Photo‐Induced Construction and Recovery of Cu + Sites in Metal–Organic Frameworks
The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu + can interact with molecules possessing unsaturated bonds like CO via π ‐complexation, while Cu 2+ doesn't have such ability. Mea...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 40; p. e2302885 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu
+
can interact with molecules possessing unsaturated bonds like CO via
π
‐complexation, while Cu
2+
doesn't have such ability. Meanwhile, Cu
+
sites are easily oxidized to Cu
2+
, leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu
+
sites remains a pronounced challenge. Here, for the first time a facile photo‐induced strategy is reported to fabricate Cu
+
sites in metal–organic frameworks (MOFs) and recover Cu
+
after oxidation. The Cu
2+
precursor was loaded on NH
2
‐MIL‐125, a typical visible‐light responsive Ti‐based MOF. Visible light irradiation triggers the formation of Ti
3+
from Ti
4+
in framework, which reduces the supported Cu
2+
in the absence of any additional reducing agent, thus simplifying the process for Cu
+
generation significantly. Due to
π
‐complexation interaction, the presence of Cu
+
results in remarkably enhanced CO capture capacity (1.16 mmol g
−1
) compared to NH
2
‐MIL‐125 (0.49 mmol g
−1
). More importantly, Cu
+
can be recovered conveniently via re‐irradiation when it is oxidized to Cu
2+
, and the oxidation‐recovery process is reversible. |
---|---|
AbstractList | The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu
can interact with molecules possessing unsaturated bonds like CO via π-complexation, while Cu
doesn't have such ability. Meanwhile, Cu
sites are easily oxidized to Cu
, leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu
sites remains a pronounced challenge. Here, for the first time a facile photo-induced strategy is reported to fabricate Cu
sites in metal-organic frameworks (MOFs) and recover Cu
after oxidation. The Cu
precursor was loaded on NH
-MIL-125, a typical visible-light responsive Ti-based MOF. Visible light irradiation triggers the formation of Ti
from Ti
in framework, which reduces the supported Cu
in the absence of any additional reducing agent, thus simplifying the process for Cu
generation significantly. Due to π-complexation interaction, the presence of Cu
results in remarkably enhanced CO capture capacity (1.16 mmol g
) compared to NH
-MIL-125 (0.49 mmol g
). More importantly, Cu
can be recovered conveniently via re-irradiation when it is oxidized to Cu
, and the oxidation-recovery process is reversible. The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu+ can interact with molecules possessing unsaturated bonds like CO via π‐complexation, while Cu2+ doesn't have such ability. Meanwhile, Cu+ sites are easily oxidized to Cu2+, leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu+ sites remains a pronounced challenge. Here, for the first time a facile photo‐induced strategy is reported to fabricate Cu+ sites in metal–organic frameworks (MOFs) and recover Cu+ after oxidation. The Cu2+ precursor was loaded on NH2‐MIL‐125, a typical visible‐light responsive Ti‐based MOF. Visible light irradiation triggers the formation of Ti3+ from Ti4+ in framework, which reduces the supported Cu2+ in the absence of any additional reducing agent, thus simplifying the process for Cu+ generation significantly. Due to π‐complexation interaction, the presence of Cu+ results in remarkably enhanced CO capture capacity (1.16 mmol g−1) compared to NH2‐MIL‐125 (0.49 mmol g−1). More importantly, Cu+ can be recovered conveniently via re‐irradiation when it is oxidized to Cu2+, and the oxidation‐recovery process is reversible. The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu + can interact with molecules possessing unsaturated bonds like CO via π ‐complexation, while Cu 2+ doesn't have such ability. Meanwhile, Cu + sites are easily oxidized to Cu 2+ , leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu + sites remains a pronounced challenge. Here, for the first time a facile photo‐induced strategy is reported to fabricate Cu + sites in metal–organic frameworks (MOFs) and recover Cu + after oxidation. The Cu 2+ precursor was loaded on NH 2 ‐MIL‐125, a typical visible‐light responsive Ti‐based MOF. Visible light irradiation triggers the formation of Ti 3+ from Ti 4+ in framework, which reduces the supported Cu 2+ in the absence of any additional reducing agent, thus simplifying the process for Cu + generation significantly. Due to π ‐complexation interaction, the presence of Cu + results in remarkably enhanced CO capture capacity (1.16 mmol g −1 ) compared to NH 2 ‐MIL‐125 (0.49 mmol g −1 ). More importantly, Cu + can be recovered conveniently via re‐irradiation when it is oxidized to Cu 2+ , and the oxidation‐recovery process is reversible. The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu+ can interact with molecules possessing unsaturated bonds like CO via π-complexation, while Cu2+ doesn't have such ability. Meanwhile, Cu+ sites are easily oxidized to Cu2+ , leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu+ sites remains a pronounced challenge. Here, for the first time a facile photo-induced strategy is reported to fabricate Cu+ sites in metal-organic frameworks (MOFs) and recover Cu+ after oxidation. The Cu2+ precursor was loaded on NH2 -MIL-125, a typical visible-light responsive Ti-based MOF. Visible light irradiation triggers the formation of Ti3+ from Ti4+ in framework, which reduces the supported Cu2+ in the absence of any additional reducing agent, thus simplifying the process for Cu+ generation significantly. Due to π-complexation interaction, the presence of Cu+ results in remarkably enhanced CO capture capacity (1.16 mmol g-1 ) compared to NH2 -MIL-125 (0.49 mmol g-1 ). More importantly, Cu+ can be recovered conveniently via re-irradiation when it is oxidized to Cu2+ , and the oxidation-recovery process is reversible.The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu+ can interact with molecules possessing unsaturated bonds like CO via π-complexation, while Cu2+ doesn't have such ability. Meanwhile, Cu+ sites are easily oxidized to Cu2+ , leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu+ sites remains a pronounced challenge. Here, for the first time a facile photo-induced strategy is reported to fabricate Cu+ sites in metal-organic frameworks (MOFs) and recover Cu+ after oxidation. The Cu2+ precursor was loaded on NH2 -MIL-125, a typical visible-light responsive Ti-based MOF. Visible light irradiation triggers the formation of Ti3+ from Ti4+ in framework, which reduces the supported Cu2+ in the absence of any additional reducing agent, thus simplifying the process for Cu+ generation significantly. Due to π-complexation interaction, the presence of Cu+ results in remarkably enhanced CO capture capacity (1.16 mmol g-1 ) compared to NH2 -MIL-125 (0.49 mmol g-1 ). More importantly, Cu+ can be recovered conveniently via re-irradiation when it is oxidized to Cu2+ , and the oxidation-recovery process is reversible. |
Author | Li, Ke‐Di Li, Yu‐Xia Liu, Xiao‐Qin Sun, Lin‐Bing Qian, Xin‐Yu |
Author_xml | – sequence: 1 givenname: Yu‐Xia orcidid: 0000-0003-1916-2707 surname: Li fullname: Li, Yu‐Xia organization: State Key Laboratory of Materials‐Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China – sequence: 2 givenname: Ke‐Di surname: Li fullname: Li, Ke‐Di organization: State Key Laboratory of Materials‐Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China – sequence: 3 givenname: Xin‐Yu surname: Qian fullname: Qian, Xin‐Yu organization: State Key Laboratory of Materials‐Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China – sequence: 4 givenname: Xiao‐Qin surname: Liu fullname: Liu, Xiao‐Qin organization: State Key Laboratory of Materials‐Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China – sequence: 5 givenname: Lin‐Bing orcidid: 0000-0002-6395-312X surname: Sun fullname: Sun, Lin‐Bing organization: State Key Laboratory of Materials‐Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37264726$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1LAzEQhoMoaqtXjxLwIkhrPrbJ7lGKX1BR1J5Dmszq6m6iSVbpzZ8g-A_9JW6pehA8DDOH5515mbeHVp13gNAOJUNKCDuMTV0PGWGcsDwfraBNKigfiJwVq78zJRuoF-MDIZyyTK6jDS6ZyLraRNOre5_859v7ubOtAYvH3sUUWpMq77B2Fl-D8S8Q5tiXeNziA3xTJYi4cvgCkq4_3z4uw512lcEnQTfw6sNj3EJrpa4jbH_3PpqeHN-OzwaTy9Pz8dFkYDjjaWBGzFogetbZpXpERJlDSQpSAs9EIQQXkltBKCttJoy0PGdZRrglpSkMFJb30f5y71Pwzy3EpJoqGqhr7cC3UbGcMS4zSWWH7v1BH3wbXOeuoyRjUo66g320-021swasegpVo8Nc_TysA7IlYIKPMUCpTJX04lkp6KpWlKhFLmqRi_rNpZMN_8h-Nv8j-AKZn4-q |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_4c10283 crossref_primary_10_1016_j_cej_2023_148313 crossref_primary_10_1021_acsmaterialslett_3c00476 |
Cites_doi | 10.1002/adma.201802329 10.1126/science.1246423 10.1021/jacs.2c04341 10.1016/j.ces.2014.08.039 10.1021/ja0301673 10.1021/jacs.1c13152 10.1016/j.micromeso.2018.10.010 10.1021/ja4030269 10.1021/ja505318p 10.1126/science.1085088 10.1002/anie.201105113 10.1039/C8TA01805G 10.1002/anie.201903323 10.1021/jacs.8b11386 10.1016/0021-9517(73)90065-1 10.1038/s41467-020-17042-6 10.1039/c2ta00890d 10.1039/D0TA03749D 10.1021/jacs.1c11984 10.1016/j.cej.2014.04.044 10.1021/jacs.7b03578 10.1038/ncomms14212 10.1002/anie.202206283 10.1021/acsami.8b01462 10.1021/jacs.9b02114 10.1002/anie.201001230 10.1002/anie.202204108 10.1016/j.jhazmat.2016.11.070 10.1039/C9TA04680A 10.1021/jacs.7b02186 10.1002/anie.201108357 10.1016/j.apcatb.2006.11.015 10.1016/j.cej.2018.04.177 10.1016/j.cej.2016.01.054 10.1021/acssuschemeng.8b05352 10.1016/S1387-1811(02)00405-5 10.1016/j.jphotochem.2018.06.044 10.1002/anie.202002375 10.1016/j.cej.2015.01.126 10.1002/anie.202212732 10.1002/anie.202105491 10.1038/s42004-022-00650-2 10.1002/anie.202102810 10.1021/ic960122l 10.1021/acs.jpcc.6b10835 |
ContentType | Journal Article |
Copyright | 2023 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202302885 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
ExternalDocumentID | 37264726 10_1002_smll_202302885 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 22008112 – fundername: National Key R&D Program of China grantid: 2022YFB3806800 – fundername: National Natural Science Foundation of China grantid: 22078155 – fundername: National Science Fund for Distinguished Young Scholars grantid: 22125804 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAYXX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CITATION CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c323t-c52dde0ab8291a506f8ef090fe3469663673d6012fd46c7d3824403d0fc9ce9d3 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 03:43:52 EDT 2025 Fri Jul 25 11:51:26 EDT 2025 Mon Jul 21 06:03:35 EDT 2025 Tue Jul 01 02:54:34 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | cuprous species CO adsorption photoreduction valence adjustment recovery |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c323t-c52dde0ab8291a506f8ef090fe3469663673d6012fd46c7d3824403d0fc9ce9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1916-2707 0000-0002-6395-312X |
PMID | 37264726 |
PQID | 2872277566 |
PQPubID | 1046358 |
ParticipantIDs | proquest_miscellaneous_2822374717 proquest_journals_2872277566 pubmed_primary_37264726 crossref_citationtrail_10_1002_smll_202302885 crossref_primary_10_1002_smll_202302885 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Li Y.‐X. (e_1_2_7_17_1) 2021; 67 |
References_xml | – ident: e_1_2_7_34_1 doi: 10.1002/adma.201802329 – ident: e_1_2_7_15_1 doi: 10.1126/science.1246423 – ident: e_1_2_7_22_1 doi: 10.1021/jacs.2c04341 – ident: e_1_2_7_39_1 doi: 10.1016/j.ces.2014.08.039 – ident: e_1_2_7_13_1 doi: 10.1021/ja0301673 – ident: e_1_2_7_35_1 doi: 10.1021/jacs.1c13152 – ident: e_1_2_7_38_1 doi: 10.1016/j.micromeso.2018.10.010 – ident: e_1_2_7_11_1 doi: 10.1021/ja4030269 – ident: e_1_2_7_37_1 doi: 10.1021/ja505318p – ident: e_1_2_7_8_1 doi: 10.1126/science.1085088 – ident: e_1_2_7_10_1 doi: 10.1002/anie.201105113 – ident: e_1_2_7_41_1 doi: 10.1039/C8TA01805G – ident: e_1_2_7_14_1 doi: 10.1002/anie.201903323 – ident: e_1_2_7_42_1 doi: 10.1021/jacs.8b11386 – ident: e_1_2_7_45_1 doi: 10.1016/0021-9517(73)90065-1 – ident: e_1_2_7_6_1 doi: 10.1038/s41467-020-17042-6 – volume: 67 year: 2021 ident: e_1_2_7_17_1 publication-title: Open Med. Chem. J. – ident: e_1_2_7_18_1 doi: 10.1039/c2ta00890d – ident: e_1_2_7_30_1 doi: 10.1039/D0TA03749D – ident: e_1_2_7_5_1 doi: 10.1021/jacs.1c11984 – ident: e_1_2_7_26_1 doi: 10.1016/j.cej.2014.04.044 – ident: e_1_2_7_4_1 doi: 10.1021/jacs.7b03578 – ident: e_1_2_7_1_1 doi: 10.1038/ncomms14212 – ident: e_1_2_7_20_1 doi: 10.1002/anie.202206283 – ident: e_1_2_7_27_1 doi: 10.1021/acsami.8b01462 – ident: e_1_2_7_2_1 doi: 10.1021/jacs.9b02114 – ident: e_1_2_7_3_1 doi: 10.1002/anie.201001230 – ident: e_1_2_7_21_1 doi: 10.1002/anie.202204108 – ident: e_1_2_7_19_1 doi: 10.1016/j.jhazmat.2016.11.070 – ident: e_1_2_7_33_1 doi: 10.1039/C9TA04680A – ident: e_1_2_7_29_1 doi: 10.1021/jacs.7b02186 – ident: e_1_2_7_24_1 doi: 10.1002/anie.201108357 – ident: e_1_2_7_12_1 doi: 10.1016/j.apcatb.2006.11.015 – ident: e_1_2_7_16_1 doi: 10.1016/j.cej.2018.04.177 – ident: e_1_2_7_25_1 doi: 10.1016/j.cej.2016.01.054 – ident: e_1_2_7_23_1 doi: 10.1021/acssuschemeng.8b05352 – ident: e_1_2_7_40_1 doi: 10.1016/S1387-1811(02)00405-5 – ident: e_1_2_7_28_1 doi: 10.1016/j.jphotochem.2018.06.044 – ident: e_1_2_7_31_1 doi: 10.1002/anie.202002375 – ident: e_1_2_7_36_1 doi: 10.1016/j.cej.2015.01.126 – ident: e_1_2_7_9_1 doi: 10.1002/anie.202212732 – ident: e_1_2_7_32_1 doi: 10.1002/anie.202105491 – ident: e_1_2_7_43_1 doi: 10.1038/s42004-022-00650-2 – ident: e_1_2_7_7_1 doi: 10.1002/anie.202102810 – ident: e_1_2_7_44_1 doi: 10.1021/ic960122l – ident: e_1_2_7_46_1 doi: 10.1021/acs.jpcc.6b10835 |
SSID | ssj0031247 |
Score | 2.4412131 |
Snippet | The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | e2302885 |
SubjectTerms | Chemical bonds Complexation Copper Light irradiation Metal-organic frameworks Nanotechnology Oxidation Reagents Recovery Reducing agents Valence |
Title | Photo‐Induced Construction and Recovery of Cu + Sites in Metal–Organic Frameworks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37264726 https://www.proquest.com/docview/2872277566 https://www.proquest.com/docview/2822374717 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSKgcKp5lS0FGQuKwMmTtPI_QAhVQRGkrtqcosSc0Ujep2OQAv56ZOI8NdCXgEq1sJ5bmm7VnxuNvGHsGMw807nMiSlGDXeOGIg1niQgzCANIsdVQQP_wk39w6r6fe_OBUKG5XVKlL_TPK--V_A-q2Ia40i3Zf0C2_yg24G_EF5-IMD7_CuPP52VVCqq-Qaf4VHuzY4Nt7x1qStC0KRc1gvx6epxXTQbW9BDQ6hb2JqYm89WmaC1XjdXjBZ1bown6FfLiHHKqpjE1Dani928UIlnaqozvaHUvfqwEFT42OQJntZjnybjtA4j9vI-25jb8Os8LcVYPA2vbmJTiqCUGb-MScshww23FrqVoKQg_bOe26yOgxyNDW6Tnj8XbksEuFxd0JHTFQBT-5aKBUgWSaO9_49C2u3LbdZ3dkOg5UFGL_S89o5hCcybouDsd-XI82Sa72b0-NlPW-B6NDXJym221zgN_ZTXhDrsGxV12a4VS8h47GukEX9UJjjrBO53gZcb3aj7ljUbwvOAjjeCDRtxnp2_fnOwdiLZshtBKqkpoT-Ke5SQpin6WeI6fhZA5kZOBcn30bpUfKIN-uMyM6-vAqBBNPEcZJ9ORhsioB2yjKAt4yLiR6E4qDa7UnjtLAZ11ZdJQax0ZcEFPmOikFOuWU55Km1zElg1bxiTguBfwhD3vx19aNpW1I3c7ocftP24Zo3cvEVT0QCbsad-N6yEdciUFlDWNQYOXIi3BhG1bsPqpOnB31vY8YpuDLu-yDUQIHqPVWaVPGj36BRE9fYA |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photo-Induced+Construction+and+Recovery+of+Cu+%2B+Sites+in+Metal-Organic+Frameworks&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Yu-Xia&rft.au=Li%2C+Ke-Di&rft.au=Qian%2C+Xin-Yu&rft.au=Liu%2C+Xiao-Qin&rft.date=2023-10-01&rft.eissn=1613-6829&rft.spage=e2302885&rft_id=info:doi/10.1002%2Fsmll.202302885&rft_id=info%3Apmid%2F37264726&rft.externalDocID=37264726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |