SCMcluster: a high-precision cell clustering algorithm integrating marker gene set with single-cell RNA sequencing data

Abstract Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise and sparsity, which poses a great challenge for the advance of high-precision clustering algorithms. This study adopts cellular mark...

Full description

Saved in:
Bibliographic Details
Published inBriefings in functional genomics Vol. 22; no. 4; pp. 329 - 340
Main Authors Wu, Hao, Zhou, Haoru, Zhou, Bing, Wang, Meili
Format Journal Article
LanguageEnglish
Published England Oxford University Press 17.07.2023
Subjects
Online AccessGet full text
ISSN2041-2649
2041-2657
2041-2657
DOI10.1093/bfgp/elad004

Cover

Loading…
Abstract Abstract Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise and sparsity, which poses a great challenge for the advance of high-precision clustering algorithms. This study adopts cellular markers to identify differences between cells, which contributes to feature extraction of single cells. In this work, we propose a high-precision single-cell clustering algorithm-SCMcluster (single-cell cluster using marker genes). This algorithm integrates two cell marker databases(CellMarker database and PanglaoDB database) with scRNA-seq data for feature extraction and constructs an ensemble clustering model based on the consensus matrix. We test the efficiency of this algorithm and compare it with other eight popular clustering algorithms on two scRNA-seq datasets derived from human and mouse tissues, respectively. The experimental results show that SCMcluster outperforms the existing methods in both feature extraction and clustering performance. The source code of SCMcluster is available for free at https://github.com/HaoWuLab-Bioinformatics/SCMcluster.
AbstractList Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise and sparsity, which poses a great challenge for the advance of high-precision clustering algorithms. This study adopts cellular markers to identify differences between cells, which contributes to feature extraction of single cells. In this work, we propose a high-precision single-cell clustering algorithm-SCMcluster (single-cell cluster using marker genes). This algorithm integrates two cell marker databases(CellMarker database and PanglaoDB database) with scRNA-seq data for feature extraction and constructs an ensemble clustering model based on the consensus matrix. We test the efficiency of this algorithm and compare it with other eight popular clustering algorithms on two scRNA-seq datasets derived from human and mouse tissues, respectively. The experimental results show that SCMcluster outperforms the existing methods in both feature extraction and clustering performance. The source code of SCMcluster is available for free at https://github.com/HaoWuLab-Bioinformatics/SCMcluster.Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise and sparsity, which poses a great challenge for the advance of high-precision clustering algorithms. This study adopts cellular markers to identify differences between cells, which contributes to feature extraction of single cells. In this work, we propose a high-precision single-cell clustering algorithm-SCMcluster (single-cell cluster using marker genes). This algorithm integrates two cell marker databases(CellMarker database and PanglaoDB database) with scRNA-seq data for feature extraction and constructs an ensemble clustering model based on the consensus matrix. We test the efficiency of this algorithm and compare it with other eight popular clustering algorithms on two scRNA-seq datasets derived from human and mouse tissues, respectively. The experimental results show that SCMcluster outperforms the existing methods in both feature extraction and clustering performance. The source code of SCMcluster is available for free at https://github.com/HaoWuLab-Bioinformatics/SCMcluster.
Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise and sparsity, which poses a great challenge for the advance of high-precision clustering algorithms. This study adopts cellular markers to identify differences between cells, which contributes to feature extraction of single cells. In this work, we propose a high-precision single-cell clustering algorithm-SCMcluster (single-cell cluster using marker genes). This algorithm integrates two cell marker databases(CellMarker database and PanglaoDB database) with scRNA-seq data for feature extraction and constructs an ensemble clustering model based on the consensus matrix. We test the efficiency of this algorithm and compare it with other eight popular clustering algorithms on two scRNA-seq datasets derived from human and mouse tissues, respectively. The experimental results show that SCMcluster outperforms the existing methods in both feature extraction and clustering performance. The source code of SCMcluster is available for free at https://github.com/HaoWuLab-Bioinformatics/SCMcluster.
Abstract Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise and sparsity, which poses a great challenge for the advance of high-precision clustering algorithms. This study adopts cellular markers to identify differences between cells, which contributes to feature extraction of single cells. In this work, we propose a high-precision single-cell clustering algorithm-SCMcluster (single-cell cluster using marker genes). This algorithm integrates two cell marker databases(CellMarker database and PanglaoDB database) with scRNA-seq data for feature extraction and constructs an ensemble clustering model based on the consensus matrix. We test the efficiency of this algorithm and compare it with other eight popular clustering algorithms on two scRNA-seq datasets derived from human and mouse tissues, respectively. The experimental results show that SCMcluster outperforms the existing methods in both feature extraction and clustering performance. The source code of SCMcluster is available for free at https://github.com/HaoWuLab-Bioinformatics/SCMcluster.
Author Wang, Meili
Zhou, Bing
Wu, Hao
Zhou, Haoru
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0003-2340-9258
  surname: Wu
  fullname: Wu, Hao
  email: haowu@sdu.edu.cn
– sequence: 2
  givenname: Haoru
  orcidid: 0000-0003-1524-0093
  surname: Zhou
  fullname: Zhou, Haoru
  email: haowu@sdu.edu.cn
– sequence: 3
  givenname: Bing
  orcidid: 0000-0002-5872-8358
  surname: Zhou
  fullname: Zhou, Bing
– sequence: 4
  givenname: Meili
  orcidid: 0000-0001-7901-1789
  surname: Wang
  fullname: Wang, Meili
  email: wml@nwsuaf.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36848584$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAUhYMoPmfnWrLThdWkSZvWnQy-YFTwsS5petuJdtKapIj_3tQZXQgaArnkfPdwHzto3XQGENqn5ISSnJ2WddOfQisrQvga2o4Jp1GcJmL9J-b5Fpo490LCYZRzSjbRFkszniUZ30bvj9Nb1Q7Ogz3DEs91M496C0o73RmsoG3xStamwbJtOqv9fIG18dBY6cffhbSvYHEDBrADj98DgV1QWoi-HB7uzoPwNoBRI19JL_fQRi1bB5PVu4ueLy-eptfR7P7qZno-ixSLmY9KGocWuKo4o7XIZZ6lmah4UvJSKJZQBoQk4fJS5gzqVAimckUJMJanOQi2i46Wvr3tQgHOFwvtxqKkgW5wRSwyItKUMhrQgxU6lAuoit7q0NlH8T2sABwvAWU75yzUPwglxbiOYlxHsVpHwONfuNI-TKwz3krd_pV0uEzqhv5_-08f8Z0b
CitedBy_id crossref_primary_10_1371_journal_pone_0311791
crossref_primary_10_1007_s12539_024_00620_3
crossref_primary_10_1093_bib_bbad497
crossref_primary_10_7717_peerj_cs_2240
Cites_doi 10.1016/j.cell.2019.05.031
10.1093/nar/gkw430
10.1186/s13059-019-1898-6
10.1371/journal.pgen.1008432
10.1109/34.868688
10.1093/database/baz046
10.1038/s41596-020-00409-w
10.1016/j.cels.2016.08.011
10.1038/nature14966
10.1038/ncomms14049
10.1016/j.cels.2019.03.010
10.1093/nar/gkt1102
10.1093/nar/gkab950
10.1093/bib/bbab579
10.1093/nar/gkw1092
10.1093/nar/gky900
10.1109/5.58325
10.1038/nmeth.4612
10.1016/j.cels.2016.09.002
10.1016/j.molcel.2015.04.005
10.1093/bib/bbab034
10.1038/s41568-019-0180-2
10.1093/bib/bbac023
10.1093/bioinformatics/btaa278
10.1080/01621459.1963.10500845
10.1007/BF01908075
10.1093/nar/gkx1064
10.1016/j.cels.2020.05.010
10.1038/s41581-018-0021-7
10.1093/bioinformatics/btac575
10.1186/s13059-019-1874-1
10.1073/pnas.221465998
10.1016/j.cell.2015.05.002
10.1186/s13059-015-0844-5
10.1109/TIT.1982.1056489
10.1093/bioinformatics/btv088
10.1080/01621459.1983.10478008
10.1038/nmeth.4236
10.1038/s41571-021-00593-y
10.1093/bib/bby076
10.1093/bib/bbab147
10.1186/s12859-016-0984-y
10.1007/978-1-0716-1307-8_19
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023
The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023
– notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/bfgp/elad004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-2657
EndPage 340
ExternalDocumentID 36848584
10_1093_bfgp_elad004
10.1093/bfgp/elad004
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.2P
.I3
0R~
4.4
48X
53G
5VS
6J9
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABMNT
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACIWK
ACPRK
ACUFI
ACUHS
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADNBA
ADOCK
ADPDF
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AMNDL
APIBT
APWMN
ARIXL
AXUDD
AYOIW
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BSWAC
C45
CDBKE
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EAD
EAP
EAS
EBD
EBS
EE~
EJD
EMK
EMOBN
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KBUDW
KOP
KSI
KSN
M-Z
M49
N9A
NGC
NLBLG
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OJZSN
OK1
OVD
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TLC
TR2
TUS
X7H
Y6R
YAYTL
YKOAZ
YXANX
~91
AAYXX
AHGBF
CITATION
TOX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c323t-b122644cd431f79a98687d45b4b7c3513e0050054ba93ef6773c9c10e33969e73
IEDL.DBID TOX
ISSN 2041-2649
2041-2657
IngestDate Fri Jul 11 05:47:05 EDT 2025
Mon Jul 21 05:55:00 EDT 2025
Thu Apr 24 23:12:08 EDT 2025
Tue Jul 01 03:26:57 EDT 2025
Wed Apr 02 07:05:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords scRNA-seq
ensemble clustering
marker genes
single-cell clustering
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c323t-b122644cd431f79a98687d45b4b7c3513e0050054ba93ef6773c9c10e33969e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7901-1789
0000-0002-5872-8358
0000-0003-1524-0093
0000-0003-2340-9258
PMID 36848584
PQID 2780766131
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2780766131
pubmed_primary_36848584
crossref_primary_10_1093_bfgp_elad004
crossref_citationtrail_10_1093_bfgp_elad004
oup_primary_10_1093_bfgp_elad004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-17
PublicationDateYYYYMMDD 2023-07-17
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-17
  day: 17
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in functional genomics
PublicationTitleAlternate Brief Funct Genomics
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Finak (2023071708501209100_ref25) 2015; 16
Andrews (2023071708501209100_ref9) 2021; 16
Slenter (2023071708501209100_ref47) 2018; 46
Minoru (2023071708501209100_ref45) 2017; 45
Slovin (2023071708501209100_ref10) 2021; 2284
Xu (2023071708501209100_ref17) 2015; 31
Muraro (2023071708501209100_ref30) 2016; 3
Hafemeister (2023071708501209100_ref33) 2019; 20
Vinh (2023071708501209100_ref37) 2010; 11
Kolodziejczyk (2023071708501209100_ref1) 2015; 58
Strehl (2023071708501209100_ref35) 2002; 3
Ji (2023071708501209100_ref48) 2016; 44
Stuart (2023071708501209100_ref16) 2019; 177
Zheng (2023071708501209100_ref2) 2017; 8
Zhang (2023071708501209100_ref23) 2019; 47
Ward (2023071708501209100_ref13) 1963; 58
Diaz-Papkovich (2023071708501209100_ref20) 2019; 15
Bernstein (2023071708501209100_ref41) 2020; 11
žurauskienė (2023071708501209100_ref15) 2016; 17
Su (2023071708501209100_ref18) 2021; 22
Shi (2023071708501209100_ref12) 2000; 22
Zhang (2023071708501209100_ref21) 2022; 50
Pritchard (2023071708501209100_ref39) 2001; 98
Dutta (2023071708501209100_ref8) 2022; 19
Wu (2023071708501209100_ref4) 2022; 23
Dai (2023071708501209100_ref27) 2022; 23
Kohonen (2023071708501209100_ref29) 2002; 78
Zhang (2023071708501209100_ref44) 2021; 22
Kim (2023071708501209100_ref34) 2019; 20
Wu (2023071708501209100_ref28) 2022; 38
Fowlkes (2023071708501209100_ref38) 1983; 78
Baron (2023071708501209100_ref31) 2016; 3
Lloyd (2023071708501209100_ref11) 1982; 28
Jeong (2023071708501209100_ref40) 2020; 36
Potter (2023071708501209100_ref5) 2018; 14
Kiselev (2023071708501209100_ref14) 2017; 14
Der Maaten (2023071708501209100_ref19) 2008; 9
Keller (2023071708501209100_ref7) 2019; 19
Sun (2023071708501209100_ref42) 2019; 20
Hubert (2023071708501209100_ref36) 1985; 2
Franzén (2023071708501209100_ref24) 2019; 2019
Cole (2023071708501209100_ref32) 2019; 8
Laehnemann (2023071708501209100_ref6) 2020; 21
David (2023071708501209100_ref46) 2014; 42
Macosko (2023071708501209100_ref3) 2015; 161
Soneson (2023071708501209100_ref26) 2018; 15
Xu (2023071708501209100_ref22) 2022; 50
Grün (2023071708501209100_ref43) 2015; 525
References_xml – volume: 177
  start-page: 1888
  issue: 7
  year: 2019
  ident: 2023071708501209100_ref16
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 44
  issue: 13
  year: 2016
  ident: 2023071708501209100_ref48
  article-title: TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw430
– volume: 20
  start-page: 269
  issue: 1
  year: 2019
  ident: 2023071708501209100_ref42
  article-title: Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1898-6
– volume: 15
  start-page: e1008432
  issue: 11
  year: 2019
  ident: 2023071708501209100_ref20
  article-title: Umap reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008432
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 2023071708501209100_ref12
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.868688
– volume: 2019
  year: 2019
  ident: 2023071708501209100_ref24
  article-title: Panglaodb: a web server for exploration of mouse and human single-cell RNA sequencing data
  publication-title: Database
  doi: 10.1093/database/baz046
– volume: 16
  start-page: 1
  issue: 1
  year: 2021
  ident: 2023071708501209100_ref9
  article-title: Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data
  publication-title: Nat Protoc
  doi: 10.1038/s41596-020-00409-w
– volume: 3
  start-page: 346
  issue: 4
  year: 2016
  ident: 2023071708501209100_ref31
  article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.08.011
– volume: 525
  start-page: 251
  issue: 7568
  year: 2015
  ident: 2023071708501209100_ref43
  article-title: Single-cell messenger RNA sequencing reveals rare intestinal cell types
  publication-title: Nature
  doi: 10.1038/nature14966
– volume: 8
  start-page: 14049
  issue: 1
  year: 2017
  ident: 2023071708501209100_ref2
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms14049
– volume: 8
  start-page: 315
  issue: 4
  year: 2019
  ident: 2023071708501209100_ref32
  article-title: Performance assessment and selection of normalization procedures for single-cell RNA-Seq
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2019.03.010
– volume: 42
  start-page: D472
  issue: D1
  year: 2014
  ident: 2023071708501209100_ref46
  article-title: The reactome pathway knowledgebase
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1102
– volume: 50
  start-page: D391
  issue: D1
  year: 2022
  ident: 2023071708501209100_ref21
  article-title: TcoFBase: a comprehensive database for decoding the regulatory transcription co-factors in human and mouse
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab950
– volume: 21
  issue: 1
  year: 2020
  ident: 2023071708501209100_ref6
  article-title: Eleven grand challenges in single-cell data science
  publication-title: Genome Biol
– volume: 23
  issue: 2
  year: 2022
  ident: 2023071708501209100_ref27
  article-title: Accurate and fast cell marker gene identification with COSG
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bbab579
– volume: 45
  start-page: D353
  issue: D1
  year: 2017
  ident: 2023071708501209100_ref45
  article-title: Kegg: new perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1092
– volume: 47
  start-page: D721
  issue: D1
  year: 2019
  ident: 2023071708501209100_ref23
  article-title: Cellmarker: a manually curated resource of cell markers in human and mouse
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky900
– volume: 78
  start-page: 1464
  issue: 9
  year: 2002
  ident: 2023071708501209100_ref29
  article-title: The self-organizing map
  publication-title: Proc IEEE
  doi: 10.1109/5.58325
– volume: 9
  start-page: 2579
  year: 2008
  ident: 2023071708501209100_ref19
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– volume: 15
  start-page: 255
  issue: 4
  year: 2018
  ident: 2023071708501209100_ref26
  article-title: Bias, robustness and scalability in single-cell differential expression analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4612
– volume: 3
  start-page: 385
  issue: 4
  year: 2016
  ident: 2023071708501209100_ref30
  article-title: A single-cell transcriptome atlas of the human pancreas
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.09.002
– volume: 58
  start-page: 610
  issue: 4
  year: 2015
  ident: 2023071708501209100_ref1
  article-title: The technology and biology of single-cell RNA sequencing
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.04.005
– volume: 22
  issue: 5
  year: 2021
  ident: 2023071708501209100_ref18
  article-title: Accurate feature selection improves single-cell RNA-seq cell clustering
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bbab034
– volume: 3
  start-page: 583
  issue: 3
  year: 2002
  ident: 2023071708501209100_ref35
  article-title: Cluster ensembles - a knowledge reuse framework for combining multiple partitions
  publication-title: J Mach Learn Res
– volume: 19
  start-page: 553
  issue: 10
  year: 2019
  ident: 2023071708501209100_ref7
  article-title: Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-019-0180-2
– volume: 23
  start-page: bbac023
  issue: 2
  year: 2022
  ident: 2023071708501209100_ref4
  article-title: StackTADB: a stacking-based ensemble learning model for predicting the boundaries of topologically associating domains (TADs) accurately in fruit flies
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bbac023
– volume: 50
  start-page: D402
  issue: D1
  year: 2022
  ident: 2023071708501209100_ref22
  article-title: TF-marker: a comprehensive manually curated database for transcription factors and related markers in specific cell and tissue types in human
  publication-title: Nucleic Acids Res
– volume: 36
  start-page: 4021
  issue: 13
  year: 2020
  ident: 2023071708501209100_ref40
  article-title: Prime: a probabilistic imputation method to reduce dropout effects in single-cell RNA sequencing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa278
– volume: 58
  start-page: 236
  issue: 301
  year: 1963
  ident: 2023071708501209100_ref13
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1963.10500845
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 2023071708501209100_ref36
  article-title: Comparing partitions
  publication-title: J Classif
  doi: 10.1007/BF01908075
– volume: 46
  start-page: D661
  issue: D1
  year: 2018
  ident: 2023071708501209100_ref47
  article-title: Wikipathways: a multifaceted pathway database bridging metabolomics to other omics research
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1064
– volume: 11
  start-page: 95
  issue: 1
  year: 2020
  ident: 2023071708501209100_ref41
  article-title: Solo: doublet identification in single-cell RNA-seq via semi-supervised deep learning
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2020.05.010
– volume: 14
  start-page: 479
  issue: 8
  year: 2018
  ident: 2023071708501209100_ref5
  article-title: Single-cell RNA sequencing for the study of development, physiology and disease
  publication-title: Nat Rev Nephrol
  doi: 10.1038/s41581-018-0021-7
– volume: 38
  start-page: 4497
  year: 2022
  ident: 2023071708501209100_ref28
  article-title: CLNN-loop: a deep learning model to predict CTCF-mediated chromatin loops in the different cell lines and CTCF-binding sites (CBS) pair types
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac575
– volume: 20
  start-page: 296
  issue: 1
  year: 2019
  ident: 2023071708501209100_ref33
  article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1874-1
– volume: 98
  start-page: 13266
  issue: 23
  year: 2001
  ident: 2023071708501209100_ref39
  article-title: Project normal: defining normal variance in mouse gene expression
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.221465998
– volume: 161
  start-page: 1202
  issue: 5
  year: 2015
  ident: 2023071708501209100_ref3
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 16
  start-page: 278
  year: 2015
  ident: 2023071708501209100_ref25
  article-title: Mast: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0844-5
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 2023071708501209100_ref11
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 31
  start-page: 1974
  issue: 12
  year: 2015
  ident: 2023071708501209100_ref17
  article-title: Identification of cell types from single-cell transcriptomes using a novel clustering method
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv088
– volume: 78
  start-page: 553
  issue: 383
  year: 1983
  ident: 2023071708501209100_ref38
  article-title: A method for comparing two hierarchical clusterings
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1983.10478008
– volume: 11
  start-page: 2837
  year: 2010
  ident: 2023071708501209100_ref37
  article-title: Information theoretic measures for clusterings comparison: Variants,properties, normalization and correction for chance
  publication-title: J Mach Learn Res
– volume: 14
  start-page: 483
  issue: 5
  year: 2017
  ident: 2023071708501209100_ref14
  article-title: SC3: consensus clustering of single-cell RNA-seq data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4236
– volume: 19
  start-page: 223
  issue: 4
  year: 2022
  ident: 2023071708501209100_ref8
  article-title: Single-cell profiling of tumour evolution in multiple myeloma—opportunities for precision medicine
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-021-00593-y
– volume: 20
  start-page: 2316
  issue: 6
  year: 2019
  ident: 2023071708501209100_ref34
  article-title: Impact of similarity metrics on single-cell RNA-seq data clustering
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bby076
– volume: 22
  start-page: 6
  issue: 6
  year: 2021
  ident: 2023071708501209100_ref44
  article-title: Improving single-cell RNA-seq clustering by integrating pathways
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bbab147
– volume: 17
  start-page: 140
  year: 2016
  ident: 2023071708501209100_ref15
  article-title: pcaReduce: hierarchical clustering of single-cell transcriptional profiles
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-0984-y
– volume: 2284
  start-page: 343
  year: 2021
  ident: 2023071708501209100_ref10
  article-title: Single-cell RNA sequencing analysis: a step-by-step overview
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-1307-8_19
SSID ssj0000314410
Score 2.3602972
Snippet Abstract Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data...
Single-cell clustering is the most significant part of single-cell RNA sequencing (scRNA-seq) data analysis. One main issue facing the scRNA-seq data is noise...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 329
SubjectTerms Algorithms
Animals
Cluster Analysis
Gene Expression Profiling - methods
Humans
Mice
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Title SCMcluster: a high-precision cell clustering algorithm integrating marker gene set with single-cell RNA sequencing data
URI https://www.ncbi.nlm.nih.gov/pubmed/36848584
https://www.proquest.com/docview/2780766131
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3da8IwEMDDEAZ7Gfue-5AMtqcRbE3aNHsTmchAB5uCbyWJiXuoVfxg7L9fro2C-8CHvrTXFO4S7nq5_A6he6m45VqExLLEEqaMJaKRaGhmFmgVjnRQcLa7vbgzYC_DaOghSYs_tvAFrSs7ntVNJkcl99P5X2Dk91-Hm1wKINhZAR5oBCyEoi3ha9x_vr_lfbZOtP0KLAsH0z5Chz4yxM3SlMdoz-QnaL_sFfl1ij7fW12drYBr8IQlBswwmc19hxwM-XfsHztnhGU2nrrf_o8JXvMg4O4EanHm2M0ZgxdmiSEJiyFZkBlSjPDWa2JfXA3yUD56hgbt536rQ3zXBKJpgy6JCuFsLNMjFxpYLqRI4oSPWKSY4ppGITXAfHEmUFJQY2POqRY6DAylIhaG03NUyae5uURYOilrZEBVFDgzSkBVGe0uHkVUW1lFj2ttptojxaGzRZaWW9s0Bd2nXvdV9LCRnpUojX_ksDPMDpG7tdVStxxAQzI309UibfAk4C7moGEVXZTm3IxE44QlLuC62v2Ba3QAfeVJQdC8QZXlfGVuXfSxVLUiIVQrJuA3yEnZwA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCMcluster%3A+a+high-precision+cell+clustering+algorithm+integrating+marker+gene+set+with+single-cell+RNA+sequencing+data&rft.jtitle=Briefings+in+functional+genomics&rft.au=Wu%2C+Hao&rft.au=Zhou%2C+Haoru&rft.au=Zhou%2C+Bing&rft.au=Wang%2C+Meili&rft.date=2023-07-17&rft.issn=2041-2649&rft.eissn=2041-2657&rft.volume=22&rft.issue=4&rft.spage=329&rft.epage=340&rft_id=info:doi/10.1093%2Fbfgp%2Felad004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bfgp_elad004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-2649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-2649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-2649&client=summon