SCMcluster: a high-precision cell clustering algorithm integrating marker gene set with single-cell RNA sequencing data
Abstract Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise and sparsity, which poses a great challenge for the advance of high-precision clustering algorithms. This study adopts cellular mark...
Saved in:
Published in | Briefings in functional genomics Vol. 22; no. 4; pp. 329 - 340 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
17.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2041-2649 2041-2657 2041-2657 |
DOI | 10.1093/bfgp/elad004 |
Cover
Loading…
Abstract | Abstract
Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise and sparsity, which poses a great challenge for the advance of high-precision clustering algorithms. This study adopts cellular markers to identify differences between cells, which contributes to feature extraction of single cells. In this work, we propose a high-precision single-cell clustering algorithm-SCMcluster (single-cell cluster using marker genes). This algorithm integrates two cell marker databases(CellMarker database and PanglaoDB database) with scRNA-seq data for feature extraction and constructs an ensemble clustering model based on the consensus matrix. We test the efficiency of this algorithm and compare it with other eight popular clustering algorithms on two scRNA-seq datasets derived from human and mouse tissues, respectively. The experimental results show that SCMcluster outperforms the existing methods in both feature extraction and clustering performance. The source code of SCMcluster is available for free at https://github.com/HaoWuLab-Bioinformatics/SCMcluster. |
---|---|
AbstractList | Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise and sparsity, which poses a great challenge for the advance of high-precision clustering algorithms. This study adopts cellular markers to identify differences between cells, which contributes to feature extraction of single cells. In this work, we propose a high-precision single-cell clustering algorithm-SCMcluster (single-cell cluster using marker genes). This algorithm integrates two cell marker databases(CellMarker database and PanglaoDB database) with scRNA-seq data for feature extraction and constructs an ensemble clustering model based on the consensus matrix. We test the efficiency of this algorithm and compare it with other eight popular clustering algorithms on two scRNA-seq datasets derived from human and mouse tissues, respectively. The experimental results show that SCMcluster outperforms the existing methods in both feature extraction and clustering performance. The source code of SCMcluster is available for free at https://github.com/HaoWuLab-Bioinformatics/SCMcluster.Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise and sparsity, which poses a great challenge for the advance of high-precision clustering algorithms. This study adopts cellular markers to identify differences between cells, which contributes to feature extraction of single cells. In this work, we propose a high-precision single-cell clustering algorithm-SCMcluster (single-cell cluster using marker genes). This algorithm integrates two cell marker databases(CellMarker database and PanglaoDB database) with scRNA-seq data for feature extraction and constructs an ensemble clustering model based on the consensus matrix. We test the efficiency of this algorithm and compare it with other eight popular clustering algorithms on two scRNA-seq datasets derived from human and mouse tissues, respectively. The experimental results show that SCMcluster outperforms the existing methods in both feature extraction and clustering performance. The source code of SCMcluster is available for free at https://github.com/HaoWuLab-Bioinformatics/SCMcluster. Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise and sparsity, which poses a great challenge for the advance of high-precision clustering algorithms. This study adopts cellular markers to identify differences between cells, which contributes to feature extraction of single cells. In this work, we propose a high-precision single-cell clustering algorithm-SCMcluster (single-cell cluster using marker genes). This algorithm integrates two cell marker databases(CellMarker database and PanglaoDB database) with scRNA-seq data for feature extraction and constructs an ensemble clustering model based on the consensus matrix. We test the efficiency of this algorithm and compare it with other eight popular clustering algorithms on two scRNA-seq datasets derived from human and mouse tissues, respectively. The experimental results show that SCMcluster outperforms the existing methods in both feature extraction and clustering performance. The source code of SCMcluster is available for free at https://github.com/HaoWuLab-Bioinformatics/SCMcluster. Abstract Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise and sparsity, which poses a great challenge for the advance of high-precision clustering algorithms. This study adopts cellular markers to identify differences between cells, which contributes to feature extraction of single cells. In this work, we propose a high-precision single-cell clustering algorithm-SCMcluster (single-cell cluster using marker genes). This algorithm integrates two cell marker databases(CellMarker database and PanglaoDB database) with scRNA-seq data for feature extraction and constructs an ensemble clustering model based on the consensus matrix. We test the efficiency of this algorithm and compare it with other eight popular clustering algorithms on two scRNA-seq datasets derived from human and mouse tissues, respectively. The experimental results show that SCMcluster outperforms the existing methods in both feature extraction and clustering performance. The source code of SCMcluster is available for free at https://github.com/HaoWuLab-Bioinformatics/SCMcluster. |
Author | Wang, Meili Zhou, Bing Wu, Hao Zhou, Haoru |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0003-2340-9258 surname: Wu fullname: Wu, Hao email: haowu@sdu.edu.cn – sequence: 2 givenname: Haoru orcidid: 0000-0003-1524-0093 surname: Zhou fullname: Zhou, Haoru email: haowu@sdu.edu.cn – sequence: 3 givenname: Bing orcidid: 0000-0002-5872-8358 surname: Zhou fullname: Zhou, Bing – sequence: 4 givenname: Meili orcidid: 0000-0001-7901-1789 surname: Wang fullname: Wang, Meili email: wml@nwsuaf.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36848584$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLxDAUhYMoPmfnWrLThdWkSZvWnQy-YFTwsS5petuJdtKapIj_3tQZXQgaArnkfPdwHzto3XQGENqn5ISSnJ2WddOfQisrQvga2o4Jp1GcJmL9J-b5Fpo490LCYZRzSjbRFkszniUZ30bvj9Nb1Q7Ogz3DEs91M496C0o73RmsoG3xStamwbJtOqv9fIG18dBY6cffhbSvYHEDBrADj98DgV1QWoi-HB7uzoPwNoBRI19JL_fQRi1bB5PVu4ueLy-eptfR7P7qZno-ixSLmY9KGocWuKo4o7XIZZ6lmah4UvJSKJZQBoQk4fJS5gzqVAimckUJMJanOQi2i46Wvr3tQgHOFwvtxqKkgW5wRSwyItKUMhrQgxU6lAuoit7q0NlH8T2sABwvAWU75yzUPwglxbiOYlxHsVpHwONfuNI-TKwz3krd_pV0uEzqhv5_-08f8Z0b |
CitedBy_id | crossref_primary_10_1371_journal_pone_0311791 crossref_primary_10_1007_s12539_024_00620_3 crossref_primary_10_1093_bib_bbad497 crossref_primary_10_7717_peerj_cs_2240 |
Cites_doi | 10.1016/j.cell.2019.05.031 10.1093/nar/gkw430 10.1186/s13059-019-1898-6 10.1371/journal.pgen.1008432 10.1109/34.868688 10.1093/database/baz046 10.1038/s41596-020-00409-w 10.1016/j.cels.2016.08.011 10.1038/nature14966 10.1038/ncomms14049 10.1016/j.cels.2019.03.010 10.1093/nar/gkt1102 10.1093/nar/gkab950 10.1093/bib/bbab579 10.1093/nar/gkw1092 10.1093/nar/gky900 10.1109/5.58325 10.1038/nmeth.4612 10.1016/j.cels.2016.09.002 10.1016/j.molcel.2015.04.005 10.1093/bib/bbab034 10.1038/s41568-019-0180-2 10.1093/bib/bbac023 10.1093/bioinformatics/btaa278 10.1080/01621459.1963.10500845 10.1007/BF01908075 10.1093/nar/gkx1064 10.1016/j.cels.2020.05.010 10.1038/s41581-018-0021-7 10.1093/bioinformatics/btac575 10.1186/s13059-019-1874-1 10.1073/pnas.221465998 10.1016/j.cell.2015.05.002 10.1186/s13059-015-0844-5 10.1109/TIT.1982.1056489 10.1093/bioinformatics/btv088 10.1080/01621459.1983.10478008 10.1038/nmeth.4236 10.1038/s41571-021-00593-y 10.1093/bib/bby076 10.1093/bib/bbab147 10.1186/s12859-016-0984-y 10.1007/978-1-0716-1307-8_19 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023 The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023 – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/bfgp/elad004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-2657 |
EndPage | 340 |
ExternalDocumentID | 36848584 10_1093_bfgp_elad004 10.1093/bfgp/elad004 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .2P .I3 0R~ 4.4 48X 53G 5VS 6J9 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABJNI ABMNT ABNKS ABPQP ABPTD ABQLI ABQTQ ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACIWK ACPRK ACUFI ACUHS ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADNBA ADOCK ADPDF ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AMNDL APIBT APWMN ARIXL AXUDD AYOIW BAWUL BAYMD BEYMZ BHONS BQDIO BSWAC C45 CDBKE CZ4 DAKXR DIK DILTD DU5 D~K EAD EAP EAS EBD EBS EE~ EJD EMK EMOBN ESX F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KSI KSN M-Z M49 N9A NGC NLBLG NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OJZSN OK1 OVD PAFKI PEELM PQQKQ Q1. Q5Y RD5 RPM RUSNO RW1 RXO SV3 TEORI TLC TR2 TUS X7H Y6R YAYTL YKOAZ YXANX ~91 AAYXX AHGBF CITATION TOX CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c323t-b122644cd431f79a98687d45b4b7c3513e0050054ba93ef6773c9c10e33969e73 |
IEDL.DBID | TOX |
ISSN | 2041-2649 2041-2657 |
IngestDate | Fri Jul 11 05:47:05 EDT 2025 Mon Jul 21 05:55:00 EDT 2025 Thu Apr 24 23:12:08 EDT 2025 Tue Jul 01 03:26:57 EDT 2025 Wed Apr 02 07:05:34 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | scRNA-seq ensemble clustering marker genes single-cell clustering |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c323t-b122644cd431f79a98687d45b4b7c3513e0050054ba93ef6773c9c10e33969e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7901-1789 0000-0002-5872-8358 0000-0003-1524-0093 0000-0003-2340-9258 |
PMID | 36848584 |
PQID | 2780766131 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2780766131 pubmed_primary_36848584 crossref_primary_10_1093_bfgp_elad004 crossref_citationtrail_10_1093_bfgp_elad004 oup_primary_10_1093_bfgp_elad004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-17 |
PublicationDateYYYYMMDD | 2023-07-17 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in functional genomics |
PublicationTitleAlternate | Brief Funct Genomics |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Finak (2023071708501209100_ref25) 2015; 16 Andrews (2023071708501209100_ref9) 2021; 16 Slenter (2023071708501209100_ref47) 2018; 46 Minoru (2023071708501209100_ref45) 2017; 45 Slovin (2023071708501209100_ref10) 2021; 2284 Xu (2023071708501209100_ref17) 2015; 31 Muraro (2023071708501209100_ref30) 2016; 3 Hafemeister (2023071708501209100_ref33) 2019; 20 Vinh (2023071708501209100_ref37) 2010; 11 Kolodziejczyk (2023071708501209100_ref1) 2015; 58 Strehl (2023071708501209100_ref35) 2002; 3 Ji (2023071708501209100_ref48) 2016; 44 Stuart (2023071708501209100_ref16) 2019; 177 Zheng (2023071708501209100_ref2) 2017; 8 Zhang (2023071708501209100_ref23) 2019; 47 Ward (2023071708501209100_ref13) 1963; 58 Diaz-Papkovich (2023071708501209100_ref20) 2019; 15 Bernstein (2023071708501209100_ref41) 2020; 11 žurauskienė (2023071708501209100_ref15) 2016; 17 Su (2023071708501209100_ref18) 2021; 22 Shi (2023071708501209100_ref12) 2000; 22 Zhang (2023071708501209100_ref21) 2022; 50 Pritchard (2023071708501209100_ref39) 2001; 98 Dutta (2023071708501209100_ref8) 2022; 19 Wu (2023071708501209100_ref4) 2022; 23 Dai (2023071708501209100_ref27) 2022; 23 Kohonen (2023071708501209100_ref29) 2002; 78 Zhang (2023071708501209100_ref44) 2021; 22 Kim (2023071708501209100_ref34) 2019; 20 Wu (2023071708501209100_ref28) 2022; 38 Fowlkes (2023071708501209100_ref38) 1983; 78 Baron (2023071708501209100_ref31) 2016; 3 Lloyd (2023071708501209100_ref11) 1982; 28 Jeong (2023071708501209100_ref40) 2020; 36 Potter (2023071708501209100_ref5) 2018; 14 Kiselev (2023071708501209100_ref14) 2017; 14 Der Maaten (2023071708501209100_ref19) 2008; 9 Keller (2023071708501209100_ref7) 2019; 19 Sun (2023071708501209100_ref42) 2019; 20 Hubert (2023071708501209100_ref36) 1985; 2 Franzén (2023071708501209100_ref24) 2019; 2019 Cole (2023071708501209100_ref32) 2019; 8 Laehnemann (2023071708501209100_ref6) 2020; 21 David (2023071708501209100_ref46) 2014; 42 Macosko (2023071708501209100_ref3) 2015; 161 Soneson (2023071708501209100_ref26) 2018; 15 Xu (2023071708501209100_ref22) 2022; 50 Grün (2023071708501209100_ref43) 2015; 525 |
References_xml | – volume: 177 start-page: 1888 issue: 7 year: 2019 ident: 2023071708501209100_ref16 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 44 issue: 13 year: 2016 ident: 2023071708501209100_ref48 article-title: TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw430 – volume: 20 start-page: 269 issue: 1 year: 2019 ident: 2023071708501209100_ref42 article-title: Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis publication-title: Genome Biol doi: 10.1186/s13059-019-1898-6 – volume: 15 start-page: e1008432 issue: 11 year: 2019 ident: 2023071708501209100_ref20 article-title: Umap reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008432 – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 2023071708501209100_ref12 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.868688 – volume: 2019 year: 2019 ident: 2023071708501209100_ref24 article-title: Panglaodb: a web server for exploration of mouse and human single-cell RNA sequencing data publication-title: Database doi: 10.1093/database/baz046 – volume: 16 start-page: 1 issue: 1 year: 2021 ident: 2023071708501209100_ref9 article-title: Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data publication-title: Nat Protoc doi: 10.1038/s41596-020-00409-w – volume: 3 start-page: 346 issue: 4 year: 2016 ident: 2023071708501209100_ref31 article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure publication-title: Cell Syst doi: 10.1016/j.cels.2016.08.011 – volume: 525 start-page: 251 issue: 7568 year: 2015 ident: 2023071708501209100_ref43 article-title: Single-cell messenger RNA sequencing reveals rare intestinal cell types publication-title: Nature doi: 10.1038/nature14966 – volume: 8 start-page: 14049 issue: 1 year: 2017 ident: 2023071708501209100_ref2 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat Commun doi: 10.1038/ncomms14049 – volume: 8 start-page: 315 issue: 4 year: 2019 ident: 2023071708501209100_ref32 article-title: Performance assessment and selection of normalization procedures for single-cell RNA-Seq publication-title: Cell Syst doi: 10.1016/j.cels.2019.03.010 – volume: 42 start-page: D472 issue: D1 year: 2014 ident: 2023071708501209100_ref46 article-title: The reactome pathway knowledgebase publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1102 – volume: 50 start-page: D391 issue: D1 year: 2022 ident: 2023071708501209100_ref21 article-title: TcoFBase: a comprehensive database for decoding the regulatory transcription co-factors in human and mouse publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab950 – volume: 21 issue: 1 year: 2020 ident: 2023071708501209100_ref6 article-title: Eleven grand challenges in single-cell data science publication-title: Genome Biol – volume: 23 issue: 2 year: 2022 ident: 2023071708501209100_ref27 article-title: Accurate and fast cell marker gene identification with COSG publication-title: Brief Bioinformatics doi: 10.1093/bib/bbab579 – volume: 45 start-page: D353 issue: D1 year: 2017 ident: 2023071708501209100_ref45 article-title: Kegg: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1092 – volume: 47 start-page: D721 issue: D1 year: 2019 ident: 2023071708501209100_ref23 article-title: Cellmarker: a manually curated resource of cell markers in human and mouse publication-title: Nucleic Acids Res doi: 10.1093/nar/gky900 – volume: 78 start-page: 1464 issue: 9 year: 2002 ident: 2023071708501209100_ref29 article-title: The self-organizing map publication-title: Proc IEEE doi: 10.1109/5.58325 – volume: 9 start-page: 2579 year: 2008 ident: 2023071708501209100_ref19 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – volume: 15 start-page: 255 issue: 4 year: 2018 ident: 2023071708501209100_ref26 article-title: Bias, robustness and scalability in single-cell differential expression analysis publication-title: Nat Methods doi: 10.1038/nmeth.4612 – volume: 3 start-page: 385 issue: 4 year: 2016 ident: 2023071708501209100_ref30 article-title: A single-cell transcriptome atlas of the human pancreas publication-title: Cell Syst doi: 10.1016/j.cels.2016.09.002 – volume: 58 start-page: 610 issue: 4 year: 2015 ident: 2023071708501209100_ref1 article-title: The technology and biology of single-cell RNA sequencing publication-title: Mol Cell doi: 10.1016/j.molcel.2015.04.005 – volume: 22 issue: 5 year: 2021 ident: 2023071708501209100_ref18 article-title: Accurate feature selection improves single-cell RNA-seq cell clustering publication-title: Brief Bioinformatics doi: 10.1093/bib/bbab034 – volume: 3 start-page: 583 issue: 3 year: 2002 ident: 2023071708501209100_ref35 article-title: Cluster ensembles - a knowledge reuse framework for combining multiple partitions publication-title: J Mach Learn Res – volume: 19 start-page: 553 issue: 10 year: 2019 ident: 2023071708501209100_ref7 article-title: Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells publication-title: Nat Rev Cancer doi: 10.1038/s41568-019-0180-2 – volume: 23 start-page: bbac023 issue: 2 year: 2022 ident: 2023071708501209100_ref4 article-title: StackTADB: a stacking-based ensemble learning model for predicting the boundaries of topologically associating domains (TADs) accurately in fruit flies publication-title: Brief Bioinformatics doi: 10.1093/bib/bbac023 – volume: 50 start-page: D402 issue: D1 year: 2022 ident: 2023071708501209100_ref22 article-title: TF-marker: a comprehensive manually curated database for transcription factors and related markers in specific cell and tissue types in human publication-title: Nucleic Acids Res – volume: 36 start-page: 4021 issue: 13 year: 2020 ident: 2023071708501209100_ref40 article-title: Prime: a probabilistic imputation method to reduce dropout effects in single-cell RNA sequencing publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa278 – volume: 58 start-page: 236 issue: 301 year: 1963 ident: 2023071708501209100_ref13 article-title: Hierarchical grouping to optimize an objective function publication-title: J Am Stat Assoc doi: 10.1080/01621459.1963.10500845 – volume: 2 start-page: 193 issue: 1 year: 1985 ident: 2023071708501209100_ref36 article-title: Comparing partitions publication-title: J Classif doi: 10.1007/BF01908075 – volume: 46 start-page: D661 issue: D1 year: 2018 ident: 2023071708501209100_ref47 article-title: Wikipathways: a multifaceted pathway database bridging metabolomics to other omics research publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1064 – volume: 11 start-page: 95 issue: 1 year: 2020 ident: 2023071708501209100_ref41 article-title: Solo: doublet identification in single-cell RNA-seq via semi-supervised deep learning publication-title: Cell Syst doi: 10.1016/j.cels.2020.05.010 – volume: 14 start-page: 479 issue: 8 year: 2018 ident: 2023071708501209100_ref5 article-title: Single-cell RNA sequencing for the study of development, physiology and disease publication-title: Nat Rev Nephrol doi: 10.1038/s41581-018-0021-7 – volume: 38 start-page: 4497 year: 2022 ident: 2023071708501209100_ref28 article-title: CLNN-loop: a deep learning model to predict CTCF-mediated chromatin loops in the different cell lines and CTCF-binding sites (CBS) pair types publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac575 – volume: 20 start-page: 296 issue: 1 year: 2019 ident: 2023071708501209100_ref33 article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression publication-title: Genome Biol doi: 10.1186/s13059-019-1874-1 – volume: 98 start-page: 13266 issue: 23 year: 2001 ident: 2023071708501209100_ref39 article-title: Project normal: defining normal variance in mouse gene expression publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.221465998 – volume: 161 start-page: 1202 issue: 5 year: 2015 ident: 2023071708501209100_ref3 article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 16 start-page: 278 year: 2015 ident: 2023071708501209100_ref25 article-title: Mast: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data publication-title: Genome Biol doi: 10.1186/s13059-015-0844-5 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 2023071708501209100_ref11 article-title: Least squares quantization in PCM publication-title: IEEE Trans Inform Theory doi: 10.1109/TIT.1982.1056489 – volume: 31 start-page: 1974 issue: 12 year: 2015 ident: 2023071708501209100_ref17 article-title: Identification of cell types from single-cell transcriptomes using a novel clustering method publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv088 – volume: 78 start-page: 553 issue: 383 year: 1983 ident: 2023071708501209100_ref38 article-title: A method for comparing two hierarchical clusterings publication-title: J Am Stat Assoc doi: 10.1080/01621459.1983.10478008 – volume: 11 start-page: 2837 year: 2010 ident: 2023071708501209100_ref37 article-title: Information theoretic measures for clusterings comparison: Variants,properties, normalization and correction for chance publication-title: J Mach Learn Res – volume: 14 start-page: 483 issue: 5 year: 2017 ident: 2023071708501209100_ref14 article-title: SC3: consensus clustering of single-cell RNA-seq data publication-title: Nat Methods doi: 10.1038/nmeth.4236 – volume: 19 start-page: 223 issue: 4 year: 2022 ident: 2023071708501209100_ref8 article-title: Single-cell profiling of tumour evolution in multiple myeloma—opportunities for precision medicine publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-021-00593-y – volume: 20 start-page: 2316 issue: 6 year: 2019 ident: 2023071708501209100_ref34 article-title: Impact of similarity metrics on single-cell RNA-seq data clustering publication-title: Brief Bioinformatics doi: 10.1093/bib/bby076 – volume: 22 start-page: 6 issue: 6 year: 2021 ident: 2023071708501209100_ref44 article-title: Improving single-cell RNA-seq clustering by integrating pathways publication-title: Brief Bioinformatics doi: 10.1093/bib/bbab147 – volume: 17 start-page: 140 year: 2016 ident: 2023071708501209100_ref15 article-title: pcaReduce: hierarchical clustering of single-cell transcriptional profiles publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-0984-y – volume: 2284 start-page: 343 year: 2021 ident: 2023071708501209100_ref10 article-title: Single-cell RNA sequencing analysis: a step-by-step overview publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-1307-8_19 |
SSID | ssj0000314410 |
Score | 2.3602972 |
Snippet | Abstract
Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data... Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 329 |
SubjectTerms | Algorithms Animals Cluster Analysis Gene Expression Profiling - methods Humans Mice Sequence Analysis, RNA - methods Single-Cell Analysis - methods |
Title | SCMcluster: a high-precision cell clustering algorithm integrating marker gene set with single-cell RNA sequencing data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36848584 https://www.proquest.com/docview/2780766131 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3da8IwEMDDEAZ7Gfue-5AMtqcRbE3aNHsTmchAB5uCbyWJiXuoVfxg7L9fro2C-8CHvrTXFO4S7nq5_A6he6m45VqExLLEEqaMJaKRaGhmFmgVjnRQcLa7vbgzYC_DaOghSYs_tvAFrSs7ntVNJkcl99P5X2Dk91-Hm1wKINhZAR5oBCyEoi3ha9x_vr_lfbZOtP0KLAsH0z5Chz4yxM3SlMdoz-QnaL_sFfl1ij7fW12drYBr8IQlBswwmc19hxwM-XfsHztnhGU2nrrf_o8JXvMg4O4EanHm2M0ZgxdmiSEJiyFZkBlSjPDWa2JfXA3yUD56hgbt536rQ3zXBKJpgy6JCuFsLNMjFxpYLqRI4oSPWKSY4ppGITXAfHEmUFJQY2POqRY6DAylIhaG03NUyae5uURYOilrZEBVFDgzSkBVGe0uHkVUW1lFj2ttptojxaGzRZaWW9s0Bd2nXvdV9LCRnpUojX_ksDPMDpG7tdVStxxAQzI309UibfAk4C7moGEVXZTm3IxE44QlLuC62v2Ba3QAfeVJQdC8QZXlfGVuXfSxVLUiIVQrJuA3yEnZwA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCMcluster%3A+a+high-precision+cell+clustering+algorithm+integrating+marker+gene+set+with+single-cell+RNA+sequencing+data&rft.jtitle=Briefings+in+functional+genomics&rft.au=Wu%2C+Hao&rft.au=Zhou%2C+Haoru&rft.au=Zhou%2C+Bing&rft.au=Wang%2C+Meili&rft.date=2023-07-17&rft.issn=2041-2649&rft.eissn=2041-2657&rft.volume=22&rft.issue=4&rft.spage=329&rft.epage=340&rft_id=info:doi/10.1093%2Fbfgp%2Felad004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bfgp_elad004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-2649&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-2649&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-2649&client=summon |