Age reprogramming: cell rejuvenation by partial reprogramming

‘Age reprogramming’ refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripoten...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 149; no. 22
Main Authors Singh, Prim B., Zhakupova, Assem
Format Journal Article
LanguageEnglish
Published England 15.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ‘Age reprogramming’ refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripotent stem cells, which involves passage through an embryonic stage and loss of cellular identity. Accordingly, the study of age reprogramming can provide an understanding of how ageing can be reversed while retaining cellular identity and the specialised function(s) of a cell, which will be of benefit to regenerative medicine. Here, we highlight recent work that has provided a more nuanced understanding of age reprogramming and point to some open questions in the field that might be explored in the future.
AbstractList 'Age reprogramming' refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripotent stem cells, which involves passage through an embryonic stage and loss of cellular identity. Accordingly, the study of age reprogramming can provide an understanding of how ageing can be reversed while retaining cellular identity and the specialised function(s) of a cell, which will be of benefit to regenerative medicine. Here, we highlight recent work that has provided a more nuanced understanding of age reprogramming and point to some open questions in the field that might be explored in the future.'Age reprogramming' refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripotent stem cells, which involves passage through an embryonic stage and loss of cellular identity. Accordingly, the study of age reprogramming can provide an understanding of how ageing can be reversed while retaining cellular identity and the specialised function(s) of a cell, which will be of benefit to regenerative medicine. Here, we highlight recent work that has provided a more nuanced understanding of age reprogramming and point to some open questions in the field that might be explored in the future.
‘Age reprogramming’ refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripotent stem cells, which involves passage through an embryonic stage and loss of cellular identity. Accordingly, the study of age reprogramming can provide an understanding of how ageing can be reversed while retaining cellular identity and the specialised function(s) of a cell, which will be of benefit to regenerative medicine. Here, we highlight recent work that has provided a more nuanced understanding of age reprogramming and point to some open questions in the field that might be explored in the future.
Author Zhakupova, Assem
Singh, Prim B.
Author_xml – sequence: 1
  givenname: Prim B.
  orcidid: 0000-0002-9571-0974
  surname: Singh
  fullname: Singh, Prim B.
– sequence: 2
  givenname: Assem
  surname: Zhakupova
  fullname: Zhakupova, Assem
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36383700$$D View this record in MEDLINE/PubMed
BookMark eNptkElLAzEUgINU7KIXf4DMUYSpL8skE8FDKW5Q8KLnIZN5LVNmqclMof_e1FZB8ZIXHt_bvjEZNG2DhFxSmFIm2G2B2ykDUElyQkZUKBVryvSAjEAnEFOt6ZCMvV8DAJdKnZEhlzzlCmBE7mcrjBxuXLtypq7LZnUXWayqkFv3W2xMV7ZNlO-ijXFdaarf7Dk5XZrK48UxTsj748Pb_DlevD69zGeL2HLGu9gYLKRKqRa5FAyNoRLyPLcWEW3CTWoht1iEb3ikkJBaAcgFR4kamOYTcn3oG2Z_9Oi7rC79fk3TYNv7jCmuhBQ6kQG9OqJ9XmORbVxZG7fLvk8OwM0BsK713uHyB6GQ7X1mwWd28Blg-APbsvty0jlTVv-VfALj03ip
CitedBy_id crossref_primary_10_1089_cell_2022_0160
crossref_primary_10_3389_fgene_2024_1389558
crossref_primary_10_3390_cells13242052
crossref_primary_10_14336_AD_2024_0280
crossref_primary_10_1080_15592294_2023_2252631
crossref_primary_10_3390_cells13070628
crossref_primary_10_1134_S0026893324700377
crossref_primary_10_1007_s11357_023_00949_5
crossref_primary_10_3390_genes14091697
crossref_primary_10_3390_ijms242115804
crossref_primary_10_1016_j_tem_2024_08_004
crossref_primary_10_1016_j_stem_2024_09_013
crossref_primary_10_1002_bies_202200208
crossref_primary_10_1038_s43587_023_00528_5
crossref_primary_10_1080_17501911_2024_2432851
crossref_primary_10_18632_aging_206105
crossref_primary_10_7554_eLife_90579_3
crossref_primary_10_7554_eLife_90579
crossref_primary_10_1016_j_arr_2024_102204
crossref_primary_10_1016_j_mocell_2024_100137
crossref_primary_10_1134_S2079057024600381
crossref_primary_10_1080_13102818_2024_2358999
crossref_primary_10_1111_acel_14039
crossref_primary_10_3390_cells13232002
crossref_primary_10_3390_ijms252312533
Cites_doi 10.1002/stem.2453
10.3390/cells9081881
10.1101/cshperspect.a019331
10.1126/sciadv.abg6082
10.1016/j.cell.2016.11.052
10.1038/s41467-021-23353-z
10.1089/scd.2013.0267
10.1038/ncomms3478
10.1007/s12038-019-9923-1
10.1101/gad.173922.111
10.1038/s41556-018-0093-4
10.1038/s43587-022-00183-2
10.1093/nar/gkaa1091
10.1038/s41588-017-0003-x
10.1186/s13059-014-0545-5
10.1006/dbio.1995.8041
10.1038/s41467-018-06398-5
10.1016/j.cell.2013.05.039
10.1038/cr.2011.107
10.1016/j.tibtech.2022.01.011
10.1002/agm2.12197
10.1101/gad.1303605
10.1126/science.aau0583
10.1016/j.stem.2013.02.005
10.1016/j.stem.2016.11.020
10.1016/j.stem.2008.12.010
10.1126/science.1158799
10.1101/2021.01.18.426733
10.1038/nsmb.3384
10.1016/j.molmed.2020.08.012
10.1128/MCB.00487-06
10.1111/acel.13577
10.1016/j.cell.2014.09.055
10.1126/sciadv.abe5671
10.1038/nature12586
10.1371/journal.pone.0150518
10.1126/science.abg5159
10.7554/eLife.71624
10.1038/ncomms12359
10.1111/acel.13714
10.1016/j.stemcr.2016.02.004
10.1186/s13059-018-1390-8
10.1098/rsos.191976
10.1038/nature21683
10.1007/s12038-010-0034-2
10.1038/nbt.3270
10.1038/nature15749
10.1038/ncb1664
10.1186/s13148-021-01158-7
10.1016/j.cell.2006.07.024
10.1186/gb-2013-14-10-r115
10.1101/2022.05.27.493700
10.1016/j.stemcr.2020.09.010
10.1111/j.1365-2443.2012.01595.x
10.1038/s43587-022-00209-9
10.1016/j.molcel.2016.08.032
10.1016/j.cels.2022.05.002
10.1111/acel.13578
10.1038/s41586-020-2975-4
10.1016/S0092-8674(00)00212-9
10.1242/dev.200361
10.1073/pnas.2118763119
10.1007/s00018-016-2358-z
10.1038/385810a0
10.1371/journal.pgen.1000242
10.1038/s41586-022-04593-5
10.1111/acel.12877
10.1101/gad.303123.117
10.1016/0012-1606(62)90043-X
10.1038/s41467-020-15174-3
10.1093/humupd/dmw028
10.1038/srep04789
10.1016/j.celrep.2022.110730
ContentType Journal Article
Copyright 2022. Published by The Company of Biologists Ltd.
Copyright_xml – notice: 2022. Published by The Company of Biologists Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1242/dev.200755
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
ExternalDocumentID 36383700
10_1242_dev_200755
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.55
0R~
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAYXX
ABJNI
ABZEH
ACGFS
ACMFV
ACPRK
ACREN
ADBBV
ADFRT
ADVGF
AENEX
AFFNX
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
F5P
F9R
GX1
H13
HZ~
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
SJN
TR2
TWZ
UPT
W8F
WH7
WOQ
X7M
XSW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c323t-aaed678194b642eaa160bbbcceeec53a8c0bcedc53edc64608c40e343e6e90293
ISSN 0950-1991
1477-9129
IngestDate Fri Jul 11 00:57:24 EDT 2025
Mon Jul 21 05:37:53 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Tue Jul 01 04:14:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Epigenetic rejuvenation
OSKM
Cellular identity
Partial reprogramming
H3K9me3
Age reprogramming
Language English
License http://creativecommons.org/licenses/by/4.0
2022. Published by The Company of Biologists Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-aaed678194b642eaa160bbbcceeec53a8c0bcedc53edc64608c40e343e6e90293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9571-0974
OpenAccessLink https://journals.biologists.com/dev/article-pdf/doi/10.1242/dev.200755/2304957/dev200755.pdf
PMID 36383700
PQID 2737464956
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2737464956
pubmed_primary_36383700
crossref_primary_10_1242_dev_200755
crossref_citationtrail_10_1242_dev_200755
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2022
References Ocampo (2022111710393917700_DEV200755C46) 2016; 167
Maza (2022111710393917700_DEV200755C40) 2015; 33
Parras (2022111710393917700_DEV200755C50) 2022
Nicetto (2022111710393917700_DEV200755C45) 2019; 363
Takahashi (2022111710393917700_DEV200755C66) 2006; 126
Chondronasiou (2022111710393917700_DEV200755C10) 2022; 21
Rodríguez-Matellán (2022111710393917700_DEV200755C54) 2020; 15
Thakurela (2022111710393917700_DEV200755C67) 2013; 4
Borkent (2022111710393917700_DEV200755C4) 2016; 6
Grossniklaus (2022111710393917700_DEV200755C19) 2014; 6
Matoba (2022111710393917700_DEV200755C38) 2014; 159
Imbeault (2022111710393917700_DEV200755C75) 2017; 543
Ku (2022111710393917700_DEV200755C28) 2008; 4
Manukyan (2022111710393917700_DEV200755C35) 2012; 17
Olova (2022111710393917700_DEV200755C48) 2019; 18
Gill (2022111710393917700_DEV200755C17) 2022; 11
Roux (2022111710393917700_DEV200755C55) 2022; 13
Singh (2022111710393917700_DEV200755C62) 2010; 35
Palmer (2022111710393917700_DEV200755C49) 2022; 5
Cheloufi (2022111710393917700_DEV200755C6) 2015; 528
Cheng (2022111710393917700_DEV200755C8) 2022; 21
Deschamps (2022111710393917700_DEV200755C12) 2017; 31
Keller (2022111710393917700_DEV200755C24) 2005; 19
Gurdon (2022111710393917700_DEV200755C21) 1962; 4
Lu (2022111710393917700_DEV200755C33) 2020; 588
De Magalhães (2022111710393917700_DEV200755C11) 2022; 40
Singh (2022111710393917700_DEV200755C63) 2019; 44
Sinclair (2022111710393917700_DEV200755C60) 2016; 7
López-Otín (2022111710393917700_DEV200755C32) 2013; 153
Richardson (2022111710393917700_DEV200755C53) 1995; 172
Khazaie (2022111710393917700_DEV200755C26) 2016; 11
Fu (2022111710393917700_DEV200755C15) 2017; 74
Pascual-Torner (2022111710393917700_DEV200755C51) 2022; 119
Ribeiro (2022111710393917700_DEV200755C52) 2022; 2
Moon (2022111710393917700_DEV200755C44) 2011; 21
Kerepesi (2022111710393917700_DEV200755C25) 2021; 7
Sheng (2022111710393917700_DEV200755C58) 2018; 9
Singh (2022111710393917700_DEV200755C64) 2020; 9
Wang (2022111710393917700_DEV200755C68) 2018; 20
Miles (2022111710393917700_DEV200755C42) 2017; 35
Zhang (2022111710393917700_DEV200755C73) 2018; 50
Ding (2022111710393917700_DEV200755C14) 2014; 23
Melendez (2022111710393917700_DEV200755C41) 2022; 149
Horvath (2022111710393917700_DEV200755C23) 2013; 14
Liu (2022111710393917700_DEV200755C31) 2007; 9
Marion (2022111710393917700_DEV200755C37) 2009; 4
Sarkar (2022111710393917700_DEV200755C56) 2020; 11
Chen (2022111710393917700_DEV200755C7) 2021; 373
Miller (2022111710393917700_DEV200755C43) 2017; 24
Wang (2022111710393917700_DEV200755C69) 2021; 12
Wilmut (2022111710393917700_DEV200755C70) 1997; 385
Simpson (2022111710393917700_DEV200755C59) 2021; 13
Ko (2022111710393917700_DEV200755C27) 2016
Browder (2022111710393917700_DEV200755C5) 2022; 2
Shahini (2022111710393917700_DEV200755C57) 2021; 7
Alle (2022111710393917700_DEV200755C2) 2022; 00
Hishida (2022111710393917700_DEV200755C22) 2022; 39
Guan (2022111710393917700_DEV200755C20) 2022; 605
Sripathy (2022111710393917700_DEV200755C65) 2006; 26
Chiche (2022111710393917700_DEV200755C9) 2017; 20
May-Panloup (2022111710393917700_DEV200755C39) 2016; 22
Gao (2022111710393917700_DEV200755C16) 2013; 12
Wolpert (2022111710393917700_DEV200755C71) 1993
Gladyshev (2022111710393917700_DEV200755C18) 2021; 27
Odelberg (2022111710393917700_DEV200755C47) 2000; 103
Lu (2022111710393917700_DEV200755C34) 2022
Manukyan (2022111710393917700_DEV200755C36) 2014; 4
Dimos (2022111710393917700_DEV200755C13) 2008; 321
Abad (2022111710393917700_DEV200755C1) 2013; 502
Singh (2022111710393917700_DEV200755C61) 2020; 7
Auclair (2022111710393917700_DEV200755C3) 2014; 15
Li (2022111710393917700_DEV200755C30) 2018; 19
Lapasset (2022111710393917700_DEV200755C29) 2011; 25
Zaidan (2022111710393917700_DEV200755C72) 2020; 48
Zheng (2022111710393917700_DEV200755C74) 2016; 63
References_xml – volume: 35
  start-page: 147
  year: 2017
  ident: 2022111710393917700_DEV200755C42
  article-title: TRIM28 Is an epigenetic barrier to induced pluripotent stem cell reprogramming
  publication-title: Stem Cells
  doi: 10.1002/stem.2453
– volume: 9
  start-page: 1881
  year: 2020
  ident: 2022111710393917700_DEV200755C64
  article-title: Biology and physics of heterochromatin-like domains/complexes
  publication-title: Cells
  doi: 10.3390/cells9081881
– volume: 6
  start-page: a019331
  year: 2014
  ident: 2022111710393917700_DEV200755C19
  article-title: Transcriptional silencing by polycomb-group proteins
  publication-title: Cold Spring Harbor Perspect. Biol.
  doi: 10.1101/cshperspect.a019331
– volume: 7
  start-page: eabg6082
  year: 2021
  ident: 2022111710393917700_DEV200755C25
  article-title: Epigenetic clocks reveal a rejuvenation event during embryogenesis followed by aging
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg6082
– volume: 167
  start-page: 1719
  year: 2016
  ident: 2022111710393917700_DEV200755C46
  article-title: In vivo amelioration of age-associated hallmarks by partial reprogramming
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.052
– volume: 12
  start-page: 3094
  year: 2021
  ident: 2022111710393917700_DEV200755C69
  article-title: In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23353-z
– volume: 23
  start-page: 931
  year: 2014
  ident: 2022111710393917700_DEV200755C14
  article-title: The polycomb protein Ezh2 Impacts on induced pluripotent stem cell generation
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2013.0267
– volume: 4
  start-page: 2478
  year: 2013
  ident: 2022111710393917700_DEV200755C67
  article-title: Gene regulation and priming by topoisomerase IIα in embryonic stem cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3478
– volume: 44
  start-page: 106
  year: 2019
  ident: 2022111710393917700_DEV200755C63
  article-title: Deconstructing age reprogramming
  publication-title: J. Biosci.
  doi: 10.1007/s12038-019-9923-1
– volume-title: The Triumph of the Embryo
  year: 1993
  ident: 2022111710393917700_DEV200755C71
– volume: 25
  start-page: 2248
  year: 2011
  ident: 2022111710393917700_DEV200755C29
  article-title: Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state
  publication-title: Genes Dev.
  doi: 10.1101/gad.173922.111
– start-page: 103
  volume-title: Current Topics in Developmental Biology
  year: 2016
  ident: 2022111710393917700_DEV200755C27
  article-title: Zygotic genome activation revisited
– volume: 20
  start-page: 620
  year: 2018
  ident: 2022111710393917700_DEV200755C68
  article-title: Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0093-4
– volume: 2
  start-page: 243
  year: 2022
  ident: 2022111710393917700_DEV200755C5
  article-title: In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice
  publication-title: Nat. Aging
  doi: 10.1038/s43587-022-00183-2
– volume: 48
  start-page: 12660
  year: 2020
  ident: 2022111710393917700_DEV200755C72
  article-title: HP1γ regulates H3K36 methylation and pluripotency in embryonic stem cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1091
– volume: 50
  start-page: 96
  year: 2018
  ident: 2022111710393917700_DEV200755C73
  article-title: Dynamic epigenomic landscapes during early lineage specification in mouse embryos
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-017-0003-x
– volume: 15
  start-page: 545
  year: 2014
  ident: 2022111710393917700_DEV200755C3
  article-title: Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0545-5
– volume: 172
  start-page: 412
  year: 1995
  ident: 2022111710393917700_DEV200755C53
  article-title: Heterochrony and the phylotypic period
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1995.8041
– volume: 9
  start-page: 4047
  year: 2018
  ident: 2022111710393917700_DEV200755C58
  article-title: A stably self-renewing adult blood-derived induced neural stem cell exhibiting patternability and epigenetic rejuvenation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06398-5
– volume: 153
  start-page: 1194
  year: 2013
  ident: 2022111710393917700_DEV200755C32
  article-title: The hallmarks of aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.039
– volume: 21
  start-page: 1305
  year: 2011
  ident: 2022111710393917700_DEV200755C44
  article-title: Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.107
– volume: 40
  start-page: 639
  year: 2022
  ident: 2022111710393917700_DEV200755C11
  article-title: Cellular reprogramming and the rise of rejuvenation biotech
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2022.01.011
– volume: 5
  start-page: 120
  year: 2022
  ident: 2022111710393917700_DEV200755C49
  article-title: Aging clocks and mortality timers, methylation, glycomic, telomeric and more. A window to measuring biological age
  publication-title: Aging Med.
  doi: 10.1002/agm2.12197
– volume: 19
  start-page: 1129
  year: 2005
  ident: 2022111710393917700_DEV200755C24
  article-title: Embryonic stem cell differentiation: emergence of a new era in biology and medicine
  publication-title: Genes Dev.
  doi: 10.1101/gad.1303605
– volume: 363
  start-page: 294
  year: 2019
  ident: 2022111710393917700_DEV200755C45
  article-title: H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification
  publication-title: Science
  doi: 10.1126/science.aau0583
– volume: 12
  start-page: 453
  year: 2013
  ident: 2022111710393917700_DEV200755C16
  article-title: Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.02.005
– volume: 20
  start-page: 407
  year: 2017
  ident: 2022111710393917700_DEV200755C9
  article-title: Injury-induced senescence enables in vivo reprogramming in skeletal muscle
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.11.020
– volume: 4
  start-page: 141
  year: 2009
  ident: 2022111710393917700_DEV200755C37
  article-title: Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.12.010
– volume: 321
  start-page: 1218
  year: 2008
  ident: 2022111710393917700_DEV200755C13
  article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons
  publication-title: Science
  doi: 10.1126/science.1158799
– year: 2022
  ident: 2022111710393917700_DEV200755C34
  article-title: Universal DNA methylation age across mammalian tissues
  publication-title: bioRxiv 2021.01.18.426733
  doi: 10.1101/2021.01.18.426733
– volume: 24
  start-page: 344
  year: 2017
  ident: 2022111710393917700_DEV200755C43
  article-title: TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3384
– volume: 27
  start-page: 11
  year: 2021
  ident: 2022111710393917700_DEV200755C18
  article-title: The ground zero of organismal life and aging
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2020.08.012
– volume: 26
  start-page: 8623
  year: 2006
  ident: 2022111710393917700_DEV200755C65
  article-title: The KAP1 corepressor functions to coordinate the assembly of De Novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00487-06
– volume: 21
  start-page: e13577
  year: 2022
  ident: 2022111710393917700_DEV200755C8
  article-title: Partial reprogramming strategy for intervertebral disc rejuvenation by activating energy switch
  publication-title: Aging Cell
  doi: 10.1111/acel.13577
– volume: 159
  start-page: 884
  year: 2014
  ident: 2022111710393917700_DEV200755C38
  article-title: Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.055
– volume: 7
  start-page: eabe5671
  year: 2021
  ident: 2022111710393917700_DEV200755C57
  article-title: Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe5671
– volume: 502
  start-page: 340
  year: 2013
  ident: 2022111710393917700_DEV200755C1
  article-title: Reprogramming in vivo produces teratomas and iPS cells with totipotency features
  publication-title: Nature
  doi: 10.1038/nature12586
– volume: 11
  start-page: e0150518
  year: 2016
  ident: 2022111710393917700_DEV200755C26
  article-title: Involvement of polycomb repressive complex 2 in maturation of induced pluripotent stem cells during reprogramming of mouse and human fibroblasts
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150518
– volume: 373
  start-page: 1537
  year: 2021
  ident: 2022111710393917700_DEV200755C7
  article-title: Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice
  publication-title: Science
  doi: 10.1126/science.abg5159
– volume: 11
  start-page: e71624
  year: 2022
  ident: 2022111710393917700_DEV200755C17
  article-title: Multi-omic rejuvenation of human cells by maturation phase transient reprogramming
  publication-title: Elife
  doi: 10.7554/eLife.71624
– volume: 7
  start-page: 12359
  year: 2016
  ident: 2022111710393917700_DEV200755C60
  article-title: Healthy ageing of cloned sheep
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12359
– volume: 00
  start-page: 13714
  year: 2022
  ident: 2022111710393917700_DEV200755C2
  article-title: A single short reprogramming early in life initiates and propagates an epigenetically related mechanism improving fitness and promoting an increased healthy lifespan
  publication-title: Aging Cell
  doi: 10.1111/acel.13714
– volume: 6
  start-page: 704
  year: 2016
  ident: 2022111710393917700_DEV200755C4
  article-title: A serial shRNA screen for roadblocks to reprogramming identifies the protein modifier SUMO2
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2016.02.004
– volume: 19
  start-page: 18
  year: 2018
  ident: 2022111710393917700_DEV200755C30
  article-title: Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1390-8
– volume: 7
  start-page: 191976
  year: 2020
  ident: 2022111710393917700_DEV200755C61
  article-title: On the relations of phase separation and Hi-C maps to epigenetics
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.191976
– volume: 543
  start-page: 550
  year: 2017
  ident: 2022111710393917700_DEV200755C75
  article-title: KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks
  publication-title: Nature
  doi: 10.1038/nature21683
– volume: 35
  start-page: 315
  year: 2010
  ident: 2022111710393917700_DEV200755C62
  article-title: Nuclear reprogramming and epigenetic rejuvenation
  publication-title: J. Biosci.
  doi: 10.1007/s12038-010-0034-2
– volume: 33
  start-page: 769
  year: 2015
  ident: 2022111710393917700_DEV200755C40
  article-title: Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3270
– volume: 528
  start-page: 218
  year: 2015
  ident: 2022111710393917700_DEV200755C6
  article-title: The histone chaperone CAF-1 safeguards somatic cell identity
  publication-title: Nature
  doi: 10.1038/nature15749
– volume: 9
  start-page: 1436
  year: 2007
  ident: 2022111710393917700_DEV200755C31
  article-title: Telomere lengthening early in development
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1664
– volume: 13
  start-page: 170
  year: 2021
  ident: 2022111710393917700_DEV200755C59
  article-title: Cellular reprogramming and epigenetic rejuvenation
  publication-title: Clin. Epigenet.
  doi: 10.1186/s13148-021-01158-7
– volume: 126
  start-page: 663
  year: 2006
  ident: 2022111710393917700_DEV200755C66
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 14
  start-page: R115
  year: 2013
  ident: 2022111710393917700_DEV200755C23
  article-title: DNA methylation age of human tissues and cell types
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-10-r115
– year: 2022
  ident: 2022111710393917700_DEV200755C50
  article-title: In vivo reprogramming leads to premature death due to hepatic and intestinal failure
  publication-title: bioRxiv 2022.05.27.493700
  doi: 10.1101/2022.05.27.493700
– volume: 15
  start-page: 1056
  year: 2020
  ident: 2022111710393917700_DEV200755C54
  article-title: In vivo reprogramming ameliorates aging features in dentate gyrus cells and improves memory in mice
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2020.09.010
– volume: 17
  start-page: 337
  year: 2012
  ident: 2022111710393917700_DEV200755C35
  article-title: Epigenetic rejuvenation
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2012.01595.x
– volume: 2
  start-page: 397
  year: 2022
  ident: 2022111710393917700_DEV200755C52
  article-title: In vivo cyclic induction of the FOXM1 transcription factor delays natural and progeroid aging phenotypes and extends healthspan
  publication-title: Nat. Aging
  doi: 10.1038/s43587-022-00209-9
– volume: 63
  start-page: 1066
  year: 2016
  ident: 2022111710393917700_DEV200755C74
  article-title: Resetting epigenetic memory by reprogramming of histone modifications in mammals
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.08.032
– volume: 13
  start-page: 574
  year: 2022
  ident: 2022111710393917700_DEV200755C55
  article-title: Diverse partial reprogramming strategies restore youthful gene expression and transiently suppress cell identity
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2022.05.002
– volume: 21
  start-page: e13578
  year: 2022
  ident: 2022111710393917700_DEV200755C10
  article-title: Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming
  publication-title: Aging Cell
  doi: 10.1111/acel.13578
– volume: 588
  start-page: 124
  year: 2020
  ident: 2022111710393917700_DEV200755C33
  article-title: Reprogramming to recover youthful epigenetic information and restore vision
  publication-title: Nature
  doi: 10.1038/s41586-020-2975-4
– volume: 103
  start-page: 1099
  year: 2000
  ident: 2022111710393917700_DEV200755C47
  article-title: Dedifferentiation of mammalian myotubes induced by msx1
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00212-9
– volume: 149
  start-page: dev200361
  year: 2022
  ident: 2022111710393917700_DEV200755C41
  article-title: Natural killer cells act as an extrinsic barrier for in vivo reprogramming
  publication-title: Development
  doi: 10.1242/dev.200361
– volume: 119
  start-page: e2118763119
  year: 2022
  ident: 2022111710393917700_DEV200755C51
  article-title: Comparative genomics of mortal and immortal cnidarians unveils novel keys behind rejuvenation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2118763119
– volume: 74
  start-page: 487
  year: 2017
  ident: 2022111710393917700_DEV200755C15
  article-title: DNA repair mechanisms in embryonic stem cells
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-016-2358-z
– volume: 385
  start-page: 810
  year: 1997
  ident: 2022111710393917700_DEV200755C70
  article-title: Viable offspring derived from fetal and adult mammalian cells
  publication-title: Nature
  doi: 10.1038/385810a0
– volume: 4
  start-page: e1000242
  year: 2008
  ident: 2022111710393917700_DEV200755C28
  article-title: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000242
– volume: 605
  start-page: 325
  year: 2022
  ident: 2022111710393917700_DEV200755C20
  article-title: Chemical reprogramming of human somatic cells to pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/s41586-022-04593-5
– volume: 18
  start-page: e12877
  year: 2019
  ident: 2022111710393917700_DEV200755C48
  article-title: Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity
  publication-title: Aging Cell
  doi: 10.1111/acel.12877
– volume: 31
  start-page: 1406
  year: 2017
  ident: 2022111710393917700_DEV200755C12
  article-title: Embryonic timing, axial stem cells, chromatin dynamics, and the Hox clock
  publication-title: Genes Dev.
  doi: 10.1101/gad.303123.117
– volume: 4
  start-page: 256
  year: 1962
  ident: 2022111710393917700_DEV200755C21
  article-title: Adult frogs derived from the nuclei of single somatic cells
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(62)90043-X
– volume: 11
  start-page: 1545
  year: 2020
  ident: 2022111710393917700_DEV200755C56
  article-title: Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15174-3
– volume: 22
  start-page: 725
  year: 2016
  ident: 2022111710393917700_DEV200755C39
  article-title: Ovarian ageing: the role of mitochondria in oocytes and follicles
  publication-title: Hum. Reprod. Update
  doi: 10.1093/humupd/dmw028
– volume: 4
  start-page: 4789
  year: 2014
  ident: 2022111710393917700_DEV200755C36
  article-title: Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states
  publication-title: Sci. Rep.
  doi: 10.1038/srep04789
– volume: 39
  start-page: 110730
  year: 2022
  ident: 2022111710393917700_DEV200755C22
  article-title: In vivo partial cellular reprogramming enhances liver plasticity and regeneration
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110730
SSID ssj0003677
Score 2.516415
Snippet ‘Age reprogramming’ refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated...
'Age reprogramming' refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
SubjectTerms Cellular Reprogramming - genetics
Epigenesis, Genetic
Induced Pluripotent Stem Cells
Regenerative Medicine
Rejuvenation
Title Age reprogramming: cell rejuvenation by partial reprogramming
URI https://www.ncbi.nlm.nih.gov/pubmed/36383700
https://www.proquest.com/docview/2737464956
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYoiKoXxKOlKQ8tohcO23qx12y4IQSC8jo0kSIuK9trHm1JIpIgwa_n8yObjQgS9GKtRra1ms8ez4w9M4R8t1W0DY7FGIeniblMWAwCja8KkfF6xrA3bXDy2bk4avJfrbQ1qhjqokv66od-mhhX8j-oggZcbZTsO5AtJwUB38AXLRBG-yaM965t0ZPwxOouhC5bVzyofwYQYx5daJhdO9rl8K_0riqmlcdD7mJ3GMpV8RT8xhDvhLm_vRtVa768kX8H3c6Dd9D2esEXHDwJMELta7a0Ivy4vc5NwrxmAm0oMX2W0bA0fFzxC1GMsx_8K8yDC_f3uXjH812fX-SHzdPTvHHQanwgM9tQ9J1RfHxSnqVMuNqZ5V-EBLOY--do5nGV4hU7wekLjXkyFxT9aM-jtkCmTHuRzPrSn4-L5ONZeNQA4mXHEZeIBTQag2g3snBGVTgj9RgFOMf7fibNw4PG_lEc6lvEmm2zfiylKaArJHWuYAUaKRNBlVIaeovRKZOZpkqbAp9oBBc005waxpkRpk6hp30h0-1O23wlEaOFE91FojnnO1JRex2aGqayIsUurJGtIYtyHZK_2xok_3JrBIKdOdiZe3bWyGbZt-tTnkzstTHkdA6JZJkh26Yz6OXY-TtcWMO7RpY9BOU8TFiPCKXf3jB6hXwardJVMt2_H5g1aIB9te4WyTMR41rA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age+reprogramming%3A+cell+rejuvenation+by+partial+reprogramming&rft.jtitle=Development+%28Cambridge%29&rft.au=Singh%2C+Prim+B&rft.au=Zhakupova%2C+Assem&rft.date=2022-11-15&rft.issn=1477-9129&rft.eissn=1477-9129&rft.volume=149&rft.issue=22&rft_id=info:doi/10.1242%2Fdev.200755&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon