Video segmentation of industrial smoke based on dynamic fully convolutional network-Gaussian mixture model and multi-scale fusion attention module

Accurately segmenting industrial smoke in videos plays a crucial role in assessing pollution levels based on smoke image evaluation. However, existing fully convolutional networks (FCNs) face challenges in precisely segmenting the edges of industrial smoke and exhibit low extraction and segmentation...

Full description

Saved in:
Bibliographic Details
Published inJournal of electronic imaging Vol. 32; no. 3; p. 033038
Main Authors Wenyu, Ding, Hui, Liu, Fugang, Chen
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 01.05.2023
SPIE
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurately segmenting industrial smoke in videos plays a crucial role in assessing pollution levels based on smoke image evaluation. However, existing fully convolutional networks (FCNs) face challenges in precisely segmenting the edges of industrial smoke and exhibit low extraction and segmentation accuracy for small target smoke. To address this issue, we propose a video segmentation method specifically designed for industrial smoke. This method utilizes the dynamic FCN-Gaussian mixture model (GMM) along with a multi-scale fusion module and an attention module. The FCN-GMM effectively extracts dynamic feature information from spatiotemporal data, capturing motion in video or image sequences while preserving spatial details. The key innovation of FCN-GMM lies in integrating dynamic and static networks through a neural network, enabling the capture of features in both the temporal and spatial domains. Our approach begins by constructing a dynamic feature extraction network that captures spatial and temporal feature information separately during the training process, thereby enhancing the extraction of smoke edges. Additionally, we introduce a mechanism for multi-scale feature fusion and an attention module to effectively extract information related to small target smoke. Our experimental results demonstrate that our network accurately segments significant target smoke compared with FCNs. Furthermore, the network prioritizes the consideration of smoke edge information and improves the extraction of small target smoke, thereby enhancing the overall accuracy of smoke image segmentation with an increase of up to 10% in the intersection over union index.
AbstractList Accurately segmenting industrial smoke in videos plays a crucial role in assessing pollution levels based on smoke image evaluation. However, existing fully convolutional networks (FCNs) face challenges in precisely segmenting the edges of industrial smoke and exhibit low extraction and segmentation accuracy for small target smoke. To address this issue, we propose a video segmentation method specifically designed for industrial smoke. This method utilizes the dynamic FCN-Gaussian mixture model (GMM) along with a multi-scale fusion module and an attention module. The FCN-GMM effectively extracts dynamic feature information from spatiotemporal data, capturing motion in video or image sequences while preserving spatial details. The key innovation of FCN-GMM lies in integrating dynamic and static networks through a neural network, enabling the capture of features in both the temporal and spatial domains. Our approach begins by constructing a dynamic feature extraction network that captures spatial and temporal feature information separately during the training process, thereby enhancing the extraction of smoke edges. Additionally, we introduce a mechanism for multi-scale feature fusion and an attention module to effectively extract information related to small target smoke. Our experimental results demonstrate that our network accurately segments significant target smoke compared with FCNs. Furthermore, the network prioritizes the consideration of smoke edge information and improves the extraction of small target smoke, thereby enhancing the overall accuracy of smoke image segmentation with an increase of up to 10% in the intersection over union index.
Audience Academic
Author Wenyu, Ding
Fugang, Chen
Hui, Liu
Author_xml – sequence: 1
  givenname: Ding
  orcidid: 0000-0003-1406-004X
  surname: Wenyu
  fullname: Wenyu, Ding
  email: 1607917861@qq.com
  organization: Kunming University of Science and Technology, Yunnan Key Laboratory of Artificial Intelligence, Kunming, China
– sequence: 2
  givenname: Liu
  surname: Hui
  fullname: Hui, Liu
  email: liuhui621@126.com
  organization: Kunming University of Science and Technology, Yunnan Key Laboratory of Artificial Intelligence, Kunming, China
– sequence: 3
  givenname: Chen
  surname: Fugang
  fullname: Fugang, Chen
  email: 1607917861@qq.com
  organization: Yunnan Kungang Electronic and Inforrmation Science Ltd., Kunming, China
BookMark eNp9kcFu3CAQhlGVSk3SPkBvvIBdBtbGHKMoTVOt1EtT9YYwHq_YYIgAN9nXyBOH1ebUQ8SB0TDfzPD_F-QsxICEfAXWAoD8Bu3Pm7tW8Fa0TAgmhg_kHLqeNZyrv2c1ZiAbpZj6RC5y3jMGMGzgnLz8cRNGmnG3YCimuBhonKkL05pLcsbTvMQHpKPJONH6OB2CWZyl8-r9gdoY_kW_HrFaGrA8xfTQ3Jo1Z2cCXdxzWRPSJU7oqQkTXVZfXJOt8Vhb5OM4U0odfYxq2erxM_k4G5_xy9t9Se6_3_y-_tFsf93eXV9tGyu4KI2aB4uWjZuNUbARI0jZdSMY1vNOccmMnJRSo-1xUD0g2EF0VRiQnM9m6HpxSdpT311dRrswx5KMrWfC-sEq7-xq_mroADoJvaqAPAE2xZwTztq6k2QVdF4D00cvNOjqhRZcC33yopLwH_mY3GLS4V3mbb386FDv45qqxPkd4BU105_L
CitedBy_id crossref_primary_10_1117_1_JEI_33_5_053049
Cites_doi 10.1016/j.imavis.2009.04.005
10.1117/1.OE.60.12.120901
10.48550/arXiv.1406.2199
10.1016/j.imavis.2022.104513
10.1109/CVPR.2019.00584
10.1117/1.JEI.31.5.053033
10.1109/ICCV.2017.477
10.1155/ASP.2005.2330
10.1109/TII.2012.2189224
10.48550/arXiv.1512.03385
10.4028/www.scientific.net/AMM.490-491.1283
10.1109/ICCV.2019.00140
10.1007/978-3-030-01234-2_49
10.1109/CISP.2010.5648259
10.1109/TPAMI.2016.2644615
10.12305/j.issn.1001-506X.2021.02.06
10.27200/d.cnki.gkmlu.2020.000469
10.1016/j.firesaf.2009.08.003
10.1109/CVPR.2018.00686
10.1109/CISW.2007.4425500
10.48550/arXiv.1411.4038
10.1109/65.567568
10.1109/TITS.2019.2900385
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2015.7299035
10.1609/aaai.v34i07.6999
10.1016/0262-8856(83)90008-2
10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L
ContentType Journal Article
Copyright 2023 SPIE and IS&T
COPYRIGHT 2023 SPIE
Copyright_xml – notice: 2023 SPIE and IS&T
– notice: COPYRIGHT 2023 SPIE
DBID AAYXX
CITATION
DOI 10.1117/1.JEI.32.3.033038
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Visual Arts
Engineering
EISSN 1560-229X
EndPage 033038
ExternalDocumentID A851157169
10_1117_1_JEI_32_3_033038
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61863018; 62263016
– fundername: Applied Basic Research Foundation of Yunnan Province
  grantid: 202001AT070038
GroupedDBID .DC
0R~
29K
4.4
5GY
ABPTK
ACGFO
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
D-I
DU5
EBS
F5P
FQ0
G8K
HZ~
ITE
M4X
O9-
P2P
RNS
SJN
SPBNH
TAE
UT2
AAJMC
AAYXX
ABDPE
ABJNI
ADMLS
AKROS
CITATION
ID FETCH-LOGICAL-c323t-9f8cec0b44a9143b17755b1a06259270a7d999bc6e8961e1c8353031722fa8563
ISSN 1017-9909
IngestDate Tue Aug 12 03:41:19 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Tue Jul 01 01:22:36 EDT 2025
Sun Jul 02 11:09:49 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords convolutional network
spatiotemporal feature
industrial smoke
attention module
Gaussian mixture model
multi-scale fusion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-9f8cec0b44a9143b17755b1a06259270a7d999bc6e8961e1c8353031722fa8563
ORCID 0000-0003-1406-004X
PageCount 1
ParticipantIDs crossref_primary_10_1117_1_JEI_32_3_033038
spie_journals_10_1117_1_JEI_32_3_033038
crossref_citationtrail_10_1117_1_JEI_32_3_033038
gale_infotracacademiconefile_A851157169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of electronic imaging
PublicationTitleAlternate J. Electron. Imaging
PublicationYear 2023
Publisher Society of Photo-Optical Instrumentation Engineers
SPIE
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
– name: SPIE
References r2
r3
Wenzhe (r25) 2016
Zhang (r43) 2021
r4
r5
r6
r8
Liu (r23) 2019
r30
Oktay (r41) 2018
Zhao (r22) 2014
r32
Zhan (r26) 2015
r31
Wei (r18) 2013
r34
r11
Wang (r19) 2018
Bak (r29) 2016
r33
r36
r13
r16
Lin (r24) 2016
r38
r15
r37
r17
r39
Chu (r14) 2012
Zhao (r9) 2018
Cheng (r47) 2017
Liu (r7) 2020
r40
r20
r42
Dian (r12) 2006
r45
r44
r46
r27
Simonyan (r28) 2014
Goutte (r35) 2005
Çelik (r10) 2007
Guan (r21) 2020
r1
References_xml – ident: r13
  doi: 10.1016/j.imavis.2009.04.005
– ident: r1
  doi: 10.1117/1.OE.60.12.120901
– ident: r37
  doi: 10.48550/arXiv.1406.2199
– ident: r15
  doi: 10.1016/j.imavis.2022.104513
– ident: r39
  doi: 10.1109/CVPR.2019.00584
– ident: r2
  doi: 10.1117/1.JEI.31.5.053033
– ident: r5
  doi: 10.1109/ICCV.2017.477
– start-page: 8
  year: 2014
  ident: r22
  article-title: Review of image classification algorithms based on depth residual networks
– start-page: 345
  year: 2005
  ident: r35
  article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation
– year: 2016
  ident: r25
  article-title: Research on segmentation method of target region for image monitoring of industrial soot emission
– start-page: 775
  year: 2012
  ident: r14
  article-title: Dust monitoring system based on video image processing
– ident: r11
  doi: 10.1155/ASP.2005.2330
– ident: r20
  doi: 10.1109/TII.2012.2189224
– year: 2016
  ident: r24
  article-title: Video smoke detection algorithm research
– start-page: 1131
  year: 2018
  ident: r9
  article-title: A smoke detection algorithm with multi-texture feature exploration under a spatio-temporal background model
– year: 2020
  ident: r21
– year: 2017
  ident: r47
  article-title: Learning to segment instances in videos with spatial propagation network
– year: 2006
  ident: r12
– start-page: 568
  year: 2014
  ident: r28
  article-title: Two-stream convolutional networks for action recognition in videos
– ident: r33
  doi: 10.48550/arXiv.1512.03385
– ident: r16
  doi: 10.4028/www.scientific.net/AMM.490-491.1283
– ident: r42
  doi: 10.1109/ICCV.2019.00140
– start-page: 1463
  year: 2019
  ident: r23
  article-title: Intelligent small object detection approach for fast modeling of digital twin of global human working activities
– ident: r4
  doi: 10.1007/978-3-030-01234-2_49
– start-page: 907
  year: 2021
  ident: r43
  article-title: Image segmentation of industrial soot based on FCN-LSTM
– ident: r17
  doi: 10.1109/CISP.2010.5648259
– year: 2015
  ident: r26
  article-title: Image segmentation of industrial soot based on improved attention w-net
– ident: r27
  doi: 10.1109/TPAMI.2016.2644615
– ident: r44
  doi: 10.12305/j.issn.1001-506X.2021.02.06
– ident: r3
  doi: 10.27200/d.cnki.gkmlu.2020.000469
– ident: r8
  doi: 10.1016/j.firesaf.2009.08.003
– ident: r38
  doi: 10.1109/CVPR.2018.00686
– ident: r40
  doi: 10.1109/CISW.2007.4425500
– start-page: 37
  year: 2018
  ident: r19
  article-title: Image segmentation method of industrial fumes based on background modeling and feature matching
– start-page: 781
  year: 2013
  ident: r18
  article-title: Smoke target detection based on accumulated differential image sequence and gaussian background statistical model
– ident: r31
  doi: 10.48550/arXiv.1411.4038
– ident: r45
  doi: 10.1109/65.567568
– ident: r46
  doi: 10.1109/TITS.2019.2900385
– ident: r32
  doi: 10.1007/978-3-319-24574-4_28
– ident: r30
  doi: 10.1109/CVPR.2015.7299035
– ident: r36
  doi: 10.1609/aaai.v34i07.6999
– year: 2018
  ident: r41
  article-title: Attention U-Net: learning where to look for the pancreas
– start-page: 1794
  year: 2007
  ident: r10
  article-title: Fire and smoke detection without sensors: image processing based approach
– year: 2016
  ident: r29
  article-title: Two-stream convolutional networks for dynamic saliency prediction
– start-page: 1898
  year: 2020
  ident: r7
  article-title: Industrial smoke target segmentation based on fully convolutional networks with multiscale convolution and dynamic weight loss function
– ident: r6
  doi: 10.1016/0262-8856(83)90008-2
– ident: r34
  doi: 10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L
SSID ssj0011841
Score 2.3375509
Snippet Accurately segmenting industrial smoke in videos plays a crucial role in assessing pollution levels based on smoke image evaluation. However, existing fully...
SourceID gale
crossref
spie
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 033038
SubjectTerms Gaussian processes
Image processing
Neural networks
Title Video segmentation of industrial smoke based on dynamic fully convolutional network-Gaussian mixture model and multi-scale fusion attention module
URI http://www.dx.doi.org/10.1117/1.JEI.32.3.033038
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu8CBjQFiG6B3QEKiSkjipEmO1ejoJsaFbdrNihNni1jTCSfSxp_BX8zzx5J0MDS4RK3rOFZ-vz6_Z78PQt7yyEfjmFKH-z53wlIIJ_OSwvFomRVe6CepTlZ9-GUyPw4PTqPT3nVIR5c03M1__DGu5H9QxTbEVUXJ_gOy3aDYgJ8RX7wiwni9F8YnVSGWYynOFjaCqDYZILpqHHKx_CbGaqUq1KlAYcrPj9We-7V2OLfTw6618Qd3PmWt1IGVi-pKny7oWjn6jEE7HzoSURU4hNSOzE1j_SWxW3ux6lfU67qDYjvVQtdF6k-E6utWC75B47w1MdtV29GrPbMb27vnNnjNblUEA8dA6-CxPxuIWrU-4lqYDmVxv9fZm-pasHoU19rkDpmvswa4B7N9lwYudfu-t1JpT5V6Gan8QA_JWoB2BQrGtenHw89fu4MnNHi1jX4zOXsQjs_48NsTVlQZu6CP5GUlBhrK0QZ5Yl83TA1PnpIHot4k69bMACvE5SZ5PMhBid9OKtma2-Qz8lNTCoaUgmUJPaVAUwo0pQB_tJQCTSlYoRTcphRYSoGmFCClYEApMJSCjlJgKPWcHO_Njnbnji3b4eQ0oI2Tlkkuco-HYZaiNq7ym0UR9zNPmdpB7GVxgVYJzyciSSe-8HM0AvB1oiYdlFkSTegLMqqXtXhJgMZx7iclFRHq_WVcZqkQUZRQXvCYB0mxRbwbBFhuc9qr0ioXzNi2MfMZgsZowCgzoG2R990tlyahy986v1OwMsU3HDfPbMwKzk6lTWM9obCnQp5Z6SDvHnP73mPukEf9v-gVGTXfW_EaVeCGv7G0_QXzi7Sg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Video+segmentation+of+industrial+smoke+based+on+dynamic+fully+convolutional+network-Gaussian+mixture+model+and+multi-scale+fusion+attention+module&rft.jtitle=Journal+of+electronic+imaging&rft.au=Wenyu%2C+Ding&rft.au=Hui%2C+Liu&rft.au=Fugang%2C+Chen&rft.date=2023-05-01&rft.pub=SPIE&rft.issn=1017-9909&rft.volume=32&rft.issue=3&rft.spage=033038&rft_id=info:doi/10.1117%2F1.JEI.32.3.033038&rft.externalDocID=A851157169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-9909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-9909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-9909&client=summon