Video segmentation of industrial smoke based on dynamic fully convolutional network-Gaussian mixture model and multi-scale fusion attention module
Accurately segmenting industrial smoke in videos plays a crucial role in assessing pollution levels based on smoke image evaluation. However, existing fully convolutional networks (FCNs) face challenges in precisely segmenting the edges of industrial smoke and exhibit low extraction and segmentation...
Saved in:
Published in | Journal of electronic imaging Vol. 32; no. 3; p. 033038 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Society of Photo-Optical Instrumentation Engineers
01.05.2023
SPIE |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurately segmenting industrial smoke in videos plays a crucial role in assessing pollution levels based on smoke image evaluation. However, existing fully convolutional networks (FCNs) face challenges in precisely segmenting the edges of industrial smoke and exhibit low extraction and segmentation accuracy for small target smoke. To address this issue, we propose a video segmentation method specifically designed for industrial smoke. This method utilizes the dynamic FCN-Gaussian mixture model (GMM) along with a multi-scale fusion module and an attention module. The FCN-GMM effectively extracts dynamic feature information from spatiotemporal data, capturing motion in video or image sequences while preserving spatial details. The key innovation of FCN-GMM lies in integrating dynamic and static networks through a neural network, enabling the capture of features in both the temporal and spatial domains. Our approach begins by constructing a dynamic feature extraction network that captures spatial and temporal feature information separately during the training process, thereby enhancing the extraction of smoke edges. Additionally, we introduce a mechanism for multi-scale feature fusion and an attention module to effectively extract information related to small target smoke. Our experimental results demonstrate that our network accurately segments significant target smoke compared with FCNs. Furthermore, the network prioritizes the consideration of smoke edge information and improves the extraction of small target smoke, thereby enhancing the overall accuracy of smoke image segmentation with an increase of up to 10% in the intersection over union index. |
---|---|
AbstractList | Accurately segmenting industrial smoke in videos plays a crucial role in assessing pollution levels based on smoke image evaluation. However, existing fully convolutional networks (FCNs) face challenges in precisely segmenting the edges of industrial smoke and exhibit low extraction and segmentation accuracy for small target smoke. To address this issue, we propose a video segmentation method specifically designed for industrial smoke. This method utilizes the dynamic FCN-Gaussian mixture model (GMM) along with a multi-scale fusion module and an attention module. The FCN-GMM effectively extracts dynamic feature information from spatiotemporal data, capturing motion in video or image sequences while preserving spatial details. The key innovation of FCN-GMM lies in integrating dynamic and static networks through a neural network, enabling the capture of features in both the temporal and spatial domains. Our approach begins by constructing a dynamic feature extraction network that captures spatial and temporal feature information separately during the training process, thereby enhancing the extraction of smoke edges. Additionally, we introduce a mechanism for multi-scale feature fusion and an attention module to effectively extract information related to small target smoke. Our experimental results demonstrate that our network accurately segments significant target smoke compared with FCNs. Furthermore, the network prioritizes the consideration of smoke edge information and improves the extraction of small target smoke, thereby enhancing the overall accuracy of smoke image segmentation with an increase of up to 10% in the intersection over union index. |
Audience | Academic |
Author | Wenyu, Ding Fugang, Chen Hui, Liu |
Author_xml | – sequence: 1 givenname: Ding orcidid: 0000-0003-1406-004X surname: Wenyu fullname: Wenyu, Ding email: 1607917861@qq.com organization: Kunming University of Science and Technology, Yunnan Key Laboratory of Artificial Intelligence, Kunming, China – sequence: 2 givenname: Liu surname: Hui fullname: Hui, Liu email: liuhui621@126.com organization: Kunming University of Science and Technology, Yunnan Key Laboratory of Artificial Intelligence, Kunming, China – sequence: 3 givenname: Chen surname: Fugang fullname: Fugang, Chen email: 1607917861@qq.com organization: Yunnan Kungang Electronic and Inforrmation Science Ltd., Kunming, China |
BookMark | eNp9kcFu3CAQhlGVSk3SPkBvvIBdBtbGHKMoTVOt1EtT9YYwHq_YYIgAN9nXyBOH1ebUQ8SB0TDfzPD_F-QsxICEfAXWAoD8Bu3Pm7tW8Fa0TAgmhg_kHLqeNZyrv2c1ZiAbpZj6RC5y3jMGMGzgnLz8cRNGmnG3YCimuBhonKkL05pLcsbTvMQHpKPJONH6OB2CWZyl8-r9gdoY_kW_HrFaGrA8xfTQ3Jo1Z2cCXdxzWRPSJU7oqQkTXVZfXJOt8Vhb5OM4U0odfYxq2erxM_k4G5_xy9t9Se6_3_y-_tFsf93eXV9tGyu4KI2aB4uWjZuNUbARI0jZdSMY1vNOccmMnJRSo-1xUD0g2EF0VRiQnM9m6HpxSdpT311dRrswx5KMrWfC-sEq7-xq_mroADoJvaqAPAE2xZwTztq6k2QVdF4D00cvNOjqhRZcC33yopLwH_mY3GLS4V3mbb386FDv45qqxPkd4BU105_L |
CitedBy_id | crossref_primary_10_1117_1_JEI_33_5_053049 |
Cites_doi | 10.1016/j.imavis.2009.04.005 10.1117/1.OE.60.12.120901 10.48550/arXiv.1406.2199 10.1016/j.imavis.2022.104513 10.1109/CVPR.2019.00584 10.1117/1.JEI.31.5.053033 10.1109/ICCV.2017.477 10.1155/ASP.2005.2330 10.1109/TII.2012.2189224 10.48550/arXiv.1512.03385 10.4028/www.scientific.net/AMM.490-491.1283 10.1109/ICCV.2019.00140 10.1007/978-3-030-01234-2_49 10.1109/CISP.2010.5648259 10.1109/TPAMI.2016.2644615 10.12305/j.issn.1001-506X.2021.02.06 10.27200/d.cnki.gkmlu.2020.000469 10.1016/j.firesaf.2009.08.003 10.1109/CVPR.2018.00686 10.1109/CISW.2007.4425500 10.48550/arXiv.1411.4038 10.1109/65.567568 10.1109/TITS.2019.2900385 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2015.7299035 10.1609/aaai.v34i07.6999 10.1016/0262-8856(83)90008-2 10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L |
ContentType | Journal Article |
Copyright | 2023 SPIE and IS&T COPYRIGHT 2023 SPIE |
Copyright_xml | – notice: 2023 SPIE and IS&T – notice: COPYRIGHT 2023 SPIE |
DBID | AAYXX CITATION |
DOI | 10.1117/1.JEI.32.3.033038 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Visual Arts Engineering |
EISSN | 1560-229X |
EndPage | 033038 |
ExternalDocumentID | A851157169 10_1117_1_JEI_32_3_033038 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61863018; 62263016 – fundername: Applied Basic Research Foundation of Yunnan Province grantid: 202001AT070038 |
GroupedDBID | .DC 0R~ 29K 4.4 5GY ABPTK ACGFO ACGFS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 D-I DU5 EBS F5P FQ0 G8K HZ~ ITE M4X O9- P2P RNS SJN SPBNH TAE UT2 AAJMC AAYXX ABDPE ABJNI ADMLS AKROS CITATION |
ID | FETCH-LOGICAL-c323t-9f8cec0b44a9143b17755b1a06259270a7d999bc6e8961e1c8353031722fa8563 |
ISSN | 1017-9909 |
IngestDate | Tue Aug 12 03:41:19 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Tue Jul 01 01:22:36 EDT 2025 Sun Jul 02 11:09:49 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | convolutional network spatiotemporal feature industrial smoke attention module Gaussian mixture model multi-scale fusion |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c323t-9f8cec0b44a9143b17755b1a06259270a7d999bc6e8961e1c8353031722fa8563 |
ORCID | 0000-0003-1406-004X |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1117_1_JEI_32_3_033038 spie_journals_10_1117_1_JEI_32_3_033038 crossref_citationtrail_10_1117_1_JEI_32_3_033038 gale_infotracacademiconefile_A851157169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of electronic imaging |
PublicationTitleAlternate | J. Electron. Imaging |
PublicationYear | 2023 |
Publisher | Society of Photo-Optical Instrumentation Engineers SPIE |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers – name: SPIE |
References | r2 r3 Wenzhe (r25) 2016 Zhang (r43) 2021 r4 r5 r6 r8 Liu (r23) 2019 r30 Oktay (r41) 2018 Zhao (r22) 2014 r32 Zhan (r26) 2015 r31 Wei (r18) 2013 r34 r11 Wang (r19) 2018 Bak (r29) 2016 r33 r36 r13 r16 Lin (r24) 2016 r38 r15 r37 r17 r39 Chu (r14) 2012 Zhao (r9) 2018 Cheng (r47) 2017 Liu (r7) 2020 r40 r20 r42 Dian (r12) 2006 r45 r44 r46 r27 Simonyan (r28) 2014 Goutte (r35) 2005 Çelik (r10) 2007 Guan (r21) 2020 r1 |
References_xml | – ident: r13 doi: 10.1016/j.imavis.2009.04.005 – ident: r1 doi: 10.1117/1.OE.60.12.120901 – ident: r37 doi: 10.48550/arXiv.1406.2199 – ident: r15 doi: 10.1016/j.imavis.2022.104513 – ident: r39 doi: 10.1109/CVPR.2019.00584 – ident: r2 doi: 10.1117/1.JEI.31.5.053033 – ident: r5 doi: 10.1109/ICCV.2017.477 – start-page: 8 year: 2014 ident: r22 article-title: Review of image classification algorithms based on depth residual networks – start-page: 345 year: 2005 ident: r35 article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation – year: 2016 ident: r25 article-title: Research on segmentation method of target region for image monitoring of industrial soot emission – start-page: 775 year: 2012 ident: r14 article-title: Dust monitoring system based on video image processing – ident: r11 doi: 10.1155/ASP.2005.2330 – ident: r20 doi: 10.1109/TII.2012.2189224 – year: 2016 ident: r24 article-title: Video smoke detection algorithm research – start-page: 1131 year: 2018 ident: r9 article-title: A smoke detection algorithm with multi-texture feature exploration under a spatio-temporal background model – year: 2020 ident: r21 – year: 2017 ident: r47 article-title: Learning to segment instances in videos with spatial propagation network – year: 2006 ident: r12 – start-page: 568 year: 2014 ident: r28 article-title: Two-stream convolutional networks for action recognition in videos – ident: r33 doi: 10.48550/arXiv.1512.03385 – ident: r16 doi: 10.4028/www.scientific.net/AMM.490-491.1283 – ident: r42 doi: 10.1109/ICCV.2019.00140 – start-page: 1463 year: 2019 ident: r23 article-title: Intelligent small object detection approach for fast modeling of digital twin of global human working activities – ident: r4 doi: 10.1007/978-3-030-01234-2_49 – start-page: 907 year: 2021 ident: r43 article-title: Image segmentation of industrial soot based on FCN-LSTM – ident: r17 doi: 10.1109/CISP.2010.5648259 – year: 2015 ident: r26 article-title: Image segmentation of industrial soot based on improved attention w-net – ident: r27 doi: 10.1109/TPAMI.2016.2644615 – ident: r44 doi: 10.12305/j.issn.1001-506X.2021.02.06 – ident: r3 doi: 10.27200/d.cnki.gkmlu.2020.000469 – ident: r8 doi: 10.1016/j.firesaf.2009.08.003 – ident: r38 doi: 10.1109/CVPR.2018.00686 – ident: r40 doi: 10.1109/CISW.2007.4425500 – start-page: 37 year: 2018 ident: r19 article-title: Image segmentation method of industrial fumes based on background modeling and feature matching – start-page: 781 year: 2013 ident: r18 article-title: Smoke target detection based on accumulated differential image sequence and gaussian background statistical model – ident: r31 doi: 10.48550/arXiv.1411.4038 – ident: r45 doi: 10.1109/65.567568 – ident: r46 doi: 10.1109/TITS.2019.2900385 – ident: r32 doi: 10.1007/978-3-319-24574-4_28 – ident: r30 doi: 10.1109/CVPR.2015.7299035 – ident: r36 doi: 10.1609/aaai.v34i07.6999 – year: 2018 ident: r41 article-title: Attention U-Net: learning where to look for the pancreas – start-page: 1794 year: 2007 ident: r10 article-title: Fire and smoke detection without sensors: image processing based approach – year: 2016 ident: r29 article-title: Two-stream convolutional networks for dynamic saliency prediction – start-page: 1898 year: 2020 ident: r7 article-title: Industrial smoke target segmentation based on fully convolutional networks with multiscale convolution and dynamic weight loss function – ident: r6 doi: 10.1016/0262-8856(83)90008-2 – ident: r34 doi: 10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L |
SSID | ssj0011841 |
Score | 2.3375509 |
Snippet | Accurately segmenting industrial smoke in videos plays a crucial role in assessing pollution levels based on smoke image evaluation. However, existing fully... |
SourceID | gale crossref spie |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 033038 |
SubjectTerms | Gaussian processes Image processing Neural networks |
Title | Video segmentation of industrial smoke based on dynamic fully convolutional network-Gaussian mixture model and multi-scale fusion attention module |
URI | http://www.dx.doi.org/10.1117/1.JEI.32.3.033038 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu8CBjQFiG6B3QEKiSkjipEmO1ejoJsaFbdrNihNni1jTCSfSxp_BX8zzx5J0MDS4RK3rOFZ-vz6_Z78PQt7yyEfjmFKH-z53wlIIJ_OSwvFomRVe6CepTlZ9-GUyPw4PTqPT3nVIR5c03M1__DGu5H9QxTbEVUXJ_gOy3aDYgJ8RX7wiwni9F8YnVSGWYynOFjaCqDYZILpqHHKx_CbGaqUq1KlAYcrPj9We-7V2OLfTw6618Qd3PmWt1IGVi-pKny7oWjn6jEE7HzoSURU4hNSOzE1j_SWxW3ux6lfU67qDYjvVQtdF6k-E6utWC75B47w1MdtV29GrPbMb27vnNnjNblUEA8dA6-CxPxuIWrU-4lqYDmVxv9fZm-pasHoU19rkDpmvswa4B7N9lwYudfu-t1JpT5V6Gan8QA_JWoB2BQrGtenHw89fu4MnNHi1jX4zOXsQjs_48NsTVlQZu6CP5GUlBhrK0QZ5Yl83TA1PnpIHot4k69bMACvE5SZ5PMhBid9OKtma2-Qz8lNTCoaUgmUJPaVAUwo0pQB_tJQCTSlYoRTcphRYSoGmFCClYEApMJSCjlJgKPWcHO_Njnbnji3b4eQ0oI2Tlkkuco-HYZaiNq7ym0UR9zNPmdpB7GVxgVYJzyciSSe-8HM0AvB1oiYdlFkSTegLMqqXtXhJgMZx7iclFRHq_WVcZqkQUZRQXvCYB0mxRbwbBFhuc9qr0ioXzNi2MfMZgsZowCgzoG2R990tlyahy986v1OwMsU3HDfPbMwKzk6lTWM9obCnQp5Z6SDvHnP73mPukEf9v-gVGTXfW_EaVeCGv7G0_QXzi7Sg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Video+segmentation+of+industrial+smoke+based+on+dynamic+fully+convolutional+network-Gaussian+mixture+model+and+multi-scale+fusion+attention+module&rft.jtitle=Journal+of+electronic+imaging&rft.au=Wenyu%2C+Ding&rft.au=Hui%2C+Liu&rft.au=Fugang%2C+Chen&rft.date=2023-05-01&rft.pub=SPIE&rft.issn=1017-9909&rft.volume=32&rft.issue=3&rft.spage=033038&rft_id=info:doi/10.1117%2F1.JEI.32.3.033038&rft.externalDocID=A851157169 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-9909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-9909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-9909&client=summon |