Age reprogramming: cell rejuvenation by partial reprogramming
‘Age reprogramming’ refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripoten...
Saved in:
Published in | Development (Cambridge) Vol. 149; no. 22 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
15.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ‘Age reprogramming’ refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripotent stem cells, which involves passage through an embryonic stage and loss of cellular identity. Accordingly, the study of age reprogramming can provide an understanding of how ageing can be reversed while retaining cellular identity and the specialised function(s) of a cell, which will be of benefit to regenerative medicine. Here, we highlight recent work that has provided a more nuanced understanding of age reprogramming and point to some open questions in the field that might be explored in the future. |
---|---|
AbstractList | 'Age reprogramming' refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripotent stem cells, which involves passage through an embryonic stage and loss of cellular identity. Accordingly, the study of age reprogramming can provide an understanding of how ageing can be reversed while retaining cellular identity and the specialised function(s) of a cell, which will be of benefit to regenerative medicine. Here, we highlight recent work that has provided a more nuanced understanding of age reprogramming and point to some open questions in the field that might be explored in the future.'Age reprogramming' refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripotent stem cells, which involves passage through an embryonic stage and loss of cellular identity. Accordingly, the study of age reprogramming can provide an understanding of how ageing can be reversed while retaining cellular identity and the specialised function(s) of a cell, which will be of benefit to regenerative medicine. Here, we highlight recent work that has provided a more nuanced understanding of age reprogramming and point to some open questions in the field that might be explored in the future. ‘Age reprogramming’ refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripotent stem cells, which involves passage through an embryonic stage and loss of cellular identity. Accordingly, the study of age reprogramming can provide an understanding of how ageing can be reversed while retaining cellular identity and the specialised function(s) of a cell, which will be of benefit to regenerative medicine. Here, we highlight recent work that has provided a more nuanced understanding of age reprogramming and point to some open questions in the field that might be explored in the future. |
Author | Zhakupova, Assem Singh, Prim B. |
Author_xml | – sequence: 1 givenname: Prim B. orcidid: 0000-0002-9571-0974 surname: Singh fullname: Singh, Prim B. – sequence: 2 givenname: Assem surname: Zhakupova fullname: Zhakupova, Assem |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36383700$$D View this record in MEDLINE/PubMed |
BookMark | eNptkElLAzEUgINU7KIXf4DMUYSpL8skE8FDKW5Q8KLnIZN5LVNmqclMof_e1FZB8ZIXHt_bvjEZNG2DhFxSmFIm2G2B2ykDUElyQkZUKBVryvSAjEAnEFOt6ZCMvV8DAJdKnZEhlzzlCmBE7mcrjBxuXLtypq7LZnUXWayqkFv3W2xMV7ZNlO-ijXFdaarf7Dk5XZrK48UxTsj748Pb_DlevD69zGeL2HLGu9gYLKRKqRa5FAyNoRLyPLcWEW3CTWoht1iEb3ikkJBaAcgFR4kamOYTcn3oG2Z_9Oi7rC79fk3TYNv7jCmuhBQ6kQG9OqJ9XmORbVxZG7fLvk8OwM0BsK713uHyB6GQ7X1mwWd28Blg-APbsvty0jlTVv-VfALj03ip |
CitedBy_id | crossref_primary_10_1089_cell_2022_0160 crossref_primary_10_3389_fgene_2024_1389558 crossref_primary_10_3390_cells13242052 crossref_primary_10_14336_AD_2024_0280 crossref_primary_10_1080_15592294_2023_2252631 crossref_primary_10_3390_cells13070628 crossref_primary_10_1134_S0026893324700377 crossref_primary_10_1007_s11357_023_00949_5 crossref_primary_10_3390_genes14091697 crossref_primary_10_3390_ijms242115804 crossref_primary_10_1016_j_tem_2024_08_004 crossref_primary_10_1016_j_stem_2024_09_013 crossref_primary_10_1002_bies_202200208 crossref_primary_10_1038_s43587_023_00528_5 crossref_primary_10_1080_17501911_2024_2432851 crossref_primary_10_18632_aging_206105 crossref_primary_10_7554_eLife_90579_3 crossref_primary_10_7554_eLife_90579 crossref_primary_10_1016_j_arr_2024_102204 crossref_primary_10_1016_j_mocell_2024_100137 crossref_primary_10_1134_S2079057024600381 crossref_primary_10_1080_13102818_2024_2358999 crossref_primary_10_1111_acel_14039 crossref_primary_10_3390_cells13232002 crossref_primary_10_3390_ijms252312533 |
Cites_doi | 10.1002/stem.2453 10.3390/cells9081881 10.1101/cshperspect.a019331 10.1126/sciadv.abg6082 10.1016/j.cell.2016.11.052 10.1038/s41467-021-23353-z 10.1089/scd.2013.0267 10.1038/ncomms3478 10.1007/s12038-019-9923-1 10.1101/gad.173922.111 10.1038/s41556-018-0093-4 10.1038/s43587-022-00183-2 10.1093/nar/gkaa1091 10.1038/s41588-017-0003-x 10.1186/s13059-014-0545-5 10.1006/dbio.1995.8041 10.1038/s41467-018-06398-5 10.1016/j.cell.2013.05.039 10.1038/cr.2011.107 10.1016/j.tibtech.2022.01.011 10.1002/agm2.12197 10.1101/gad.1303605 10.1126/science.aau0583 10.1016/j.stem.2013.02.005 10.1016/j.stem.2016.11.020 10.1016/j.stem.2008.12.010 10.1126/science.1158799 10.1101/2021.01.18.426733 10.1038/nsmb.3384 10.1016/j.molmed.2020.08.012 10.1128/MCB.00487-06 10.1111/acel.13577 10.1016/j.cell.2014.09.055 10.1126/sciadv.abe5671 10.1038/nature12586 10.1371/journal.pone.0150518 10.1126/science.abg5159 10.7554/eLife.71624 10.1038/ncomms12359 10.1111/acel.13714 10.1016/j.stemcr.2016.02.004 10.1186/s13059-018-1390-8 10.1098/rsos.191976 10.1038/nature21683 10.1007/s12038-010-0034-2 10.1038/nbt.3270 10.1038/nature15749 10.1038/ncb1664 10.1186/s13148-021-01158-7 10.1016/j.cell.2006.07.024 10.1186/gb-2013-14-10-r115 10.1101/2022.05.27.493700 10.1016/j.stemcr.2020.09.010 10.1111/j.1365-2443.2012.01595.x 10.1038/s43587-022-00209-9 10.1016/j.molcel.2016.08.032 10.1016/j.cels.2022.05.002 10.1111/acel.13578 10.1038/s41586-020-2975-4 10.1016/S0092-8674(00)00212-9 10.1242/dev.200361 10.1073/pnas.2118763119 10.1007/s00018-016-2358-z 10.1038/385810a0 10.1371/journal.pgen.1000242 10.1038/s41586-022-04593-5 10.1111/acel.12877 10.1101/gad.303123.117 10.1016/0012-1606(62)90043-X 10.1038/s41467-020-15174-3 10.1093/humupd/dmw028 10.1038/srep04789 10.1016/j.celrep.2022.110730 |
ContentType | Journal Article |
Copyright | 2022. Published by The Company of Biologists Ltd. |
Copyright_xml | – notice: 2022. Published by The Company of Biologists Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1242/dev.200755 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
ExternalDocumentID | 36383700 10_1242_dev_200755 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAYXX ABJNI ABZEH ACGFS ACMFV ACPRK ACREN ADBBV ADFRT ADVGF AENEX AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS F5P F9R GX1 H13 HZ~ INIJC KQ8 O9- OK1 P2P R.V RCB RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XSW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c323t-aaed678194b642eaa160bbbcceeec53a8c0bcedc53edc64608c40e343e6e90293 |
ISSN | 0950-1991 1477-9129 |
IngestDate | Fri Jul 11 00:57:24 EDT 2025 Mon Jul 21 05:37:53 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Tue Jul 01 04:14:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Epigenetic rejuvenation OSKM Cellular identity Partial reprogramming H3K9me3 Age reprogramming |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 2022. Published by The Company of Biologists Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c323t-aaed678194b642eaa160bbbcceeec53a8c0bcedc53edc64608c40e343e6e90293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9571-0974 |
OpenAccessLink | https://journals.biologists.com/dev/article-pdf/doi/10.1242/dev.200755/2304957/dev200755.pdf |
PMID | 36383700 |
PQID | 2737464956 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2737464956 pubmed_primary_36383700 crossref_primary_10_1242_dev_200755 crossref_citationtrail_10_1242_dev_200755 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-15 |
PublicationDateYYYYMMDD | 2022-11-15 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2022 |
References | Ocampo (2022111710393917700_DEV200755C46) 2016; 167 Maza (2022111710393917700_DEV200755C40) 2015; 33 Parras (2022111710393917700_DEV200755C50) 2022 Nicetto (2022111710393917700_DEV200755C45) 2019; 363 Takahashi (2022111710393917700_DEV200755C66) 2006; 126 Chondronasiou (2022111710393917700_DEV200755C10) 2022; 21 Rodríguez-Matellán (2022111710393917700_DEV200755C54) 2020; 15 Thakurela (2022111710393917700_DEV200755C67) 2013; 4 Borkent (2022111710393917700_DEV200755C4) 2016; 6 Grossniklaus (2022111710393917700_DEV200755C19) 2014; 6 Matoba (2022111710393917700_DEV200755C38) 2014; 159 Imbeault (2022111710393917700_DEV200755C75) 2017; 543 Ku (2022111710393917700_DEV200755C28) 2008; 4 Manukyan (2022111710393917700_DEV200755C35) 2012; 17 Olova (2022111710393917700_DEV200755C48) 2019; 18 Gill (2022111710393917700_DEV200755C17) 2022; 11 Roux (2022111710393917700_DEV200755C55) 2022; 13 Singh (2022111710393917700_DEV200755C62) 2010; 35 Palmer (2022111710393917700_DEV200755C49) 2022; 5 Cheloufi (2022111710393917700_DEV200755C6) 2015; 528 Cheng (2022111710393917700_DEV200755C8) 2022; 21 Deschamps (2022111710393917700_DEV200755C12) 2017; 31 Keller (2022111710393917700_DEV200755C24) 2005; 19 Gurdon (2022111710393917700_DEV200755C21) 1962; 4 Lu (2022111710393917700_DEV200755C33) 2020; 588 De Magalhães (2022111710393917700_DEV200755C11) 2022; 40 Singh (2022111710393917700_DEV200755C63) 2019; 44 Sinclair (2022111710393917700_DEV200755C60) 2016; 7 López-Otín (2022111710393917700_DEV200755C32) 2013; 153 Richardson (2022111710393917700_DEV200755C53) 1995; 172 Khazaie (2022111710393917700_DEV200755C26) 2016; 11 Fu (2022111710393917700_DEV200755C15) 2017; 74 Pascual-Torner (2022111710393917700_DEV200755C51) 2022; 119 Ribeiro (2022111710393917700_DEV200755C52) 2022; 2 Moon (2022111710393917700_DEV200755C44) 2011; 21 Kerepesi (2022111710393917700_DEV200755C25) 2021; 7 Sheng (2022111710393917700_DEV200755C58) 2018; 9 Singh (2022111710393917700_DEV200755C64) 2020; 9 Wang (2022111710393917700_DEV200755C68) 2018; 20 Miles (2022111710393917700_DEV200755C42) 2017; 35 Zhang (2022111710393917700_DEV200755C73) 2018; 50 Ding (2022111710393917700_DEV200755C14) 2014; 23 Melendez (2022111710393917700_DEV200755C41) 2022; 149 Horvath (2022111710393917700_DEV200755C23) 2013; 14 Liu (2022111710393917700_DEV200755C31) 2007; 9 Marion (2022111710393917700_DEV200755C37) 2009; 4 Sarkar (2022111710393917700_DEV200755C56) 2020; 11 Chen (2022111710393917700_DEV200755C7) 2021; 373 Miller (2022111710393917700_DEV200755C43) 2017; 24 Wang (2022111710393917700_DEV200755C69) 2021; 12 Wilmut (2022111710393917700_DEV200755C70) 1997; 385 Simpson (2022111710393917700_DEV200755C59) 2021; 13 Ko (2022111710393917700_DEV200755C27) 2016 Browder (2022111710393917700_DEV200755C5) 2022; 2 Shahini (2022111710393917700_DEV200755C57) 2021; 7 Alle (2022111710393917700_DEV200755C2) 2022; 00 Hishida (2022111710393917700_DEV200755C22) 2022; 39 Guan (2022111710393917700_DEV200755C20) 2022; 605 Sripathy (2022111710393917700_DEV200755C65) 2006; 26 Chiche (2022111710393917700_DEV200755C9) 2017; 20 May-Panloup (2022111710393917700_DEV200755C39) 2016; 22 Gao (2022111710393917700_DEV200755C16) 2013; 12 Wolpert (2022111710393917700_DEV200755C71) 1993 Gladyshev (2022111710393917700_DEV200755C18) 2021; 27 Odelberg (2022111710393917700_DEV200755C47) 2000; 103 Lu (2022111710393917700_DEV200755C34) 2022 Manukyan (2022111710393917700_DEV200755C36) 2014; 4 Dimos (2022111710393917700_DEV200755C13) 2008; 321 Abad (2022111710393917700_DEV200755C1) 2013; 502 Singh (2022111710393917700_DEV200755C61) 2020; 7 Auclair (2022111710393917700_DEV200755C3) 2014; 15 Li (2022111710393917700_DEV200755C30) 2018; 19 Lapasset (2022111710393917700_DEV200755C29) 2011; 25 Zaidan (2022111710393917700_DEV200755C72) 2020; 48 Zheng (2022111710393917700_DEV200755C74) 2016; 63 |
References_xml | – volume: 35 start-page: 147 year: 2017 ident: 2022111710393917700_DEV200755C42 article-title: TRIM28 Is an epigenetic barrier to induced pluripotent stem cell reprogramming publication-title: Stem Cells doi: 10.1002/stem.2453 – volume: 9 start-page: 1881 year: 2020 ident: 2022111710393917700_DEV200755C64 article-title: Biology and physics of heterochromatin-like domains/complexes publication-title: Cells doi: 10.3390/cells9081881 – volume: 6 start-page: a019331 year: 2014 ident: 2022111710393917700_DEV200755C19 article-title: Transcriptional silencing by polycomb-group proteins publication-title: Cold Spring Harbor Perspect. Biol. doi: 10.1101/cshperspect.a019331 – volume: 7 start-page: eabg6082 year: 2021 ident: 2022111710393917700_DEV200755C25 article-title: Epigenetic clocks reveal a rejuvenation event during embryogenesis followed by aging publication-title: Sci. Adv. doi: 10.1126/sciadv.abg6082 – volume: 167 start-page: 1719 year: 2016 ident: 2022111710393917700_DEV200755C46 article-title: In vivo amelioration of age-associated hallmarks by partial reprogramming publication-title: Cell doi: 10.1016/j.cell.2016.11.052 – volume: 12 start-page: 3094 year: 2021 ident: 2022111710393917700_DEV200755C69 article-title: In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche publication-title: Nat. Commun. doi: 10.1038/s41467-021-23353-z – volume: 23 start-page: 931 year: 2014 ident: 2022111710393917700_DEV200755C14 article-title: The polycomb protein Ezh2 Impacts on induced pluripotent stem cell generation publication-title: Stem Cells Dev. doi: 10.1089/scd.2013.0267 – volume: 4 start-page: 2478 year: 2013 ident: 2022111710393917700_DEV200755C67 article-title: Gene regulation and priming by topoisomerase IIα in embryonic stem cells publication-title: Nat. Commun. doi: 10.1038/ncomms3478 – volume: 44 start-page: 106 year: 2019 ident: 2022111710393917700_DEV200755C63 article-title: Deconstructing age reprogramming publication-title: J. Biosci. doi: 10.1007/s12038-019-9923-1 – volume-title: The Triumph of the Embryo year: 1993 ident: 2022111710393917700_DEV200755C71 – volume: 25 start-page: 2248 year: 2011 ident: 2022111710393917700_DEV200755C29 article-title: Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state publication-title: Genes Dev. doi: 10.1101/gad.173922.111 – start-page: 103 volume-title: Current Topics in Developmental Biology year: 2016 ident: 2022111710393917700_DEV200755C27 article-title: Zygotic genome activation revisited – volume: 20 start-page: 620 year: 2018 ident: 2022111710393917700_DEV200755C68 article-title: Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0093-4 – volume: 2 start-page: 243 year: 2022 ident: 2022111710393917700_DEV200755C5 article-title: In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice publication-title: Nat. Aging doi: 10.1038/s43587-022-00183-2 – volume: 48 start-page: 12660 year: 2020 ident: 2022111710393917700_DEV200755C72 article-title: HP1γ regulates H3K36 methylation and pluripotency in embryonic stem cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1091 – volume: 50 start-page: 96 year: 2018 ident: 2022111710393917700_DEV200755C73 article-title: Dynamic epigenomic landscapes during early lineage specification in mouse embryos publication-title: Nat. Genet. doi: 10.1038/s41588-017-0003-x – volume: 15 start-page: 545 year: 2014 ident: 2022111710393917700_DEV200755C3 article-title: Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse publication-title: Genome Biol. doi: 10.1186/s13059-014-0545-5 – volume: 172 start-page: 412 year: 1995 ident: 2022111710393917700_DEV200755C53 article-title: Heterochrony and the phylotypic period publication-title: Dev. Biol. doi: 10.1006/dbio.1995.8041 – volume: 9 start-page: 4047 year: 2018 ident: 2022111710393917700_DEV200755C58 article-title: A stably self-renewing adult blood-derived induced neural stem cell exhibiting patternability and epigenetic rejuvenation publication-title: Nat. Commun. doi: 10.1038/s41467-018-06398-5 – volume: 153 start-page: 1194 year: 2013 ident: 2022111710393917700_DEV200755C32 article-title: The hallmarks of aging publication-title: Cell doi: 10.1016/j.cell.2013.05.039 – volume: 21 start-page: 1305 year: 2011 ident: 2022111710393917700_DEV200755C44 article-title: Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1 publication-title: Cell Res. doi: 10.1038/cr.2011.107 – volume: 40 start-page: 639 year: 2022 ident: 2022111710393917700_DEV200755C11 article-title: Cellular reprogramming and the rise of rejuvenation biotech publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2022.01.011 – volume: 5 start-page: 120 year: 2022 ident: 2022111710393917700_DEV200755C49 article-title: Aging clocks and mortality timers, methylation, glycomic, telomeric and more. A window to measuring biological age publication-title: Aging Med. doi: 10.1002/agm2.12197 – volume: 19 start-page: 1129 year: 2005 ident: 2022111710393917700_DEV200755C24 article-title: Embryonic stem cell differentiation: emergence of a new era in biology and medicine publication-title: Genes Dev. doi: 10.1101/gad.1303605 – volume: 363 start-page: 294 year: 2019 ident: 2022111710393917700_DEV200755C45 article-title: H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification publication-title: Science doi: 10.1126/science.aau0583 – volume: 12 start-page: 453 year: 2013 ident: 2022111710393917700_DEV200755C16 article-title: Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.02.005 – volume: 20 start-page: 407 year: 2017 ident: 2022111710393917700_DEV200755C9 article-title: Injury-induced senescence enables in vivo reprogramming in skeletal muscle publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.11.020 – volume: 4 start-page: 141 year: 2009 ident: 2022111710393917700_DEV200755C37 article-title: Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.12.010 – volume: 321 start-page: 1218 year: 2008 ident: 2022111710393917700_DEV200755C13 article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons publication-title: Science doi: 10.1126/science.1158799 – year: 2022 ident: 2022111710393917700_DEV200755C34 article-title: Universal DNA methylation age across mammalian tissues publication-title: bioRxiv 2021.01.18.426733 doi: 10.1101/2021.01.18.426733 – volume: 24 start-page: 344 year: 2017 ident: 2022111710393917700_DEV200755C43 article-title: TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3384 – volume: 27 start-page: 11 year: 2021 ident: 2022111710393917700_DEV200755C18 article-title: The ground zero of organismal life and aging publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2020.08.012 – volume: 26 start-page: 8623 year: 2006 ident: 2022111710393917700_DEV200755C65 article-title: The KAP1 corepressor functions to coordinate the assembly of De Novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00487-06 – volume: 21 start-page: e13577 year: 2022 ident: 2022111710393917700_DEV200755C8 article-title: Partial reprogramming strategy for intervertebral disc rejuvenation by activating energy switch publication-title: Aging Cell doi: 10.1111/acel.13577 – volume: 159 start-page: 884 year: 2014 ident: 2022111710393917700_DEV200755C38 article-title: Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation publication-title: Cell doi: 10.1016/j.cell.2014.09.055 – volume: 7 start-page: eabe5671 year: 2021 ident: 2022111710393917700_DEV200755C57 article-title: Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo publication-title: Sci. Adv. doi: 10.1126/sciadv.abe5671 – volume: 502 start-page: 340 year: 2013 ident: 2022111710393917700_DEV200755C1 article-title: Reprogramming in vivo produces teratomas and iPS cells with totipotency features publication-title: Nature doi: 10.1038/nature12586 – volume: 11 start-page: e0150518 year: 2016 ident: 2022111710393917700_DEV200755C26 article-title: Involvement of polycomb repressive complex 2 in maturation of induced pluripotent stem cells during reprogramming of mouse and human fibroblasts publication-title: PLoS One doi: 10.1371/journal.pone.0150518 – volume: 373 start-page: 1537 year: 2021 ident: 2022111710393917700_DEV200755C7 article-title: Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice publication-title: Science doi: 10.1126/science.abg5159 – volume: 11 start-page: e71624 year: 2022 ident: 2022111710393917700_DEV200755C17 article-title: Multi-omic rejuvenation of human cells by maturation phase transient reprogramming publication-title: Elife doi: 10.7554/eLife.71624 – volume: 7 start-page: 12359 year: 2016 ident: 2022111710393917700_DEV200755C60 article-title: Healthy ageing of cloned sheep publication-title: Nat. Commun. doi: 10.1038/ncomms12359 – volume: 00 start-page: 13714 year: 2022 ident: 2022111710393917700_DEV200755C2 article-title: A single short reprogramming early in life initiates and propagates an epigenetically related mechanism improving fitness and promoting an increased healthy lifespan publication-title: Aging Cell doi: 10.1111/acel.13714 – volume: 6 start-page: 704 year: 2016 ident: 2022111710393917700_DEV200755C4 article-title: A serial shRNA screen for roadblocks to reprogramming identifies the protein modifier SUMO2 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2016.02.004 – volume: 19 start-page: 18 year: 2018 ident: 2022111710393917700_DEV200755C30 article-title: Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys publication-title: Genome Biol. doi: 10.1186/s13059-018-1390-8 – volume: 7 start-page: 191976 year: 2020 ident: 2022111710393917700_DEV200755C61 article-title: On the relations of phase separation and Hi-C maps to epigenetics publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.191976 – volume: 543 start-page: 550 year: 2017 ident: 2022111710393917700_DEV200755C75 article-title: KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks publication-title: Nature doi: 10.1038/nature21683 – volume: 35 start-page: 315 year: 2010 ident: 2022111710393917700_DEV200755C62 article-title: Nuclear reprogramming and epigenetic rejuvenation publication-title: J. Biosci. doi: 10.1007/s12038-010-0034-2 – volume: 33 start-page: 769 year: 2015 ident: 2022111710393917700_DEV200755C40 article-title: Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3270 – volume: 528 start-page: 218 year: 2015 ident: 2022111710393917700_DEV200755C6 article-title: The histone chaperone CAF-1 safeguards somatic cell identity publication-title: Nature doi: 10.1038/nature15749 – volume: 9 start-page: 1436 year: 2007 ident: 2022111710393917700_DEV200755C31 article-title: Telomere lengthening early in development publication-title: Nat. Cell Biol. doi: 10.1038/ncb1664 – volume: 13 start-page: 170 year: 2021 ident: 2022111710393917700_DEV200755C59 article-title: Cellular reprogramming and epigenetic rejuvenation publication-title: Clin. Epigenet. doi: 10.1186/s13148-021-01158-7 – volume: 126 start-page: 663 year: 2006 ident: 2022111710393917700_DEV200755C66 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 14 start-page: R115 year: 2013 ident: 2022111710393917700_DEV200755C23 article-title: DNA methylation age of human tissues and cell types publication-title: Genome Biol. doi: 10.1186/gb-2013-14-10-r115 – year: 2022 ident: 2022111710393917700_DEV200755C50 article-title: In vivo reprogramming leads to premature death due to hepatic and intestinal failure publication-title: bioRxiv 2022.05.27.493700 doi: 10.1101/2022.05.27.493700 – volume: 15 start-page: 1056 year: 2020 ident: 2022111710393917700_DEV200755C54 article-title: In vivo reprogramming ameliorates aging features in dentate gyrus cells and improves memory in mice publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2020.09.010 – volume: 17 start-page: 337 year: 2012 ident: 2022111710393917700_DEV200755C35 article-title: Epigenetic rejuvenation publication-title: Genes Cells doi: 10.1111/j.1365-2443.2012.01595.x – volume: 2 start-page: 397 year: 2022 ident: 2022111710393917700_DEV200755C52 article-title: In vivo cyclic induction of the FOXM1 transcription factor delays natural and progeroid aging phenotypes and extends healthspan publication-title: Nat. Aging doi: 10.1038/s43587-022-00209-9 – volume: 63 start-page: 1066 year: 2016 ident: 2022111710393917700_DEV200755C74 article-title: Resetting epigenetic memory by reprogramming of histone modifications in mammals publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.08.032 – volume: 13 start-page: 574 year: 2022 ident: 2022111710393917700_DEV200755C55 article-title: Diverse partial reprogramming strategies restore youthful gene expression and transiently suppress cell identity publication-title: Cell Syst. doi: 10.1016/j.cels.2022.05.002 – volume: 21 start-page: e13578 year: 2022 ident: 2022111710393917700_DEV200755C10 article-title: Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming publication-title: Aging Cell doi: 10.1111/acel.13578 – volume: 588 start-page: 124 year: 2020 ident: 2022111710393917700_DEV200755C33 article-title: Reprogramming to recover youthful epigenetic information and restore vision publication-title: Nature doi: 10.1038/s41586-020-2975-4 – volume: 103 start-page: 1099 year: 2000 ident: 2022111710393917700_DEV200755C47 article-title: Dedifferentiation of mammalian myotubes induced by msx1 publication-title: Cell doi: 10.1016/S0092-8674(00)00212-9 – volume: 149 start-page: dev200361 year: 2022 ident: 2022111710393917700_DEV200755C41 article-title: Natural killer cells act as an extrinsic barrier for in vivo reprogramming publication-title: Development doi: 10.1242/dev.200361 – volume: 119 start-page: e2118763119 year: 2022 ident: 2022111710393917700_DEV200755C51 article-title: Comparative genomics of mortal and immortal cnidarians unveils novel keys behind rejuvenation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2118763119 – volume: 74 start-page: 487 year: 2017 ident: 2022111710393917700_DEV200755C15 article-title: DNA repair mechanisms in embryonic stem cells publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-016-2358-z – volume: 385 start-page: 810 year: 1997 ident: 2022111710393917700_DEV200755C70 article-title: Viable offspring derived from fetal and adult mammalian cells publication-title: Nature doi: 10.1038/385810a0 – volume: 4 start-page: e1000242 year: 2008 ident: 2022111710393917700_DEV200755C28 article-title: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000242 – volume: 605 start-page: 325 year: 2022 ident: 2022111710393917700_DEV200755C20 article-title: Chemical reprogramming of human somatic cells to pluripotent stem cells publication-title: Nature doi: 10.1038/s41586-022-04593-5 – volume: 18 start-page: e12877 year: 2019 ident: 2022111710393917700_DEV200755C48 article-title: Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity publication-title: Aging Cell doi: 10.1111/acel.12877 – volume: 31 start-page: 1406 year: 2017 ident: 2022111710393917700_DEV200755C12 article-title: Embryonic timing, axial stem cells, chromatin dynamics, and the Hox clock publication-title: Genes Dev. doi: 10.1101/gad.303123.117 – volume: 4 start-page: 256 year: 1962 ident: 2022111710393917700_DEV200755C21 article-title: Adult frogs derived from the nuclei of single somatic cells publication-title: Dev. Biol. doi: 10.1016/0012-1606(62)90043-X – volume: 11 start-page: 1545 year: 2020 ident: 2022111710393917700_DEV200755C56 article-title: Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells publication-title: Nat. Commun. doi: 10.1038/s41467-020-15174-3 – volume: 22 start-page: 725 year: 2016 ident: 2022111710393917700_DEV200755C39 article-title: Ovarian ageing: the role of mitochondria in oocytes and follicles publication-title: Hum. Reprod. Update doi: 10.1093/humupd/dmw028 – volume: 4 start-page: 4789 year: 2014 ident: 2022111710393917700_DEV200755C36 article-title: Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states publication-title: Sci. Rep. doi: 10.1038/srep04789 – volume: 39 start-page: 110730 year: 2022 ident: 2022111710393917700_DEV200755C22 article-title: In vivo partial cellular reprogramming enhances liver plasticity and regeneration publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110730 |
SSID | ssj0003677 |
Score | 2.516415 |
Snippet | ‘Age reprogramming’ refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated... 'Age reprogramming' refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
SubjectTerms | Cellular Reprogramming - genetics Epigenesis, Genetic Induced Pluripotent Stem Cells Regenerative Medicine Rejuvenation |
Title | Age reprogramming: cell rejuvenation by partial reprogramming |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36383700 https://www.proquest.com/docview/2737464956 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYoiKoXxKOlKQ8tohcO23qx12y4IQSC8jo0kSIuK9trHm1JIpIgwa_n8yObjQgS9GKtRra1ms8ez4w9M4R8t1W0DY7FGIeniblMWAwCja8KkfF6xrA3bXDy2bk4avJfrbQ1qhjqokv66od-mhhX8j-oggZcbZTsO5AtJwUB38AXLRBG-yaM965t0ZPwxOouhC5bVzyofwYQYx5daJhdO9rl8K_0riqmlcdD7mJ3GMpV8RT8xhDvhLm_vRtVa768kX8H3c6Dd9D2esEXHDwJMELta7a0Ivy4vc5NwrxmAm0oMX2W0bA0fFzxC1GMsx_8K8yDC_f3uXjH812fX-SHzdPTvHHQanwgM9tQ9J1RfHxSnqVMuNqZ5V-EBLOY--do5nGV4hU7wekLjXkyFxT9aM-jtkCmTHuRzPrSn4-L5ONZeNQA4mXHEZeIBTQag2g3snBGVTgj9RgFOMf7fibNw4PG_lEc6lvEmm2zfiylKaArJHWuYAUaKRNBlVIaeovRKZOZpkqbAp9oBBc005waxpkRpk6hp30h0-1O23wlEaOFE91FojnnO1JRex2aGqayIsUurJGtIYtyHZK_2xok_3JrBIKdOdiZe3bWyGbZt-tTnkzstTHkdA6JZJkh26Yz6OXY-TtcWMO7RpY9BOU8TFiPCKXf3jB6hXwardJVMt2_H5g1aIB9te4WyTMR41rA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age+reprogramming%3A+cell+rejuvenation+by+partial+reprogramming&rft.jtitle=Development+%28Cambridge%29&rft.au=Singh%2C+Prim+B&rft.au=Zhakupova%2C+Assem&rft.date=2022-11-15&rft.issn=1477-9129&rft.eissn=1477-9129&rft.volume=149&rft.issue=22&rft_id=info:doi/10.1242%2Fdev.200755&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |