Photo‐Induced Construction and Recovery of Cu + Sites in Metal–Organic Frameworks

The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu + can interact with molecules possessing unsaturated bonds like CO via π ‐complexation, while Cu 2+ doesn't have such ability. Mea...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 40; p. e2302885
Main Authors Li, Yu‐Xia, Li, Ke‐Di, Qian, Xin‐Yu, Liu, Xiao‐Qin, Sun, Lin‐Bing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu + can interact with molecules possessing unsaturated bonds like CO via π ‐complexation, while Cu 2+ doesn't have such ability. Meanwhile, Cu + sites are easily oxidized to Cu 2+ , leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu + sites remains a pronounced challenge. Here, for the first time a facile photo‐induced strategy is reported to fabricate Cu + sites in metal–organic frameworks (MOFs) and recover Cu + after oxidation. The Cu 2+ precursor was loaded on NH 2 ‐MIL‐125, a typical visible‐light responsive Ti‐based MOF. Visible light irradiation triggers the formation of Ti 3+ from Ti 4+ in framework, which reduces the supported Cu 2+ in the absence of any additional reducing agent, thus simplifying the process for Cu + generation significantly. Due to π ‐complexation interaction, the presence of Cu + results in remarkably enhanced CO capture capacity (1.16 mmol g −1 ) compared to NH 2 ‐MIL‐125 (0.49 mmol g −1 ). More importantly, Cu + can be recovered conveniently via re‐irradiation when it is oxidized to Cu 2+ , and the oxidation‐recovery process is reversible.
AbstractList The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu can interact with molecules possessing unsaturated bonds like CO via π-complexation, while Cu doesn't have such ability. Meanwhile, Cu sites are easily oxidized to Cu , leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu sites remains a pronounced challenge. Here, for the first time a facile photo-induced strategy is reported to fabricate Cu sites in metal-organic frameworks (MOFs) and recover Cu after oxidation. The Cu precursor was loaded on NH -MIL-125, a typical visible-light responsive Ti-based MOF. Visible light irradiation triggers the formation of Ti from Ti in framework, which reduces the supported Cu in the absence of any additional reducing agent, thus simplifying the process for Cu generation significantly. Due to π-complexation interaction, the presence of Cu results in remarkably enhanced CO capture capacity (1.16 mmol g ) compared to NH -MIL-125 (0.49 mmol g ). More importantly, Cu can be recovered conveniently via re-irradiation when it is oxidized to Cu , and the oxidation-recovery process is reversible.
The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu+ can interact with molecules possessing unsaturated bonds like CO via π‐complexation, while Cu2+ doesn't have such ability. Meanwhile, Cu+ sites are easily oxidized to Cu2+, leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu+ sites remains a pronounced challenge. Here, for the first time a facile photo‐induced strategy is reported to fabricate Cu+ sites in metal–organic frameworks (MOFs) and recover Cu+ after oxidation. The Cu2+ precursor was loaded on NH2‐MIL‐125, a typical visible‐light responsive Ti‐based MOF. Visible light irradiation triggers the formation of Ti3+ from Ti4+ in framework, which reduces the supported Cu2+ in the absence of any additional reducing agent, thus simplifying the process for Cu+ generation significantly. Due to π‐complexation interaction, the presence of Cu+ results in remarkably enhanced CO capture capacity (1.16 mmol g−1) compared to NH2‐MIL‐125 (0.49 mmol g−1). More importantly, Cu+ can be recovered conveniently via re‐irradiation when it is oxidized to Cu2+, and the oxidation‐recovery process is reversible.
The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu + can interact with molecules possessing unsaturated bonds like CO via π ‐complexation, while Cu 2+ doesn't have such ability. Meanwhile, Cu + sites are easily oxidized to Cu 2+ , leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu + sites remains a pronounced challenge. Here, for the first time a facile photo‐induced strategy is reported to fabricate Cu + sites in metal–organic frameworks (MOFs) and recover Cu + after oxidation. The Cu 2+ precursor was loaded on NH 2 ‐MIL‐125, a typical visible‐light responsive Ti‐based MOF. Visible light irradiation triggers the formation of Ti 3+ from Ti 4+ in framework, which reduces the supported Cu 2+ in the absence of any additional reducing agent, thus simplifying the process for Cu + generation significantly. Due to π ‐complexation interaction, the presence of Cu + results in remarkably enhanced CO capture capacity (1.16 mmol g −1 ) compared to NH 2 ‐MIL‐125 (0.49 mmol g −1 ). More importantly, Cu + can be recovered conveniently via re‐irradiation when it is oxidized to Cu 2+ , and the oxidation‐recovery process is reversible.
The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu+ can interact with molecules possessing unsaturated bonds like CO via π-complexation, while Cu2+ doesn't have such ability. Meanwhile, Cu+ sites are easily oxidized to Cu2+ , leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu+ sites remains a pronounced challenge. Here, for the first time a facile photo-induced strategy is reported to fabricate Cu+ sites in metal-organic frameworks (MOFs) and recover Cu+ after oxidation. The Cu2+ precursor was loaded on NH2 -MIL-125, a typical visible-light responsive Ti-based MOF. Visible light irradiation triggers the formation of Ti3+ from Ti4+ in framework, which reduces the supported Cu2+ in the absence of any additional reducing agent, thus simplifying the process for Cu+ generation significantly. Due to π-complexation interaction, the presence of Cu+ results in remarkably enhanced CO capture capacity (1.16 mmol g-1 ) compared to NH2 -MIL-125 (0.49 mmol g-1 ). More importantly, Cu+ can be recovered conveniently via re-irradiation when it is oxidized to Cu2+ , and the oxidation-recovery process is reversible.The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu+ can interact with molecules possessing unsaturated bonds like CO via π-complexation, while Cu2+ doesn't have such ability. Meanwhile, Cu+ sites are easily oxidized to Cu2+ , leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu+ sites remains a pronounced challenge. Here, for the first time a facile photo-induced strategy is reported to fabricate Cu+ sites in metal-organic frameworks (MOFs) and recover Cu+ after oxidation. The Cu2+ precursor was loaded on NH2 -MIL-125, a typical visible-light responsive Ti-based MOF. Visible light irradiation triggers the formation of Ti3+ from Ti4+ in framework, which reduces the supported Cu2+ in the absence of any additional reducing agent, thus simplifying the process for Cu+ generation significantly. Due to π-complexation interaction, the presence of Cu+ results in remarkably enhanced CO capture capacity (1.16 mmol g-1 ) compared to NH2 -MIL-125 (0.49 mmol g-1 ). More importantly, Cu+ can be recovered conveniently via re-irradiation when it is oxidized to Cu2+ , and the oxidation-recovery process is reversible.
Author Li, Ke‐Di
Li, Yu‐Xia
Liu, Xiao‐Qin
Sun, Lin‐Bing
Qian, Xin‐Yu
Author_xml – sequence: 1
  givenname: Yu‐Xia
  orcidid: 0000-0003-1916-2707
  surname: Li
  fullname: Li, Yu‐Xia
  organization: State Key Laboratory of Materials‐Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
– sequence: 2
  givenname: Ke‐Di
  surname: Li
  fullname: Li, Ke‐Di
  organization: State Key Laboratory of Materials‐Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
– sequence: 3
  givenname: Xin‐Yu
  surname: Qian
  fullname: Qian, Xin‐Yu
  organization: State Key Laboratory of Materials‐Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
– sequence: 4
  givenname: Xiao‐Qin
  surname: Liu
  fullname: Liu, Xiao‐Qin
  organization: State Key Laboratory of Materials‐Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
– sequence: 5
  givenname: Lin‐Bing
  orcidid: 0000-0002-6395-312X
  surname: Sun
  fullname: Sun, Lin‐Bing
  organization: State Key Laboratory of Materials‐Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37264726$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1LAzEQhoMoaqtXjxLwIkhrPrbJ7lGKX1BR1J5Dmszq6m6iSVbpzZ8g-A_9JW6pehA8DDOH5515mbeHVp13gNAOJUNKCDuMTV0PGWGcsDwfraBNKigfiJwVq78zJRuoF-MDIZyyTK6jDS6ZyLraRNOre5_859v7ubOtAYvH3sUUWpMq77B2Fl-D8S8Q5tiXeNziA3xTJYi4cvgCkq4_3z4uw512lcEnQTfw6sNj3EJrpa4jbH_3PpqeHN-OzwaTy9Pz8dFkYDjjaWBGzFogetbZpXpERJlDSQpSAs9EIQQXkltBKCttJoy0PGdZRrglpSkMFJb30f5y71Pwzy3EpJoqGqhr7cC3UbGcMS4zSWWH7v1BH3wbXOeuoyRjUo66g320-021swasegpVo8Nc_TysA7IlYIKPMUCpTJX04lkp6KpWlKhFLmqRi_rNpZMN_8h-Nv8j-AKZn4-q
CitedBy_id crossref_primary_10_1021_acssuschemeng_4c10283
crossref_primary_10_1016_j_cej_2023_148313
crossref_primary_10_1021_acsmaterialslett_3c00476
Cites_doi 10.1002/adma.201802329
10.1126/science.1246423
10.1021/jacs.2c04341
10.1016/j.ces.2014.08.039
10.1021/ja0301673
10.1021/jacs.1c13152
10.1016/j.micromeso.2018.10.010
10.1021/ja4030269
10.1021/ja505318p
10.1126/science.1085088
10.1002/anie.201105113
10.1039/C8TA01805G
10.1002/anie.201903323
10.1021/jacs.8b11386
10.1016/0021-9517(73)90065-1
10.1038/s41467-020-17042-6
10.1039/c2ta00890d
10.1039/D0TA03749D
10.1021/jacs.1c11984
10.1016/j.cej.2014.04.044
10.1021/jacs.7b03578
10.1038/ncomms14212
10.1002/anie.202206283
10.1021/acsami.8b01462
10.1021/jacs.9b02114
10.1002/anie.201001230
10.1002/anie.202204108
10.1016/j.jhazmat.2016.11.070
10.1039/C9TA04680A
10.1021/jacs.7b02186
10.1002/anie.201108357
10.1016/j.apcatb.2006.11.015
10.1016/j.cej.2018.04.177
10.1016/j.cej.2016.01.054
10.1021/acssuschemeng.8b05352
10.1016/S1387-1811(02)00405-5
10.1016/j.jphotochem.2018.06.044
10.1002/anie.202002375
10.1016/j.cej.2015.01.126
10.1002/anie.202212732
10.1002/anie.202105491
10.1038/s42004-022-00650-2
10.1002/anie.202102810
10.1021/ic960122l
10.1021/acs.jpcc.6b10835
ContentType Journal Article
Copyright 2023 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202302885
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
ExternalDocumentID 37264726
10_1002_smll_202302885
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 22008112
– fundername: National Key R&D Program of China
  grantid: 2022YFB3806800
– fundername: National Natural Science Foundation of China
  grantid: 22078155
– fundername: National Science Fund for Distinguished Young Scholars
  grantid: 22125804
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAYXX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CITATION
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c323t-c52dde0ab8291a506f8ef090fe3469663673d6012fd46c7d3824403d0fc9ce9d3
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 03:43:52 EDT 2025
Fri Jul 25 11:51:26 EDT 2025
Mon Jul 21 06:03:35 EDT 2025
Tue Jul 01 02:54:34 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords cuprous species
CO adsorption
photoreduction
valence adjustment
recovery
Language English
License 2023 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-c52dde0ab8291a506f8ef090fe3469663673d6012fd46c7d3824403d0fc9ce9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1916-2707
0000-0002-6395-312X
PMID 37264726
PQID 2872277566
PQPubID 1046358
ParticipantIDs proquest_miscellaneous_2822374717
proquest_journals_2872277566
pubmed_primary_37264726
crossref_citationtrail_10_1002_smll_202302885
crossref_primary_10_1002_smll_202302885
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Li Y.‐X. (e_1_2_7_17_1) 2021; 67
References_xml – ident: e_1_2_7_34_1
  doi: 10.1002/adma.201802329
– ident: e_1_2_7_15_1
  doi: 10.1126/science.1246423
– ident: e_1_2_7_22_1
  doi: 10.1021/jacs.2c04341
– ident: e_1_2_7_39_1
  doi: 10.1016/j.ces.2014.08.039
– ident: e_1_2_7_13_1
  doi: 10.1021/ja0301673
– ident: e_1_2_7_35_1
  doi: 10.1021/jacs.1c13152
– ident: e_1_2_7_38_1
  doi: 10.1016/j.micromeso.2018.10.010
– ident: e_1_2_7_11_1
  doi: 10.1021/ja4030269
– ident: e_1_2_7_37_1
  doi: 10.1021/ja505318p
– ident: e_1_2_7_8_1
  doi: 10.1126/science.1085088
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.201105113
– ident: e_1_2_7_41_1
  doi: 10.1039/C8TA01805G
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.201903323
– ident: e_1_2_7_42_1
  doi: 10.1021/jacs.8b11386
– ident: e_1_2_7_45_1
  doi: 10.1016/0021-9517(73)90065-1
– ident: e_1_2_7_6_1
  doi: 10.1038/s41467-020-17042-6
– volume: 67
  year: 2021
  ident: e_1_2_7_17_1
  publication-title: Open Med. Chem. J.
– ident: e_1_2_7_18_1
  doi: 10.1039/c2ta00890d
– ident: e_1_2_7_30_1
  doi: 10.1039/D0TA03749D
– ident: e_1_2_7_5_1
  doi: 10.1021/jacs.1c11984
– ident: e_1_2_7_26_1
  doi: 10.1016/j.cej.2014.04.044
– ident: e_1_2_7_4_1
  doi: 10.1021/jacs.7b03578
– ident: e_1_2_7_1_1
  doi: 10.1038/ncomms14212
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.202206283
– ident: e_1_2_7_27_1
  doi: 10.1021/acsami.8b01462
– ident: e_1_2_7_2_1
  doi: 10.1021/jacs.9b02114
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.201001230
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.202204108
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jhazmat.2016.11.070
– ident: e_1_2_7_33_1
  doi: 10.1039/C9TA04680A
– ident: e_1_2_7_29_1
  doi: 10.1021/jacs.7b02186
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201108357
– ident: e_1_2_7_12_1
  doi: 10.1016/j.apcatb.2006.11.015
– ident: e_1_2_7_16_1
  doi: 10.1016/j.cej.2018.04.177
– ident: e_1_2_7_25_1
  doi: 10.1016/j.cej.2016.01.054
– ident: e_1_2_7_23_1
  doi: 10.1021/acssuschemeng.8b05352
– ident: e_1_2_7_40_1
  doi: 10.1016/S1387-1811(02)00405-5
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jphotochem.2018.06.044
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.202002375
– ident: e_1_2_7_36_1
  doi: 10.1016/j.cej.2015.01.126
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.202212732
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.202105491
– ident: e_1_2_7_43_1
  doi: 10.1038/s42004-022-00650-2
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.202102810
– ident: e_1_2_7_44_1
  doi: 10.1021/ic960122l
– ident: e_1_2_7_46_1
  doi: 10.1021/acs.jpcc.6b10835
SSID ssj0031247
Score 2.4412131
Snippet The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage e2302885
SubjectTerms Chemical bonds
Complexation
Copper
Light irradiation
Metal-organic frameworks
Nanotechnology
Oxidation
Reagents
Recovery
Reducing agents
Valence
Title Photo‐Induced Construction and Recovery of Cu + Sites in Metal–Organic Frameworks
URI https://www.ncbi.nlm.nih.gov/pubmed/37264726
https://www.proquest.com/docview/2872277566
https://www.proquest.com/docview/2822374717
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSKgcKp5lS0FGQuKwMmTtPI_QAhVQRGkrtqcosSc0Ujep2OQAv56ZOI8NdCXgEq1sJ5bmm7VnxuNvGHsGMw807nMiSlGDXeOGIg1niQgzCANIsdVQQP_wk39w6r6fe_OBUKG5XVKlL_TPK--V_A-q2Ia40i3Zf0C2_yg24G_EF5-IMD7_CuPP52VVCqq-Qaf4VHuzY4Nt7x1qStC0KRc1gvx6epxXTQbW9BDQ6hb2JqYm89WmaC1XjdXjBZ1bown6FfLiHHKqpjE1Dani928UIlnaqozvaHUvfqwEFT42OQJntZjnybjtA4j9vI-25jb8Os8LcVYPA2vbmJTiqCUGb-MScshww23FrqVoKQg_bOe26yOgxyNDW6Tnj8XbksEuFxd0JHTFQBT-5aKBUgWSaO9_49C2u3LbdZ3dkOg5UFGL_S89o5hCcybouDsd-XI82Sa72b0-NlPW-B6NDXJym221zgN_ZTXhDrsGxV12a4VS8h47GukEX9UJjjrBO53gZcb3aj7ljUbwvOAjjeCDRtxnp2_fnOwdiLZshtBKqkpoT-Ke5SQpin6WeI6fhZA5kZOBcn30bpUfKIN-uMyM6-vAqBBNPEcZJ9ORhsioB2yjKAt4yLiR6E4qDa7UnjtLAZ11ZdJQax0ZcEFPmOikFOuWU55Km1zElg1bxiTguBfwhD3vx19aNpW1I3c7ocftP24Zo3cvEVT0QCbsad-N6yEdciUFlDWNQYOXIi3BhG1bsPqpOnB31vY8YpuDLu-yDUQIHqPVWaVPGj36BRE9fYA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photo-Induced+Construction+and+Recovery+of+Cu+%2B+Sites+in+Metal-Organic+Frameworks&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Yu-Xia&rft.au=Li%2C+Ke-Di&rft.au=Qian%2C+Xin-Yu&rft.au=Liu%2C+Xiao-Qin&rft.date=2023-10-01&rft.eissn=1613-6829&rft.spage=e2302885&rft_id=info:doi/10.1002%2Fsmll.202302885&rft_id=info%3Apmid%2F37264726&rft.externalDocID=37264726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon