discharge plasma actuators

An experimental study is performed towards identifying cross-talk effects between DBD plasma actuators and external flow. An actuator is positioned in a boundary layer operated in a range of free stream velocities from 0 to 60 m/s, and tested both in counter-flow and co-flow forcing configurations....

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 116; no. 10
Main Authors Pereira, Ricardo, Ragni, Daniele, Kotsonis, Marios
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 14.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An experimental study is performed towards identifying cross-talk effects between DBD plasma actuators and external flow. An actuator is positioned in a boundary layer operated in a range of free stream velocities from 0 to 60 m/s, and tested both in counter-flow and co-flow forcing configurations. Electrical measurements are used for estimating the power consumption and the discharge formation is visualized using a CCD camera. The actuator's force is measured using a sensitive load cell. Results show the power consumption is constant for different flow velocities and actuator configurations. The plasma light emission is constant for co-flow forcing but shows a trend of increasing intensity with counter-flow forcing for increasing free stream velocities. The measured force is constant for free stream velocities larger than 20 m/s, with same magnitude and opposite direction for the counter-flow and co-flow configurations. In quiescent conditions, the measured force is smaller due to the change in wall shear force by the induced wall-jet. An analytical model is presented to estimate the influence of external flow on the actuator force. It is based on conservation of momentum through the ion-neutral collisional process while including the contribution of the wall shear force. Satisfactory agreement is found between the prediction of the model and experimental data at different external flow velocities.
AbstractList An experimental study is performed towards identifying cross-talk effects between DBD plasma actuators and external flow. An actuator is positioned in a boundary layer operated in a range of free stream velocities from 0 to 60 m/s, and tested both in counter-flow and co-flow forcing configurations. Electrical measurements are used for estimating the power consumption and the discharge formation is visualized using a CCD camera. The actuator's force is measured using a sensitive load cell. Results show the power consumption is constant for different flow velocities and actuator configurations. The plasma light emission is constant for co-flow forcing but shows a trend of increasing intensity with counter-flow forcing for increasing free stream velocities. The measured force is constant for free stream velocities larger than 20 m/s, with same magnitude and opposite direction for the counter-flow and co-flow configurations. In quiescent conditions, the measured force is smaller due to the change in wall shear force by the induced wall-jet. An analytical model is presented to estimate the influence of external flow on the actuator force. It is based on conservation of momentum through the ion-neutral collisional process while including the contribution of the wall shear force. Satisfactory agreement is found between the prediction of the model and experimental data at different external flow velocities.
Author Kotsonis, Marios
Ragni, Daniele
Pereira, Ricardo
Author_xml – sequence: 1
  givenname: Ricardo
  surname: Pereira
  fullname: Pereira, Ricardo
– sequence: 2
  givenname: Daniele
  surname: Ragni
  fullname: Ragni, Daniele
– sequence: 3
  givenname: Marios
  surname: Kotsonis
  fullname: Kotsonis, Marios
BookMark eNotkEtPwzAQhC1UJNrCgX9giROHlHU2TpwjqspDqsQFzpbjB6RK4mI7QP89qdrTjEbfrLSzILPBD5aQWwYrBiU-sFUh6oIzcUHmDESdVZzDjMwBcpaJuqqvyCLGHQBjAus5cRvnrE7UO2r_kg2D6qjr_C_9sZ3XbTpQP9De93ZIY09TUEN0Nhxx09puaoZW00aF0E6paaP-UuHT0n2nYq-o0mlUyYd4TS6d6qK9OeuSfDxt3tcv2fbt-XX9uM005pgyIxqFDWu4qwrI0XJT1qXLS2ZUA6Uxk8HKCGyEKHSFoMCgdghaGcEZIi7J3enuPvjv0cYkd348PhVlzvKScyG4mKj7E6WDjzFYJ_eh7VU4SAbyOKNk8jwj_gPHbmeH
CitedBy_id crossref_primary_10_1108_AEAT_01_2017_0048
crossref_primary_10_1016_j_expthermflusci_2018_01_007
crossref_primary_10_1002_we_2109
crossref_primary_10_1016_j_euromechflu_2022_11_007
crossref_primary_10_1016_j_expthermflusci_2022_110596
crossref_primary_10_1063_5_0118861
crossref_primary_10_1017_jfm_2017_217
crossref_primary_10_1016_j_ast_2018_01_019
crossref_primary_10_1063_1_4975791
crossref_primary_10_1016_j_elstat_2024_103918
crossref_primary_10_1016_j_jcp_2021_110517
crossref_primary_10_1007_s10494_023_00463_w
crossref_primary_10_1088_0022_3727_49_15_155205
crossref_primary_10_1088_1361_6463_acdade
crossref_primary_10_3390_app12189073
crossref_primary_10_1063_1_4933292
crossref_primary_10_1063_1_5052697
crossref_primary_10_1016_j_elstat_2017_01_018
crossref_primary_10_1088_0022_3727_48_39_395203
crossref_primary_10_1002_ppap_202300076
crossref_primary_10_1016_j_ijheatfluidflow_2019_02_007
crossref_primary_10_1109_TPS_2016_2530315
crossref_primary_10_1017_jfm_2017_707
crossref_primary_10_1007_s00348_023_03616_9
crossref_primary_10_3390_app8040546
crossref_primary_10_1017_jfm_2018_91
crossref_primary_10_1088_0957_0233_26_9_092001
Cites_doi 10.1088/0022-3727/47/12/125202
10.1088/0022-3727/40/3/S01
10.1016/j.paerosci.2007.10.004
10.2514/1.A32360
10.1063/1.367051
10.1146/annurev-fluid-122109-160634
10.1088/0022-3727/38/4/R01
10.1063/1.4736995
10.1088/0022-3727/40/6/021
10.1016/j.paerosci.2007.06.001
10.1088/0022-3727/44/4/045204
10.1016/j.sna.2012.08.002
10.1016/j.compfluid.2012.08.025
10.1103/PhysRevA.2.762
10.2514/2.1110
10.1103/PhysRev.89.708
10.1063/1.2827484
10.1063/1.2837890
10.1088/0022-3727/46/12/125204
10.1063/1.4799159
10.1115/1.2709659
ContentType Journal Article
Copyright 2014 AIP Publishing LLC.
Copyright_xml – notice: 2014 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4894518
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_1_4894518
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
AAYXX
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
8FD
H8D
L7M
ID FETCH-LOGICAL-c323t-d8ba3b1b5f74023e5d696f261dab06dd61d37d83b884c730a0d3cf30cad851333
ISSN 0021-8979
IngestDate Fri Sep 13 07:48:37 EDT 2024
Fri Aug 23 01:16:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-d8ba3b1b5f74023e5d696f261dab06dd61d37d83b884c730a0d3cf30cad851333
PQID 2126558858
PQPubID 2050677
ParticipantIDs proquest_journals_2126558858
crossref_primary_10_1063_1_4894518
PublicationCentury 2000
PublicationDate 2014-09-14
PublicationDateYYYYMMDD 2014-09-14
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-14
  day: 14
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2014
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023070522431110600_c11) 2007; 129
(2023070522431110600_c13) 2012; 19
(2023070522431110600_c3) 2005; 38
(2023070522431110600_c26) 1970; 2
(2023070522431110600_c14) 2000; 38
(2023070522431110600_c9) 2008; 103
(2023070522431110600_c25) 1953; 89
(2023070522431110600_c6) 2008; 103
(2023070522431110600_c7) 2012; 187
(2023070522431110600_c15) 2012; 70
(2023070522431110600_c21) 2013; 50
(2023070522431110600_c8) 2008; 44
(2023070522431110600_c17) 2013; 46
(2023070522431110600_c16) 2012
(2023070522431110600_c19) 1997
(2023070522431110600_c5) 2011
(2023070522431110600_c22) 2006
(2023070522431110600_c2) 2007; 43
(2023070522431110600_c20) 2014; 47
(2023070522431110600_c23) 2013; 113
(2023070522431110600_c4) 2011; 43
(2023070522431110600_c10) 2011; 44
(2023070522431110600_c24) 1998; 83
(2023070522431110600_c18) 1947
(2023070522431110600_c1) 2007; 40
(2023070522431110600_c12) 2007; 40
References_xml – volume: 47
  start-page: 125202
  year: 2014
  ident: 2023070522431110600_c20
  article-title: Influence of the ionization rate of a plasma discharge applied to the modification of a supersonic low reynolds number flow field around a cylinder
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/47/12/125202
– volume: 40
  start-page: 605
  year: 2007
  ident: 2023070522431110600_c1
  article-title: Airflow control by non-thermal plasma actuators
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/40/3/S01
– volume: 44
  start-page: 139
  year: 2008
  ident: 2023070522431110600_c8
  article-title: Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer
  publication-title: Prog. Aerospace Sci.
  doi: 10.1016/j.paerosci.2007.10.004
– volume: 50
  start-page: 337
  year: 2013
  ident: 2023070522431110600_c21
  article-title: Control of high-angle-of-attack reentry flow with plasma actuators
  publication-title: J. Spacecraft Rockets
  doi: 10.2514/1.A32360
– volume: 83
  start-page: 2950
  year: 1998
  ident: 2023070522431110600_c24
  article-title: Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.367051
– volume: 43
  start-page: 247
  year: 2011
  ident: 2023070522431110600_c4
  article-title: Actuators for active flow control
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122109-160634
– volume: 38
  start-page: R33
  year: 2005
  ident: 2023070522431110600_c3
  article-title: Plasmas in high speed aerodynamics
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/38/4/R01
– start-page: 168
  year: 2006
  ident: 2023070522431110600_c22
  article-title: Momentum transfer for an aerodynamic plasma actuator with and imposed boundary layer
– volume-title: Fundamentos de aerodinâmica incompressível
  year: 1997
  ident: 2023070522431110600_c19
– volume: 19
  start-page: 073509
  year: 2012
  ident: 2023070522431110600_c13
  article-title: Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4736995
– volume: 40
  start-page: 1733
  year: 2007
  ident: 2023070522431110600_c12
  article-title: Effects of high-speed airflows on a surface dielectric barrier discharge
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/40/6/021
– volume: 43
  start-page: 193
  year: 2007
  ident: 2023070522431110600_c2
  article-title: SDBD plasma enhanced aerodynamics: Concepts, optimization and applications
  publication-title: Prog. Aerospace Sci.
  doi: 10.1016/j.paerosci.2007.06.001
– volume: 44
  start-page: 045204
  year: 2011
  ident: 2023070522431110600_c10
  article-title: Measurement of the body force field of plasma actuators
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/4/045204
– volume: 187
  start-page: 84
  year: 2012
  ident: 2023070522431110600_c7
  article-title: Experimental and numerical characterization of a plasma actuator in continuous and pulsed actuation
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2012.08.002
– volume: 70
  start-page: 95
  year: 2012
  ident: 2023070522431110600_c15
  article-title: Plasma flow control simulations of a low-reynolds number low-aspect-ratio wing
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2012.08.025
– year: 2012
  ident: 2023070522431110600_c16
  article-title: Progress toward accurate measurements of power consumptions of dbd plasma actuators
– volume: 2
  start-page: 762
  year: 1970
  ident: 2023070522431110600_c26
  article-title: Drift velocities and interactions of negative ions in oxygen
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.2.762
– volume: 38
  start-page: 1166
  year: 2000
  ident: 2023070522431110600_c14
  article-title: Electrohydrodynamic flow control with a glow-discharge surface plasma
  publication-title: AIAA J.
  doi: 10.2514/2.1110
– volume: 89
  start-page: 708
  year: 1953
  ident: 2023070522431110600_c25
  article-title: Drift velocity of ions in oxygen, nitrogen and carbon monoxide
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.89.708
– start-page: 498
  year: 2011
  ident: 2023070522431110600_c5
  article-title: Review of plasma-based methods for high-speed flow control
– volume: 103
  start-page: 013305
  year: 2008
  ident: 2023070522431110600_c6
  article-title: Force approximation for a plasma actuator operating in atmospheric air
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2827484
– volume: 103
  start-page: 053305
  year: 2008
  ident: 2023070522431110600_c9
  article-title: Modeling of dielectric barrier discharge plasma actuator in air
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2837890
– volume: 46
  start-page: 125204
  year: 2013
  ident: 2023070522431110600_c17
  article-title: Plasma morphology and induced airflow characterization of a dbd actuator with serrated electrode
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/12/125204
– volume: 113
  start-page: 143307
  year: 2013
  ident: 2023070522431110600_c23
  article-title: Charge distribution on the surface of a dielectric barrier discharge actuator for the fluid-dynamic control
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4799159
– volume-title: Boundary Layer Theory
  year: 1947
  ident: 2023070522431110600_c18
– volume: 129
  start-page: 517
  year: 2007
  ident: 2023070522431110600_c11
  article-title: Modeling of fluid dynamics and heat transfer induced by dielectric barrier plasma actuator
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2709659
SSID ssj0011839
Score 2.3462255
Snippet An experimental study is performed towards identifying cross-talk effects between DBD plasma actuators and external flow. An actuator is positioned in a...
SourceID proquest
crossref
SourceType Aggregation Database
SubjectTerms Applied physics
Boundary layers
CCD cameras
Configurations
Crosstalk
Dielectric barrier discharge
Electrical measurement
Flow velocity
Light emission
Load cells
Mathematical models
Momentum transfer
Plasma actuators
Power consumption
Title Effect of external flow velocity on momentum transfer of dielectric barrier discharge plasma actuators
URI https://www.proquest.com/docview/2126558858/abstract/
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB60ItiHolWxWmUQ35asyc4lk8ciShEqPrTQtzBXWXAT2c1S6K_vmUsmXa1QfQkh5DLM-XLmm5lzvoPQB6_httClK5wpbUFV5TcJhSxYQ6wQFXcslOk8-8ZPL-jXS3Y5hfKG7JJBzfX1nXkl_2NVuAZ29Vmy_2DZ_FK4AOdgXziCheF4Lxsn6WHge6OY88z97K9mPg5Ih1iLbrbyEgvDduWLQQBFtWFXwCxj-Zulnim5DkXrfHquV02yvrD0ZiW9ysbWz8g3f-GvMvHXuDaymXzs2i7XMiXtA_76aSvpR3c7rT37-n4A0h-1Ds5g6t7vLEVU1MdNxBTQnBpQFaKJ1WHmNnrUUjRFzaK6bHa5Mb9yxFZ5py8H8uSXFeZUNJQlJ72jl_3bOJajC8O-Oidt1aZHH6JHi7phdYjszBFAlSeHMQIotnoUnuLkY_7qLl3ZHa0DBTl_ig5S3-OTCIRn6IHtDtH-LUXJQ_T4e7TGc-QiOHDv8Nhu7MGBR3DgvsMjOPAIDn_7BA6cwIEzOHAEB87geIEuvnw-_3RapKIahSYLMhRGKElUpZirKfA1ywxvuIN5tJGq5MbACamNIEoIqsH9y9IQ7UippRG-FhB5ifa6vrOvEAZuXBNrNQfaTmvVNAYGBOJUzbQiztEj9H7su_ZX1E5p_7DNEToee7VNv9amBT7FGROCidf3eccb9GSC4zHaG9Zb-xa44qDeBYvfAMp6bEk
link.rule.ids 315,786,790,27957,27958
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+external+flow+velocity+on+momentum+transfer+of+dielectric+barrier+discharge+plasma+actuators&rft.jtitle=Journal+of+applied+physics&rft.au=Pereira%2C+Ricardo&rft.au=Ragni%2C+Daniele&rft.au=Kotsonis%2C+Marios&rft.date=2014-09-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=116&rft.issue=10&rft_id=info:doi/10.1063%2F1.4894518&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4894518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon