Functional Connectivity Analysis of Mental Fatigue Reveals Different Network Topological Alterations Between Driving and Vigilance Tasks

Despite the apparent importance of mental fatigue detection, a reliable application is hindered due to the incomprehensive understanding of the neural mechanisms of mental fatigue. In this paper, we investigated the topological alterations of functional brain networks in the theta band (4 - 7 Hz) of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 4; pp. 740 - 749
Main Authors Dimitrakopoulos, Georgios N., Kakkos, Ioannis, Dai, Zhongxiang, Wang, Hongtao, Sgarbas, Kyriakos, Thakor, Nitish, Bezerianos, Anastasios, Sun, Yu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the apparent importance of mental fatigue detection, a reliable application is hindered due to the incomprehensive understanding of the neural mechanisms of mental fatigue. In this paper, we investigated the topological alterations of functional brain networks in the theta band (4 - 7 Hz) of electroencephalography (EEG) data from 40 male subjects undergoing two distinct fatigue-inducing tasks: a low-intensity one-hour simulated driving and a high-demanding half-hour sustained attention task [psychomotor vigilance task (PVT)]. Behaviorally, subjects demonstrated a robust mental fatigue effect, as reflected by significantly declined performances in cognitive tasks prior and post these two tasks. Furthermore, characteristic path length presented a positive correlation with task duration, which led to a significant increase between the first and the last five minutes of both tasks, indicating a fatigue-related disruption in information processing efficiency. However, significantly increased clustering coefficient was revealed only in the driving task, suggesting distinct network reorganizations between the two fatigue-inducing tasks. Moreover, high accuracy (92% for driving; 97% for PVT) was achieved for fatigue classification with apparently different discriminative functional connectivity features. These findings augment our understanding of the complex nature of fatigue-related neural mechanisms and demonstrate the feasibility of using functional connectivity as neural biomarkers for applicable fatigue monitoring.
AbstractList Despite the apparent importance of mental fatigue detection, a reliable application is hindered due to the incomprehensive understanding of the neural mechanisms of mental fatigue. In this paper, we investigated the topological alterations of functional brain networks in the theta band (4 - 7 Hz) of electroencephalography (EEG) data from 40 male subjects undergoing two distinct fatigue-inducing tasks: a low-intensity one-hour simulated driving and a high-demanding half-hour sustained attention task [psychomotor vigilance task (PVT)]. Behaviorally, subjects demonstrated a robust mental fatigue effect, as reflected by significantly declined performances in cognitive tasks prior and post these two tasks. Furthermore, characteristic path length presented a positive correlation with task duration, which led to a significant increase between the first and the last five minutes of both tasks, indicating a fatigue-related disruption in information processing efficiency. However, significantly increased clustering coefficient was revealed only in the driving task, suggesting distinct network reorganizations between the two fatigue-inducing tasks. Moreover, high accuracy (92% for driving; 97% for PVT) was achieved for fatigue classification with apparently different discriminative functional connectivity features. These findings augment our understanding of the complex nature of fatigue-related neural mechanisms and demonstrate the feasibility of using functional connectivity as neural biomarkers for applicable fatigue monitoring.Despite the apparent importance of mental fatigue detection, a reliable application is hindered due to the incomprehensive understanding of the neural mechanisms of mental fatigue. In this paper, we investigated the topological alterations of functional brain networks in the theta band (4 - 7 Hz) of electroencephalography (EEG) data from 40 male subjects undergoing two distinct fatigue-inducing tasks: a low-intensity one-hour simulated driving and a high-demanding half-hour sustained attention task [psychomotor vigilance task (PVT)]. Behaviorally, subjects demonstrated a robust mental fatigue effect, as reflected by significantly declined performances in cognitive tasks prior and post these two tasks. Furthermore, characteristic path length presented a positive correlation with task duration, which led to a significant increase between the first and the last five minutes of both tasks, indicating a fatigue-related disruption in information processing efficiency. However, significantly increased clustering coefficient was revealed only in the driving task, suggesting distinct network reorganizations between the two fatigue-inducing tasks. Moreover, high accuracy (92% for driving; 97% for PVT) was achieved for fatigue classification with apparently different discriminative functional connectivity features. These findings augment our understanding of the complex nature of fatigue-related neural mechanisms and demonstrate the feasibility of using functional connectivity as neural biomarkers for applicable fatigue monitoring.
Despite the apparent importance of mental fatigue detection, a reliable application is hindered due to the incomprehensive understanding of the neural mechanisms of mental fatigue. In this paper, we investigated the topological alterations of functional brain networks in the theta band (4 - 7 Hz) of electroencephalography (EEG) data from 40 male subjects undergoing two distinct fatigue-inducing tasks: a low-intensity one-hour simulated driving and a high-demanding half-hour sustained attention task [psychomotor vigilance task (PVT)]. Behaviorally, subjects demonstrated a robust mental fatigue effect, as reflected by significantly declined performances in cognitive tasks prior and post these two tasks. Furthermore, characteristic path length presented a positive correlation with task duration, which led to a significant increase between the first and the last five minutes of both tasks, indicating a fatigue-related disruption in information processing efficiency. However, significantly increased clustering coefficient was revealed only in the driving task, suggesting distinct network reorganizations between the two fatigue-inducing tasks. Moreover, high accuracy (92% for driving; 97% for PVT) was achieved for fatigue classification with apparently different discriminative functional connectivity features. These findings augment our understanding of the complex nature of fatigue-related neural mechanisms and demonstrate the feasibility of using functional connectivity as neural biomarkers for applicable fatigue monitoring.
Author Wang, Hongtao
Thakor, Nitish
Sgarbas, Kyriakos
Sun, Yu
Dai, Zhongxiang
Kakkos, Ioannis
Dimitrakopoulos, Georgios N.
Bezerianos, Anastasios
Author_xml – sequence: 1
  givenname: Georgios N.
  surname: Dimitrakopoulos
  fullname: Dimitrakopoulos, Georgios N.
  email: geodimitrak@upatras.gr
  organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore
– sequence: 2
  givenname: Ioannis
  orcidid: 0000-0001-8365-2140
  surname: Kakkos
  fullname: Kakkos, Ioannis
  email: ioakakkos@gmail.com
  organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore
– sequence: 3
  givenname: Zhongxiang
  surname: Dai
  fullname: Dai, Zhongxiang
  email: daiz9109@gmail.com
  organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore
– sequence: 4
  givenname: Hongtao
  surname: Wang
  fullname: Wang, Hongtao
  email: lsiwh@nus.edu.sg
  organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore
– sequence: 5
  givenname: Kyriakos
  surname: Sgarbas
  fullname: Sgarbas, Kyriakos
  email: sgarbas@upatras.gr
  organization: Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
– sequence: 6
  givenname: Nitish
  orcidid: 0000-0002-9981-9395
  surname: Thakor
  fullname: Thakor, Nitish
  email: sinapsedirector@gmail.com
  organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore
– sequence: 7
  givenname: Anastasios
  surname: Bezerianos
  fullname: Bezerianos, Anastasios
  email: tassos.bezerianos@nus.edu.sg
  organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore
– sequence: 8
  givenname: Yu
  orcidid: 0000-0002-6666-8586
  surname: Sun
  fullname: Sun, Yu
  email: yusun@zju.edu.cn
  organization: Singapore Institute for Neurotechnology, Centre for Life Sciences, National University of Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29641378$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1URB_wB0BCXrKZ1Nf2vJYhbaBSaaUS2Foe505kOrFT21OUf8DPxmlSFiy68uOc7-ja55QcOe-QkPfAJgCsPV_cfL-7nHAGzYTXLbSiekVOoCybgnFgR7u9kIUUnB2T0xh_MQZ1VdZvyDFvKwmibk7In_noTLLe6YHOvHOYD482bek032yjjdT39Bu6lPW5TnY1Ir3DR9RDpBe27zFkjd5g-u3DPV34jR_8yprsng4Jg95FR_o564iOXoQc7lZUuyX9aVd20M4gXeh4H9-S130OxXeH9Yz8mF8uZl-L69svV7PpdWEEF6kwjDPT8K7uoNPNshKy6xsNkmnoRd9WiBqAQw1VabDtSmmWLUNgYMqSdcaIM_Jpn7sJ_mHEmNTaRoNDHgX9GBVnXMqqLusqWz8erGO3xqXaBLvWYauefy8bmr3BBB9jwF4Zm56enIK2gwKmdkWpp6LUrih1KCqj_D_0Of1F6MMesoj4D2h4KUXLxF_lj6Ee
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_eng_2018_11_025
crossref_primary_10_1109_JBHI_2020_3008229
crossref_primary_10_1016_j_artmed_2024_102996
crossref_primary_10_1109_TITS_2020_3013278
crossref_primary_10_3389_fnagi_2023_1193292
crossref_primary_10_1109_TIM_2024_3470966
crossref_primary_10_1016_j_neucom_2023_126999
crossref_primary_10_3390_brainsci13081143
crossref_primary_10_1109_TNSRE_2023_3335806
crossref_primary_10_1016_j_trf_2023_04_009
crossref_primary_10_3390_app12168146
crossref_primary_10_1109_TNSRE_2020_2999599
crossref_primary_10_1109_TNSRE_2020_3030106
crossref_primary_10_1142_S0218127420501187
crossref_primary_10_7717_peerj_15744
crossref_primary_10_3389_fnhum_2021_733426
crossref_primary_10_3390_app13031512
crossref_primary_10_1109_THMS_2022_3225633
crossref_primary_10_1016_j_bspc_2021_102598
crossref_primary_10_1186_s12868_020_00569_1
crossref_primary_10_1088_1741_2552_ab909f
crossref_primary_10_3389_fnhum_2024_1397452
crossref_primary_10_1007_s11571_020_09577_7
crossref_primary_10_1109_TAFFC_2021_3133443
crossref_primary_10_1177_00187208221094900
crossref_primary_10_1007_s11571_021_09714_w
crossref_primary_10_1088_1741_2552_ab255d
crossref_primary_10_1109_TIM_2020_3047502
crossref_primary_10_3390_brainsci9050100
crossref_primary_10_26599_BSA_2020_9050020
crossref_primary_10_3390_e24081093
crossref_primary_10_1109_TITS_2022_3189346
crossref_primary_10_3390_brainsci13030373
crossref_primary_10_34133_cbsystems_0130
crossref_primary_10_1088_1361_6579_abc66e
crossref_primary_10_1109_TNSRE_2020_3007324
crossref_primary_10_3390_ijerph19010509
crossref_primary_10_1016_j_cortex_2019_07_019
crossref_primary_10_1007_s42977_023_00187_y
crossref_primary_10_3389_fnhum_2022_906735
crossref_primary_10_3390_ijerph191912616
crossref_primary_10_3233_JIFS_223819
crossref_primary_10_3390_ani12081019
crossref_primary_10_1016_j_bspc_2022_103806
crossref_primary_10_1109_TNSRE_2023_3299156
crossref_primary_10_3390_s22208036
crossref_primary_10_1109_TIV_2023_3339673
crossref_primary_10_1080_21641846_2020_1843790
crossref_primary_10_1109_TNSRE_2020_2977250
crossref_primary_10_1016_j_bspc_2023_105045
crossref_primary_10_1109_TITS_2019_2918438
crossref_primary_10_1016_j_bbe_2020_08_009
crossref_primary_10_1109_JBHI_2021_3085131
crossref_primary_10_1109_TNSRE_2023_3336897
crossref_primary_10_1088_1741_2552_abc529
crossref_primary_10_1109_TNSRE_2023_3339768
crossref_primary_10_1109_JSEN_2024_3393299
crossref_primary_10_1109_TNSRE_2021_3125420
crossref_primary_10_1109_TNSRE_2018_2878587
crossref_primary_10_1109_TCDS_2023_3260081
crossref_primary_10_1109_TCDS_2020_2985539
crossref_primary_10_1109_TIM_2024_3451583
crossref_primary_10_1088_1741_2552_ac0d41
crossref_primary_10_1109_JBHI_2020_2980056
crossref_primary_10_1016_j_jtte_2023_07_004
crossref_primary_10_3389_fnins_2023_1113593
crossref_primary_10_3390_brainsci9120348
crossref_primary_10_1109_TNSRE_2022_3142855
crossref_primary_10_1007_s11571_021_09769_9
crossref_primary_10_3389_fneur_2018_00915
crossref_primary_10_1109_TNSRE_2019_2930082
crossref_primary_10_1186_s13256_023_04300_6
crossref_primary_10_3390_healthcare9111453
crossref_primary_10_1007_s11571_020_09626_1
crossref_primary_10_1016_j_bspc_2021_102591
crossref_primary_10_3390_s21113786
crossref_primary_10_1109_JSEN_2022_3177931
crossref_primary_10_1002_brb3_1932
crossref_primary_10_3390_brainsci12091152
crossref_primary_10_1109_ACCESS_2020_3004504
crossref_primary_10_1155_2021_3965385
crossref_primary_10_1109_TITS_2023_3348517
crossref_primary_10_1016_j_jsr_2024_05_015
crossref_primary_10_1016_j_measurement_2021_110116
crossref_primary_10_1007_s11571_024_10141_w
crossref_primary_10_1016_j_neuroimage_2024_120648
crossref_primary_10_1080_2326263X_2022_2041294
crossref_primary_10_1038_s41598_020_78768_3
crossref_primary_10_1109_OJEMB_2024_3367496
crossref_primary_10_3389_fphy_2021_822915
crossref_primary_10_3390_e21040353
crossref_primary_10_1016_j_bspc_2020_101864
crossref_primary_10_3390_s24123894
crossref_primary_10_1109_JBHI_2023_3307578
crossref_primary_10_1109_TITS_2023_3347439
crossref_primary_10_1109_TETCI_2018_2848289
crossref_primary_10_3389_fnins_2022_976437
crossref_primary_10_1155_2020_8825547
crossref_primary_10_1109_ACCESS_2020_3018995
Cites_doi 10.1016/j.neuroimage.2011.04.040
10.1016/j.ssci.2008.01.007
10.1016/j.trf.2010.06.006
10.3389/fnhum.2014.00406
10.1518/001872008X312152
10.1142/S0129065714500063
10.3389/fnhum.2016.00304
10.1016/j.intell.2012.01.005
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2017.02.084
10.1016/j.bandc.2007.09.003
10.1371/journal.pone.0074125
10.1109/TCSI.2005.857555
10.1016/j.eswa.2016.01.013
10.1111/j.1469-8986.2011.01329.x
10.1016/S0022-4375(03)00027-6
10.1093/cercor/bhr099
10.3389/fnhum.2015.00570
10.1016/S0165-0270(03)00052-9
10.1109/ICDSP.2007.4288544
10.1177/1745691614556681
10.1016/S0301-0511(96)05220-9
10.1016/j.neuroimage.2007.04.016
10.1016/j.clinph.2008.03.012
10.1080/13803390801978856
10.1109/TBME.2007.890733
10.1109/TBME.2010.2077291
10.1177/1073858416667720
10.1177/154193120404801107
10.1155/2011/130714
10.1016/j.compbiomed.2011.06.020
10.1523/JNEUROSCI.0440-11.2011
10.1177/001872088702900603
10.1016/j.bspc.2017.10.007
10.1109/TGE.1978.294569
10.1016/S0165-0173(98)00056-3
10.1016/j.ergon.2004.09.006
10.1016/j.biopsych.2007.03.001
10.1017/S0048577200980259
10.1016/j.jneumeth.2012.05.022
10.1016/j.neuroimage.2012.04.051
10.1016/j.clinph.2008.04.294
10.1016/j.clinph.2011.06.027
10.1016/j.eswa.2007.12.043
10.1371/journal.pone.0033767
10.1016/j.neubiorev.2012.10.003
10.1152/japplphysiol.91324.2008
10.1016/j.biopsycho.2013.11.010
10.1523/JNEUROSCI.19-10-04065.1999
10.1515/revneuro-2014-0028
10.1016/j.trf.2014.08.001
10.1016/j.cogbrainres.2005.04.011
10.1016/j.neuroimage.2014.12.046
10.1016/j.brainres.2008.07.053
10.1523/JNEUROSCI.4854-12.2013
10.1038/nrn2575
10.3389/fnhum.2016.00235
10.1016/j.jneumeth.2003.10.009
10.1214/aos/1176344136
10.1016/j.biopsycho.2014.07.014
10.1016/j.eswa.2008.06.022
10.1109/TITS.2010.2092770
10.4236/psych.2015.65055
10.1016/j.bandc.2013.12.011
10.1007/s10439-014-1059-8
10.3390/s150819181
10.1109/TNSRE.2017.2701002
10.3389/fnins.2017.00297
10.1098/rspb.2005.3354
10.1016/0167-8655(94)90127-9
10.1016/j.physrep.2005.10.009
10.1038/30918
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNSRE.2018.2791936
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 749
ExternalDocumentID 29641378
10_1109_TNSRE_2018_2791936
8254390
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: “Hundred Talents Program” of Zhejiang University
  funderid: 10.13039/501100004835
– fundername: Ministry of Education of Singapore
  grantid: MOE2014-T2-1-115
– fundername: Cognitive Engineering Group, Singapore Institute for Neurotechnology, National University of Singapore
  grantid: R-719-001-102-232
  funderid: 10.13039/501100001352
– fundername: Fundamental Research Funds for the Central Universities
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c323t-c020c82b7b1ba8d634bf8a140a1f3f96eea11217165ce9b54cd90e101c550bcc3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 06:55:39 EDT 2025
Mon Jul 21 06:06:15 EDT 2025
Tue Jul 01 00:43:16 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c323t-c020c82b7b1ba8d634bf8a140a1f3f96eea11217165ce9b54cd90e101c550bcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8365-2140
0000-0002-9981-9395
0000-0002-6666-8586
PMID 29641378
PQID 2024467576
PQPubID 23479
PageCount 10
ParticipantIDs ieee_primary_8254390
proquest_miscellaneous_2024467576
pubmed_primary_29641378
crossref_citationtrail_10_1109_TNSRE_2018_2791936
crossref_primary_10_1109_TNSRE_2018_2791936
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-April
2018-4-00
2018-04-00
20180401
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-April
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref12
shen (ref4) 2008; 119
ref59
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
watts (ref56) 1998; 393
ref46
ref45
ref48
ref42
ref41
kostyniuk (ref15) 2002; 9
ref44
ref43
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
shou (ref27) 2013
ref65
ref21
ref28
ref29
huo (ref47) 2016
ref60
ref62
ref61
ferri (ref58) 2008; 119
References_xml – ident: ref69
  doi: 10.1016/j.neuroimage.2011.04.040
– ident: ref16
  doi: 10.1016/j.ssci.2008.01.007
– ident: ref19
  doi: 10.1016/j.trf.2010.06.006
– ident: ref32
  doi: 10.3389/fnhum.2014.00406
– ident: ref64
  doi: 10.1518/001872008X312152
– ident: ref46
  doi: 10.1142/S0129065714500063
– ident: ref37
  doi: 10.3389/fnhum.2016.00304
– ident: ref43
  doi: 10.1016/j.intell.2012.01.005
– ident: ref36
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: ref9
  doi: 10.1016/j.neuroimage.2017.02.084
– start-page: 897
  year: 2016
  ident: ref47
  article-title: Driving fatigue detection with fusion of EEG and forehead EOG
  publication-title: Proc Int Joint Conf Neural Netw (IJCNN)
– ident: ref49
  doi: 10.1016/j.bandc.2007.09.003
– ident: ref7
  doi: 10.1371/journal.pone.0074125
– ident: ref29
  doi: 10.1109/TCSI.2005.857555
– ident: ref2
  doi: 10.1016/j.eswa.2016.01.013
– ident: ref22
  doi: 10.1111/j.1469-8986.2011.01329.x
– ident: ref14
  doi: 10.1016/S0022-4375(03)00027-6
– ident: ref59
  doi: 10.1093/cercor/bhr099
– ident: ref12
  doi: 10.3389/fnhum.2015.00570
– ident: ref54
  doi: 10.1016/S0165-0270(03)00052-9
– ident: ref40
  doi: 10.1109/ICDSP.2007.4288544
– ident: ref67
  doi: 10.1177/1745691614556681
– ident: ref65
  doi: 10.1016/S0301-0511(96)05220-9
– ident: ref61
  doi: 10.1016/j.neuroimage.2007.04.016
– volume: 119
  start-page: 1524
  year: 2008
  ident: ref4
  article-title: EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.03.012
– start-page: 5594
  year: 2013
  ident: ref27
  article-title: Frontal theta EEG dynamics in a real-world air traffic control task
  publication-title: Proc 35th Annu Int Conf IEEE Eng Med Biol Soc (EMBC)
– ident: ref66
  doi: 10.1080/13803390801978856
– volume: 9
  year: 2002
  ident: ref15
  article-title: Identifying unsafe driver actions that lead to fatal car-truck crashes
  publication-title: AAA Found Traffic Safety
– ident: ref17
  doi: 10.1109/TBME.2007.890733
– ident: ref13
  doi: 10.1109/TBME.2010.2077291
– ident: ref35
  doi: 10.1177/1073858416667720
– ident: ref50
  doi: 10.1177/154193120404801107
– ident: ref55
  doi: 10.1155/2011/130714
– ident: ref53
  doi: 10.1016/j.compbiomed.2011.06.020
– ident: ref11
  doi: 10.1523/JNEUROSCI.0440-11.2011
– ident: ref68
  doi: 10.1177/001872088702900603
– ident: ref42
  doi: 10.1016/j.bspc.2017.10.007
– ident: ref73
  doi: 10.1109/TGE.1978.294569
– ident: ref24
  doi: 10.1016/S0165-0173(98)00056-3
– ident: ref71
  doi: 10.1016/j.ergon.2004.09.006
– ident: ref45
  doi: 10.1016/j.biopsych.2007.03.001
– ident: ref51
  doi: 10.1017/S0048577200980259
– ident: ref18
  doi: 10.1016/j.jneumeth.2012.05.022
– ident: ref70
  doi: 10.1016/j.neuroimage.2012.04.051
– volume: 119
  start-page: 2026
  year: 2008
  ident: ref58
  article-title: The functional connectivity of different EEG bands moves towards small-world network organization during sleep
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.04.294
– ident: ref33
  doi: 10.1016/j.clinph.2011.06.027
– ident: ref34
  doi: 10.1016/j.eswa.2007.12.043
– ident: ref48
  doi: 10.1371/journal.pone.0033767
– ident: ref3
  doi: 10.1016/j.neubiorev.2012.10.003
– ident: ref1
  doi: 10.1152/japplphysiol.91324.2008
– ident: ref25
  doi: 10.1016/j.biopsycho.2013.11.010
– ident: ref44
  doi: 10.1523/JNEUROSCI.19-10-04065.1999
– ident: ref30
  doi: 10.1515/revneuro-2014-0028
– ident: ref72
  doi: 10.1016/j.trf.2014.08.001
– ident: ref23
  doi: 10.1016/j.cogbrainres.2005.04.011
– ident: ref10
  doi: 10.1016/j.neuroimage.2014.12.046
– ident: ref8
  doi: 10.1016/j.brainres.2008.07.053
– ident: ref63
  doi: 10.1523/JNEUROSCI.4854-12.2013
– ident: ref62
  doi: 10.1038/nrn2575
– ident: ref39
  doi: 10.3389/fnhum.2016.00235
– ident: ref52
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref74
  doi: 10.1214/aos/1176344136
– ident: ref31
  doi: 10.1016/j.biopsycho.2014.07.014
– ident: ref20
  doi: 10.1016/j.eswa.2008.06.022
– ident: ref28
  doi: 10.1109/TITS.2010.2092770
– ident: ref21
  doi: 10.4236/psych.2015.65055
– ident: ref6
  doi: 10.1016/j.bandc.2013.12.011
– ident: ref5
  doi: 10.1007/s10439-014-1059-8
– ident: ref38
  doi: 10.3390/s150819181
– ident: ref60
  doi: 10.1109/TNSRE.2017.2701002
– ident: ref26
  doi: 10.3389/fnins.2017.00297
– ident: ref57
  doi: 10.1098/rspb.2005.3354
– ident: ref41
  doi: 10.1016/0167-8655(94)90127-9
– ident: ref75
  doi: 10.1016/j.physrep.2005.10.009
– volume: 393
  start-page: 440
  year: 1998
  ident: ref56
  article-title: Collective dynamics of 'small-world'networks
  publication-title: Nature
  doi: 10.1038/30918
SSID ssj0017657
Score 2.54145
Snippet Despite the apparent importance of mental fatigue detection, a reliable application is hindered due to the incomprehensive understanding of the neural...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 740
SubjectTerms classification
Electroencephalography
Electronic mail
Fatigue
functional connectivity
graph theoretical analysis
Life sciences
Mental fatigue
Niobium
theta band
Title Functional Connectivity Analysis of Mental Fatigue Reveals Different Network Topological Alterations Between Driving and Vigilance Tasks
URI https://ieeexplore.ieee.org/document/8254390
https://www.ncbi.nlm.nih.gov/pubmed/29641378
https://www.proquest.com/docview/2024467576
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrjwKo_lpUECLpBtEjuvY6FdVUjdQ0lRb5HtTKpVV9mqm3DgF_CzmbGTqCBA3HzwOA9_tmc8M98I8UabpkgMykBzhowKLbXqSAVpbbHJ0wQtcjby6TI9OVefL5KLHfFhyoVBRBd8hnNuOl9-vbE9X5UdsDVDNvqu2CXDzedqTR6DLHWsnrSAVaBkHI4JMmFxUC6_nB1zFFc-j7OCNBauW8TuxkhydbVb55ErsPJ3XdOdOYt74nR8Wx9qcjXvOzO3338jcvzfz7kv7g7KJxx6tDwQO9g-FG9vEw1D6VkG4B2c_cLhvS9-LOgIHHq58BjrC0_AyGsCmwY8JRAsSOayRxrjGymiWzgayrB0sPRh51D64gwMEThcO2pnXgDw0ceNwdHNiq86QLc1fF1drtaMTij19mr7SJwvjstPJ8FQxyGwMpZdYEkltXlsMhMZndepVKbJNVl2OmpkU6SImrQ-5u1JLBYmUbYuQqS9wpL5ZKyVj8Veu2nxqQAV1rTLNE0uUSmTNXmGdYwEKR2jxjSfiWiczcoOP4hrbawrZ-yEReXAUDEYqgEMM_F-krn2FB__7L3PMzn1HCZxJl6PoKlogbLXRbe46bckTBoUmWUZiT7xaJqERxA--_Ogz8UdfrQPFHoh9rqbHl-SDtSZVw78PwGWwQTN
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKOcAFCoWypYCRgAtkm8TO17G0XS3Q3UNJUW-R7UyqVVfZqptw4Bfws5mxk6hUgLj54LGc-Nme8cy8YeyN0lUWaRCeogwZ6RtslYH04tJAlcYRGKBs5Nk8np7Jz-fR-Qb7MOTCAIANPoMxNa0vv1yZlp7K9smaQRv9DruL934UumytwWeQxJbXE7ew9KQI_T5Fxs_28_nX02OK40rHYZKhzkKVi8jhGAiqr3bjRrIlVv6ubdpbZ_KQzfr5umCTy3Hb6LH5cYvK8X8_aIs96NRPfuDw8ohtQP2Yvb1JNcxzxzPA3_HT31i8t9nPCV6CXS8bIGNc6QneM5vwVcUdKRCfoMxFCzjGd1RF1_yoK8TS8LkLPOe5K89AIOEHS0vuTFuAf3SRY_zoekGPHVzVJf-2uFgsCZ88V-vL9RN2NjnOD6deV8nBMyIUjWdQKTVpqBMdaJWWsZC6ShXadiqoRJXFAAr1PmLuiQxkOpKmzHzA08KgAaWNEU_ZZr2q4Rnj0i_xnKmqVICUOqnSBMoQEFQqBAVxOmJBv5qF6X4QVdtYFtbc8bPCgqEgMBQdGEbs_SBz5Ug-_tl7m1Zy6Nkt4oi97kFT4BYlv4uqYdWuURh1KDTMEhTdcWgahHsQ7v550Ffs3jSfnRQnn-ZfnrP7NA0XNrTHNpvrFl6gRtTol3Yj_AJShggX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Connectivity+Analysis+of+Mental+Fatigue+Reveals+Different+Network+Topological+Alterations+Between+Driving+and+Vigilance+Tasks&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Dimitrakopoulos%2C+Georgios+N.&rft.au=Kakkos%2C+Ioannis&rft.au=Dai%2C+Zhongxiang&rft.au=Wang%2C+Hongtao&rft.date=2018-04-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=26&rft.issue=4&rft.spage=740&rft.epage=749&rft_id=info:doi/10.1109%2FTNSRE.2018.2791936&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2018_2791936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon