Functional Connectivity Analysis of Mental Fatigue Reveals Different Network Topological Alterations Between Driving and Vigilance Tasks
Despite the apparent importance of mental fatigue detection, a reliable application is hindered due to the incomprehensive understanding of the neural mechanisms of mental fatigue. In this paper, we investigated the topological alterations of functional brain networks in the theta band (4 - 7 Hz) of...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 4; pp. 740 - 749 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the apparent importance of mental fatigue detection, a reliable application is hindered due to the incomprehensive understanding of the neural mechanisms of mental fatigue. In this paper, we investigated the topological alterations of functional brain networks in the theta band (4 - 7 Hz) of electroencephalography (EEG) data from 40 male subjects undergoing two distinct fatigue-inducing tasks: a low-intensity one-hour simulated driving and a high-demanding half-hour sustained attention task [psychomotor vigilance task (PVT)]. Behaviorally, subjects demonstrated a robust mental fatigue effect, as reflected by significantly declined performances in cognitive tasks prior and post these two tasks. Furthermore, characteristic path length presented a positive correlation with task duration, which led to a significant increase between the first and the last five minutes of both tasks, indicating a fatigue-related disruption in information processing efficiency. However, significantly increased clustering coefficient was revealed only in the driving task, suggesting distinct network reorganizations between the two fatigue-inducing tasks. Moreover, high accuracy (92% for driving; 97% for PVT) was achieved for fatigue classification with apparently different discriminative functional connectivity features. These findings augment our understanding of the complex nature of fatigue-related neural mechanisms and demonstrate the feasibility of using functional connectivity as neural biomarkers for applicable fatigue monitoring. |
---|---|
AbstractList | Despite the apparent importance of mental fatigue detection, a reliable application is hindered due to the incomprehensive understanding of the neural mechanisms of mental fatigue. In this paper, we investigated the topological alterations of functional brain networks in the theta band (4 - 7 Hz) of electroencephalography (EEG) data from 40 male subjects undergoing two distinct fatigue-inducing tasks: a low-intensity one-hour simulated driving and a high-demanding half-hour sustained attention task [psychomotor vigilance task (PVT)]. Behaviorally, subjects demonstrated a robust mental fatigue effect, as reflected by significantly declined performances in cognitive tasks prior and post these two tasks. Furthermore, characteristic path length presented a positive correlation with task duration, which led to a significant increase between the first and the last five minutes of both tasks, indicating a fatigue-related disruption in information processing efficiency. However, significantly increased clustering coefficient was revealed only in the driving task, suggesting distinct network reorganizations between the two fatigue-inducing tasks. Moreover, high accuracy (92% for driving; 97% for PVT) was achieved for fatigue classification with apparently different discriminative functional connectivity features. These findings augment our understanding of the complex nature of fatigue-related neural mechanisms and demonstrate the feasibility of using functional connectivity as neural biomarkers for applicable fatigue monitoring.Despite the apparent importance of mental fatigue detection, a reliable application is hindered due to the incomprehensive understanding of the neural mechanisms of mental fatigue. In this paper, we investigated the topological alterations of functional brain networks in the theta band (4 - 7 Hz) of electroencephalography (EEG) data from 40 male subjects undergoing two distinct fatigue-inducing tasks: a low-intensity one-hour simulated driving and a high-demanding half-hour sustained attention task [psychomotor vigilance task (PVT)]. Behaviorally, subjects demonstrated a robust mental fatigue effect, as reflected by significantly declined performances in cognitive tasks prior and post these two tasks. Furthermore, characteristic path length presented a positive correlation with task duration, which led to a significant increase between the first and the last five minutes of both tasks, indicating a fatigue-related disruption in information processing efficiency. However, significantly increased clustering coefficient was revealed only in the driving task, suggesting distinct network reorganizations between the two fatigue-inducing tasks. Moreover, high accuracy (92% for driving; 97% for PVT) was achieved for fatigue classification with apparently different discriminative functional connectivity features. These findings augment our understanding of the complex nature of fatigue-related neural mechanisms and demonstrate the feasibility of using functional connectivity as neural biomarkers for applicable fatigue monitoring. Despite the apparent importance of mental fatigue detection, a reliable application is hindered due to the incomprehensive understanding of the neural mechanisms of mental fatigue. In this paper, we investigated the topological alterations of functional brain networks in the theta band (4 - 7 Hz) of electroencephalography (EEG) data from 40 male subjects undergoing two distinct fatigue-inducing tasks: a low-intensity one-hour simulated driving and a high-demanding half-hour sustained attention task [psychomotor vigilance task (PVT)]. Behaviorally, subjects demonstrated a robust mental fatigue effect, as reflected by significantly declined performances in cognitive tasks prior and post these two tasks. Furthermore, characteristic path length presented a positive correlation with task duration, which led to a significant increase between the first and the last five minutes of both tasks, indicating a fatigue-related disruption in information processing efficiency. However, significantly increased clustering coefficient was revealed only in the driving task, suggesting distinct network reorganizations between the two fatigue-inducing tasks. Moreover, high accuracy (92% for driving; 97% for PVT) was achieved for fatigue classification with apparently different discriminative functional connectivity features. These findings augment our understanding of the complex nature of fatigue-related neural mechanisms and demonstrate the feasibility of using functional connectivity as neural biomarkers for applicable fatigue monitoring. |
Author | Wang, Hongtao Thakor, Nitish Sgarbas, Kyriakos Sun, Yu Dai, Zhongxiang Kakkos, Ioannis Dimitrakopoulos, Georgios N. Bezerianos, Anastasios |
Author_xml | – sequence: 1 givenname: Georgios N. surname: Dimitrakopoulos fullname: Dimitrakopoulos, Georgios N. email: geodimitrak@upatras.gr organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore – sequence: 2 givenname: Ioannis orcidid: 0000-0001-8365-2140 surname: Kakkos fullname: Kakkos, Ioannis email: ioakakkos@gmail.com organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore – sequence: 3 givenname: Zhongxiang surname: Dai fullname: Dai, Zhongxiang email: daiz9109@gmail.com organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore – sequence: 4 givenname: Hongtao surname: Wang fullname: Wang, Hongtao email: lsiwh@nus.edu.sg organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore – sequence: 5 givenname: Kyriakos surname: Sgarbas fullname: Sgarbas, Kyriakos email: sgarbas@upatras.gr organization: Department of Electrical and Computer Engineering, University of Patras, Patras, Greece – sequence: 6 givenname: Nitish orcidid: 0000-0002-9981-9395 surname: Thakor fullname: Thakor, Nitish email: sinapsedirector@gmail.com organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore – sequence: 7 givenname: Anastasios surname: Bezerianos fullname: Bezerianos, Anastasios email: tassos.bezerianos@nus.edu.sg organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore – sequence: 8 givenname: Yu orcidid: 0000-0002-6666-8586 surname: Sun fullname: Sun, Yu email: yusun@zju.edu.cn organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29641378$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1URB_wB0BCXrKZ1Nf2vJYhbaBSaaUS2Foe505kOrFT21OUf8DPxmlSFiy68uOc7-ja55QcOe-QkPfAJgCsPV_cfL-7nHAGzYTXLbSiekVOoCybgnFgR7u9kIUUnB2T0xh_MQZ1VdZvyDFvKwmibk7In_noTLLe6YHOvHOYD482bek032yjjdT39Bu6lPW5TnY1Ir3DR9RDpBe27zFkjd5g-u3DPV34jR_8yprsng4Jg95FR_o564iOXoQc7lZUuyX9aVd20M4gXeh4H9-S130OxXeH9Yz8mF8uZl-L69svV7PpdWEEF6kwjDPT8K7uoNPNshKy6xsNkmnoRd9WiBqAQw1VabDtSmmWLUNgYMqSdcaIM_Jpn7sJ_mHEmNTaRoNDHgX9GBVnXMqqLusqWz8erGO3xqXaBLvWYauefy8bmr3BBB9jwF4Zm56enIK2gwKmdkWpp6LUrih1KCqj_D_0Of1F6MMesoj4D2h4KUXLxF_lj6Ee |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1016_j_eng_2018_11_025 crossref_primary_10_1109_JBHI_2020_3008229 crossref_primary_10_1016_j_artmed_2024_102996 crossref_primary_10_1109_TITS_2020_3013278 crossref_primary_10_3389_fnagi_2023_1193292 crossref_primary_10_1109_TIM_2024_3470966 crossref_primary_10_1016_j_neucom_2023_126999 crossref_primary_10_3390_brainsci13081143 crossref_primary_10_1109_TNSRE_2023_3335806 crossref_primary_10_1016_j_trf_2023_04_009 crossref_primary_10_3390_app12168146 crossref_primary_10_1109_TNSRE_2020_2999599 crossref_primary_10_1109_TNSRE_2020_3030106 crossref_primary_10_1142_S0218127420501187 crossref_primary_10_7717_peerj_15744 crossref_primary_10_3389_fnhum_2021_733426 crossref_primary_10_3390_app13031512 crossref_primary_10_1109_THMS_2022_3225633 crossref_primary_10_1016_j_bspc_2021_102598 crossref_primary_10_1186_s12868_020_00569_1 crossref_primary_10_1088_1741_2552_ab909f crossref_primary_10_3389_fnhum_2024_1397452 crossref_primary_10_1007_s11571_020_09577_7 crossref_primary_10_1109_TAFFC_2021_3133443 crossref_primary_10_1177_00187208221094900 crossref_primary_10_1007_s11571_021_09714_w crossref_primary_10_1088_1741_2552_ab255d crossref_primary_10_1109_TIM_2020_3047502 crossref_primary_10_3390_brainsci9050100 crossref_primary_10_26599_BSA_2020_9050020 crossref_primary_10_3390_e24081093 crossref_primary_10_1109_TITS_2022_3189346 crossref_primary_10_3390_brainsci13030373 crossref_primary_10_34133_cbsystems_0130 crossref_primary_10_1088_1361_6579_abc66e crossref_primary_10_1109_TNSRE_2020_3007324 crossref_primary_10_3390_ijerph19010509 crossref_primary_10_1016_j_cortex_2019_07_019 crossref_primary_10_1007_s42977_023_00187_y crossref_primary_10_3389_fnhum_2022_906735 crossref_primary_10_3390_ijerph191912616 crossref_primary_10_3233_JIFS_223819 crossref_primary_10_3390_ani12081019 crossref_primary_10_1016_j_bspc_2022_103806 crossref_primary_10_1109_TNSRE_2023_3299156 crossref_primary_10_3390_s22208036 crossref_primary_10_1109_TIV_2023_3339673 crossref_primary_10_1080_21641846_2020_1843790 crossref_primary_10_1109_TNSRE_2020_2977250 crossref_primary_10_1016_j_bspc_2023_105045 crossref_primary_10_1109_TITS_2019_2918438 crossref_primary_10_1016_j_bbe_2020_08_009 crossref_primary_10_1109_JBHI_2021_3085131 crossref_primary_10_1109_TNSRE_2023_3336897 crossref_primary_10_1088_1741_2552_abc529 crossref_primary_10_1109_TNSRE_2023_3339768 crossref_primary_10_1109_JSEN_2024_3393299 crossref_primary_10_1109_TNSRE_2021_3125420 crossref_primary_10_1109_TNSRE_2018_2878587 crossref_primary_10_1109_TCDS_2023_3260081 crossref_primary_10_1109_TCDS_2020_2985539 crossref_primary_10_1109_TIM_2024_3451583 crossref_primary_10_1088_1741_2552_ac0d41 crossref_primary_10_1109_JBHI_2020_2980056 crossref_primary_10_1016_j_jtte_2023_07_004 crossref_primary_10_3389_fnins_2023_1113593 crossref_primary_10_3390_brainsci9120348 crossref_primary_10_1109_TNSRE_2022_3142855 crossref_primary_10_1007_s11571_021_09769_9 crossref_primary_10_3389_fneur_2018_00915 crossref_primary_10_1109_TNSRE_2019_2930082 crossref_primary_10_1186_s13256_023_04300_6 crossref_primary_10_3390_healthcare9111453 crossref_primary_10_1007_s11571_020_09626_1 crossref_primary_10_1016_j_bspc_2021_102591 crossref_primary_10_3390_s21113786 crossref_primary_10_1109_JSEN_2022_3177931 crossref_primary_10_1002_brb3_1932 crossref_primary_10_3390_brainsci12091152 crossref_primary_10_1109_ACCESS_2020_3004504 crossref_primary_10_1155_2021_3965385 crossref_primary_10_1109_TITS_2023_3348517 crossref_primary_10_1016_j_jsr_2024_05_015 crossref_primary_10_1016_j_measurement_2021_110116 crossref_primary_10_1007_s11571_024_10141_w crossref_primary_10_1016_j_neuroimage_2024_120648 crossref_primary_10_1080_2326263X_2022_2041294 crossref_primary_10_1038_s41598_020_78768_3 crossref_primary_10_1109_OJEMB_2024_3367496 crossref_primary_10_3389_fphy_2021_822915 crossref_primary_10_3390_e21040353 crossref_primary_10_1016_j_bspc_2020_101864 crossref_primary_10_3390_s24123894 crossref_primary_10_1109_JBHI_2023_3307578 crossref_primary_10_1109_TITS_2023_3347439 crossref_primary_10_1109_TETCI_2018_2848289 crossref_primary_10_3389_fnins_2022_976437 crossref_primary_10_1155_2020_8825547 crossref_primary_10_1109_ACCESS_2020_3018995 |
Cites_doi | 10.1016/j.neuroimage.2011.04.040 10.1016/j.ssci.2008.01.007 10.1016/j.trf.2010.06.006 10.3389/fnhum.2014.00406 10.1518/001872008X312152 10.1142/S0129065714500063 10.3389/fnhum.2016.00304 10.1016/j.intell.2012.01.005 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2017.02.084 10.1016/j.bandc.2007.09.003 10.1371/journal.pone.0074125 10.1109/TCSI.2005.857555 10.1016/j.eswa.2016.01.013 10.1111/j.1469-8986.2011.01329.x 10.1016/S0022-4375(03)00027-6 10.1093/cercor/bhr099 10.3389/fnhum.2015.00570 10.1016/S0165-0270(03)00052-9 10.1109/ICDSP.2007.4288544 10.1177/1745691614556681 10.1016/S0301-0511(96)05220-9 10.1016/j.neuroimage.2007.04.016 10.1016/j.clinph.2008.03.012 10.1080/13803390801978856 10.1109/TBME.2007.890733 10.1109/TBME.2010.2077291 10.1177/1073858416667720 10.1177/154193120404801107 10.1155/2011/130714 10.1016/j.compbiomed.2011.06.020 10.1523/JNEUROSCI.0440-11.2011 10.1177/001872088702900603 10.1016/j.bspc.2017.10.007 10.1109/TGE.1978.294569 10.1016/S0165-0173(98)00056-3 10.1016/j.ergon.2004.09.006 10.1016/j.biopsych.2007.03.001 10.1017/S0048577200980259 10.1016/j.jneumeth.2012.05.022 10.1016/j.neuroimage.2012.04.051 10.1016/j.clinph.2008.04.294 10.1016/j.clinph.2011.06.027 10.1016/j.eswa.2007.12.043 10.1371/journal.pone.0033767 10.1016/j.neubiorev.2012.10.003 10.1152/japplphysiol.91324.2008 10.1016/j.biopsycho.2013.11.010 10.1523/JNEUROSCI.19-10-04065.1999 10.1515/revneuro-2014-0028 10.1016/j.trf.2014.08.001 10.1016/j.cogbrainres.2005.04.011 10.1016/j.neuroimage.2014.12.046 10.1016/j.brainres.2008.07.053 10.1523/JNEUROSCI.4854-12.2013 10.1038/nrn2575 10.3389/fnhum.2016.00235 10.1016/j.jneumeth.2003.10.009 10.1214/aos/1176344136 10.1016/j.biopsycho.2014.07.014 10.1016/j.eswa.2008.06.022 10.1109/TITS.2010.2092770 10.4236/psych.2015.65055 10.1016/j.bandc.2013.12.011 10.1007/s10439-014-1059-8 10.3390/s150819181 10.1109/TNSRE.2017.2701002 10.3389/fnins.2017.00297 10.1098/rspb.2005.3354 10.1016/0167-8655(94)90127-9 10.1016/j.physrep.2005.10.009 10.1038/30918 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TNSRE.2018.2791936 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 749 |
ExternalDocumentID | 29641378 10_1109_TNSRE_2018_2791936 8254390 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: “Hundred Talents Program” of Zhejiang University funderid: 10.13039/501100004835 – fundername: Ministry of Education of Singapore grantid: MOE2014-T2-1-115 – fundername: Cognitive Engineering Group, Singapore Institute for Neurotechnology, National University of Singapore grantid: R-719-001-102-232 funderid: 10.13039/501100001352 – fundername: Fundamental Research Funds for the Central Universities |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c323t-c020c82b7b1ba8d634bf8a140a1f3f96eea11217165ce9b54cd90e101c550bcc3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 06:55:39 EDT 2025 Mon Jul 21 06:06:15 EDT 2025 Tue Jul 01 00:43:16 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c323t-c020c82b7b1ba8d634bf8a140a1f3f96eea11217165ce9b54cd90e101c550bcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8365-2140 0000-0002-9981-9395 0000-0002-6666-8586 |
PMID | 29641378 |
PQID | 2024467576 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8254390 proquest_miscellaneous_2024467576 pubmed_primary_29641378 crossref_citationtrail_10_1109_TNSRE_2018_2791936 crossref_primary_10_1109_TNSRE_2018_2791936 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-April 2018-4-00 2018-04-00 20180401 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-April |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref57 ref13 ref12 shen (ref4) 2008; 119 ref59 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 watts (ref56) 1998; 393 ref46 ref45 ref48 ref42 ref41 kostyniuk (ref15) 2002; 9 ref44 ref43 ref49 ref8 ref7 ref9 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 shou (ref27) 2013 ref65 ref21 ref28 ref29 huo (ref47) 2016 ref60 ref62 ref61 ferri (ref58) 2008; 119 |
References_xml | – ident: ref69 doi: 10.1016/j.neuroimage.2011.04.040 – ident: ref16 doi: 10.1016/j.ssci.2008.01.007 – ident: ref19 doi: 10.1016/j.trf.2010.06.006 – ident: ref32 doi: 10.3389/fnhum.2014.00406 – ident: ref64 doi: 10.1518/001872008X312152 – ident: ref46 doi: 10.1142/S0129065714500063 – ident: ref37 doi: 10.3389/fnhum.2016.00304 – ident: ref43 doi: 10.1016/j.intell.2012.01.005 – ident: ref36 doi: 10.1016/j.neuroimage.2009.10.003 – ident: ref9 doi: 10.1016/j.neuroimage.2017.02.084 – start-page: 897 year: 2016 ident: ref47 article-title: Driving fatigue detection with fusion of EEG and forehead EOG publication-title: Proc Int Joint Conf Neural Netw (IJCNN) – ident: ref49 doi: 10.1016/j.bandc.2007.09.003 – ident: ref7 doi: 10.1371/journal.pone.0074125 – ident: ref29 doi: 10.1109/TCSI.2005.857555 – ident: ref2 doi: 10.1016/j.eswa.2016.01.013 – ident: ref22 doi: 10.1111/j.1469-8986.2011.01329.x – ident: ref14 doi: 10.1016/S0022-4375(03)00027-6 – ident: ref59 doi: 10.1093/cercor/bhr099 – ident: ref12 doi: 10.3389/fnhum.2015.00570 – ident: ref54 doi: 10.1016/S0165-0270(03)00052-9 – ident: ref40 doi: 10.1109/ICDSP.2007.4288544 – ident: ref67 doi: 10.1177/1745691614556681 – ident: ref65 doi: 10.1016/S0301-0511(96)05220-9 – ident: ref61 doi: 10.1016/j.neuroimage.2007.04.016 – volume: 119 start-page: 1524 year: 2008 ident: ref4 article-title: EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.03.012 – start-page: 5594 year: 2013 ident: ref27 article-title: Frontal theta EEG dynamics in a real-world air traffic control task publication-title: Proc 35th Annu Int Conf IEEE Eng Med Biol Soc (EMBC) – ident: ref66 doi: 10.1080/13803390801978856 – volume: 9 year: 2002 ident: ref15 article-title: Identifying unsafe driver actions that lead to fatal car-truck crashes publication-title: AAA Found Traffic Safety – ident: ref17 doi: 10.1109/TBME.2007.890733 – ident: ref13 doi: 10.1109/TBME.2010.2077291 – ident: ref35 doi: 10.1177/1073858416667720 – ident: ref50 doi: 10.1177/154193120404801107 – ident: ref55 doi: 10.1155/2011/130714 – ident: ref53 doi: 10.1016/j.compbiomed.2011.06.020 – ident: ref11 doi: 10.1523/JNEUROSCI.0440-11.2011 – ident: ref68 doi: 10.1177/001872088702900603 – ident: ref42 doi: 10.1016/j.bspc.2017.10.007 – ident: ref73 doi: 10.1109/TGE.1978.294569 – ident: ref24 doi: 10.1016/S0165-0173(98)00056-3 – ident: ref71 doi: 10.1016/j.ergon.2004.09.006 – ident: ref45 doi: 10.1016/j.biopsych.2007.03.001 – ident: ref51 doi: 10.1017/S0048577200980259 – ident: ref18 doi: 10.1016/j.jneumeth.2012.05.022 – ident: ref70 doi: 10.1016/j.neuroimage.2012.04.051 – volume: 119 start-page: 2026 year: 2008 ident: ref58 article-title: The functional connectivity of different EEG bands moves towards small-world network organization during sleep publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.04.294 – ident: ref33 doi: 10.1016/j.clinph.2011.06.027 – ident: ref34 doi: 10.1016/j.eswa.2007.12.043 – ident: ref48 doi: 10.1371/journal.pone.0033767 – ident: ref3 doi: 10.1016/j.neubiorev.2012.10.003 – ident: ref1 doi: 10.1152/japplphysiol.91324.2008 – ident: ref25 doi: 10.1016/j.biopsycho.2013.11.010 – ident: ref44 doi: 10.1523/JNEUROSCI.19-10-04065.1999 – ident: ref30 doi: 10.1515/revneuro-2014-0028 – ident: ref72 doi: 10.1016/j.trf.2014.08.001 – ident: ref23 doi: 10.1016/j.cogbrainres.2005.04.011 – ident: ref10 doi: 10.1016/j.neuroimage.2014.12.046 – ident: ref8 doi: 10.1016/j.brainres.2008.07.053 – ident: ref63 doi: 10.1523/JNEUROSCI.4854-12.2013 – ident: ref62 doi: 10.1038/nrn2575 – ident: ref39 doi: 10.3389/fnhum.2016.00235 – ident: ref52 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref74 doi: 10.1214/aos/1176344136 – ident: ref31 doi: 10.1016/j.biopsycho.2014.07.014 – ident: ref20 doi: 10.1016/j.eswa.2008.06.022 – ident: ref28 doi: 10.1109/TITS.2010.2092770 – ident: ref21 doi: 10.4236/psych.2015.65055 – ident: ref6 doi: 10.1016/j.bandc.2013.12.011 – ident: ref5 doi: 10.1007/s10439-014-1059-8 – ident: ref38 doi: 10.3390/s150819181 – ident: ref60 doi: 10.1109/TNSRE.2017.2701002 – ident: ref26 doi: 10.3389/fnins.2017.00297 – ident: ref57 doi: 10.1098/rspb.2005.3354 – ident: ref41 doi: 10.1016/0167-8655(94)90127-9 – ident: ref75 doi: 10.1016/j.physrep.2005.10.009 – volume: 393 start-page: 440 year: 1998 ident: ref56 article-title: Collective dynamics of 'small-world'networks publication-title: Nature doi: 10.1038/30918 |
SSID | ssj0017657 |
Score | 2.54145 |
Snippet | Despite the apparent importance of mental fatigue detection, a reliable application is hindered due to the incomprehensive understanding of the neural... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 740 |
SubjectTerms | classification Electroencephalography Electronic mail Fatigue functional connectivity graph theoretical analysis Life sciences Mental fatigue Niobium theta band |
Title | Functional Connectivity Analysis of Mental Fatigue Reveals Different Network Topological Alterations Between Driving and Vigilance Tasks |
URI | https://ieeexplore.ieee.org/document/8254390 https://www.ncbi.nlm.nih.gov/pubmed/29641378 https://www.proquest.com/docview/2024467576 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrjwKo_lpUECLpBtEjuvY6FdVUjdQ0lRb5HtTKpVV9mqm3DgF_CzmbGTqCBA3HzwOA9_tmc8M98I8UabpkgMykBzhowKLbXqSAVpbbHJ0wQtcjby6TI9OVefL5KLHfFhyoVBRBd8hnNuOl9-vbE9X5UdsDVDNvqu2CXDzedqTR6DLHWsnrSAVaBkHI4JMmFxUC6_nB1zFFc-j7OCNBauW8TuxkhydbVb55ErsPJ3XdOdOYt74nR8Wx9qcjXvOzO3338jcvzfz7kv7g7KJxx6tDwQO9g-FG9vEw1D6VkG4B2c_cLhvS9-LOgIHHq58BjrC0_AyGsCmwY8JRAsSOayRxrjGymiWzgayrB0sPRh51D64gwMEThcO2pnXgDw0ceNwdHNiq86QLc1fF1drtaMTij19mr7SJwvjstPJ8FQxyGwMpZdYEkltXlsMhMZndepVKbJNVl2OmpkU6SImrQ-5u1JLBYmUbYuQqS9wpL5ZKyVj8Veu2nxqQAV1rTLNE0uUSmTNXmGdYwEKR2jxjSfiWiczcoOP4hrbawrZ-yEReXAUDEYqgEMM_F-krn2FB__7L3PMzn1HCZxJl6PoKlogbLXRbe46bckTBoUmWUZiT7xaJqERxA--_Ogz8UdfrQPFHoh9rqbHl-SDtSZVw78PwGWwQTN |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKOcAFCoWypYCRgAtkm8TO17G0XS3Q3UNJUW-R7UyqVVfZqptw4Bfws5mxk6hUgLj54LGc-Nme8cy8YeyN0lUWaRCeogwZ6RtslYH04tJAlcYRGKBs5Nk8np7Jz-fR-Qb7MOTCAIANPoMxNa0vv1yZlp7K9smaQRv9DruL934UumytwWeQxJbXE7ew9KQI_T5Fxs_28_nX02OK40rHYZKhzkKVi8jhGAiqr3bjRrIlVv6ubdpbZ_KQzfr5umCTy3Hb6LH5cYvK8X8_aIs96NRPfuDw8ohtQP2Yvb1JNcxzxzPA3_HT31i8t9nPCV6CXS8bIGNc6QneM5vwVcUdKRCfoMxFCzjGd1RF1_yoK8TS8LkLPOe5K89AIOEHS0vuTFuAf3SRY_zoekGPHVzVJf-2uFgsCZ88V-vL9RN2NjnOD6deV8nBMyIUjWdQKTVpqBMdaJWWsZC6ShXadiqoRJXFAAr1PmLuiQxkOpKmzHzA08KgAaWNEU_ZZr2q4Rnj0i_xnKmqVICUOqnSBMoQEFQqBAVxOmJBv5qF6X4QVdtYFtbc8bPCgqEgMBQdGEbs_SBz5Ug-_tl7m1Zy6Nkt4oi97kFT4BYlv4uqYdWuURh1KDTMEhTdcWgahHsQ7v550Ffs3jSfnRQnn-ZfnrP7NA0XNrTHNpvrFl6gRtTol3Yj_AJShggX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Connectivity+Analysis+of+Mental+Fatigue+Reveals+Different+Network+Topological+Alterations+Between+Driving+and+Vigilance+Tasks&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Dimitrakopoulos%2C+Georgios+N.&rft.au=Kakkos%2C+Ioannis&rft.au=Dai%2C+Zhongxiang&rft.au=Wang%2C+Hongtao&rft.date=2018-04-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=26&rft.issue=4&rft.spage=740&rft.epage=749&rft_id=info:doi/10.1109%2FTNSRE.2018.2791936&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2018_2791936 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |