Recent Advances in Aerobic Oxidative of C−H Bond by Molecular Oxygen Focus on Heterocycles

Aerobic oxidative cross‐coupling represents one of the most straightforward and atom‐economic methods for construction of C−C and C−X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C−H bonds in heterocyclic compounds can effectively increase their mole...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 29; no. 51; p. e202301700
Main Authors Zhang, Lei‐Yang, Wang, Nai‐Xing, Lucan, Dumitra, Cheung, William, Xing, Yalan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 12.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aerobic oxidative cross‐coupling represents one of the most straightforward and atom‐economic methods for construction of C−C and C−X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C−H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C−H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C−H bond using O 2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it.
AbstractList Aerobic oxidative cross coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X = N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C-H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C-H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C-H bond using O2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it.
Aerobic oxidative cross‐coupling represents one of the most straightforward and atom‐economic methods for construction of C−C and C−X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C−H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C−H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C−H bond using O2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it.
Aerobic oxidative cross‐coupling represents one of the most straightforward and atom‐economic methods for construction of C−C and C−X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C−H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C−H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C−H bond using O 2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it.
Aerobic oxidative cross-coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C-H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C-H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C-H bond using O2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it.Aerobic oxidative cross-coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C-H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C-H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C-H bond using O2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it.
Author Wang, Nai‐Xing
Zhang, Lei‐Yang
Cheung, William
Xing, Yalan
Lucan, Dumitra
Author_xml – sequence: 1
  givenname: Lei‐Yang
  surname: Zhang
  fullname: Zhang, Lei‐Yang
  organization: Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
– sequence: 2
  givenname: Nai‐Xing
  orcidid: 0000-0001-9520-3254
  surname: Wang
  fullname: Wang, Nai‐Xing
  organization: Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
– sequence: 3
  givenname: Dumitra
  surname: Lucan
  fullname: Lucan, Dumitra
  organization: Technical Sciences Academy of Romania ASTR Dacia Avenue no.26 Bucharest Romania
– sequence: 4
  givenname: William
  surname: Cheung
  fullname: Cheung, William
  organization: Department of Chemistry Hofstra University Hempstead NY 11549 United States
– sequence: 5
  givenname: Yalan
  surname: Xing
  fullname: Xing, Yalan
  organization: Department of Chemistry Hofstra University Hempstead NY 11549 United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37390122$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1LxDAQhoMoun5cPUrAi5eu02TbNMd1UVdYEURvQmiTqVa6iSbt4v4Dz_5Ef4lZVj0IwsBcnudlmHeXbFpnkZDDFIYpADvVTzgfMmAcUgGwQQZpxtKEizzbJAOQI5HkGZc7ZDeEZwCQOefbZIcLLiFlbEAeblGj7ejYLEqrMdDG0jF6VzWa3rw1puyaBVJX08nn-8eUnjlraLWk165F3belj9DyES29cLoP1Fk6xS7qeqlbDPtkqy7bgAffe4_cX5zfTabJ7ObyajKeJZoz3iWykDpDLBAyYUaVkRVkWJeoJciCFTXjKDMQHDQ3tVgNGxmmMQIMUyP5HjlZ575499pj6NS8CRrbtrTo-qBYwVkmWIyI6PEf9Nn13sbrIpXzXEIhRaSOvqm-mqNRL76Zl36pfv4WgdEa0N6F4LFWuunir5ztfNm0KgW1qket6lG_9URt-Ef7Sf5H-AKfn5FR
CitedBy_id crossref_primary_10_1002_ajoc_202400043
crossref_primary_10_1039_D4OB00133H
crossref_primary_10_1002_ajoc_202400339
crossref_primary_10_1021_jacs_4c15196
crossref_primary_10_1055_s_0043_1763690
Cites_doi 10.1002/ange.201902155
10.1002/asia.201701163
10.1002/ange.201810261
10.1021/acs.orglett.7b01969
10.1080/10426507.2017.1330827
10.1021/jo1023975
10.1021/acs.joc.6b00659
10.1002/ange.201811630
10.1002/ange.201511567
10.1021/acsomega.7b00988
10.1021/acs.chemrev.6b00574
10.1021/acs.orglett.2c03563
10.1039/c3sc51206a
10.1021/jacs.8b12149
10.1021/acs.joc.7b01841
10.1002/chem.201502280
10.1021/acs.orglett.7b01060
10.1021/acs.chemrev.8b00077
10.1002/ejoc.201700356
10.1021/acs.orglett.0c01973
10.1002/cctc.202000284
10.1016/j.ejmech.2017.02.042
10.1039/C4CY00919C
10.1002/cjoc.201600493
10.1021/jo300592t
10.1021/acs.joc.9b01506
10.1016/j.jfluchem.2012.05.009
10.1002/ange.201804929
10.1002/ange.201610168
10.1039/C8OB00240A
10.1039/C8OB01263F
10.1055/s-0040-1706406
10.1021/jo402215s
10.1002/anie.201913400
10.1002/ejoc.201500587
10.1021/acs.orglett.9b01641
10.1021/ar4003202
10.1002/anie.202013852
10.1002/ange.201802206
10.1016/j.tet.2016.10.056
10.1021/ja102175w
10.1016/j.tetlet.2012.05.076
10.1002/ange.201900977
10.1039/B919396K
10.3390/ijms17060860
10.1021/ja209992w
10.1021/acs.joc.6b02683
10.1021/acs.joc.5b01990
10.1021/ol100560k
10.1039/c3ra40999f
10.1021/acscatal.9b00925
10.1021/acs.orglett.0c01066
10.1002/anie.201107605
10.1021/acs.orglett.7b00428
10.1021/ol200154s
10.1038/s41557-018-0178-5
10.1021/ol501483k
10.1016/j.ejmech.2016.02.069
10.1021/acs.orglett.9b02763
10.1002/chem.202202240
10.1021/acs.joc.5b02838
10.1002/chem.202203269
10.1021/ol501933h
10.1002/anie.201802206
10.1021/acs.chemrev.8b00372
10.1021/acs.joc.0c02249
10.1021/ol202409r
10.1021/cr900195a
10.1021/jacs.6b00127
10.1016/j.cattod.2017.02.005
10.1002/adsc.201800684
10.1016/j.tetlet.2019.151121
10.1002/anie.201902155
10.1002/adsc.201200360
10.1021/jacs.8b11838
10.1039/C5GC00753D
10.1002/adsc.201600291
10.1039/C1SC00619C
10.1021/ol1030266
10.1021/acs.chemrev.6b00664
10.1055/s-0030-1258818
10.1002/anie.201811630
10.1002/asia.202101369
10.1021/acs.chemrev.6b00657
10.1002/cctc.201000223
10.1039/c3ob42454e
10.1002/adsc.201400466
10.1021/acscatal.7b04434
10.1002/anie.201511567
10.1002/ange.202013852
10.1002/chem.202104292
10.1002/adsc.201800464
10.1039/C6RA00852F
10.1002/chem.201200657
10.1021/acssuschemeng.9b05298
10.1002/anie.201900977
10.1021/ol503035z
10.1021/jo5017822
10.1021/ol402750r
10.1021/acs.orglett.8b03079
10.1002/chem.201502487
10.1039/C8OB01844H
10.1002/anie.201810261
10.1039/C4CC04508D
10.1021/acs.joc.2c00669
10.1039/C4CS00347K
10.1039/C6RA26126D
10.1002/adsc.201601137
10.1039/D1GC02886C
10.1021/jo200447x
10.1021/jo502115a
10.1021/jacs.8b01896
10.1515/znb-2018-0084
10.1002/anie.201804929
10.1021/ja2015586
10.1021/acs.orglett.6b02530
10.1002/anie.201610168
10.1021/acs.accounts.7b00611
10.1021/jo5005179
10.1002/chem.201905595
10.1002/ange.201913400
ContentType Journal Article
Copyright 2023 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202301700
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
ExternalDocumentID 37390122
10_1002_chem_202301700
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c323t-989c5ee8e057d4bd9b05efaec909828f23e950730c3df7df7d24d2ceec92e1d93
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 12:38:42 EDT 2025
Fri Jul 25 10:51:08 EDT 2025
Mon Jul 21 05:54:55 EDT 2025
Tue Jul 01 00:43:52 EDT 2025
Thu Apr 24 23:04:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords C-H bond activation
aerobic oxidative
Heterocyclic compounds
molecular oxygen
cross-dehydrogenative coupling
Language English
License 2023 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-989c5ee8e057d4bd9b05efaec909828f23e950730c3df7df7d24d2ceec92e1d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9520-3254
PMID 37390122
PQID 2863690897
PQPubID 986340
ParticipantIDs proquest_miscellaneous_2832572073
proquest_journals_2863690897
pubmed_primary_37390122
crossref_citationtrail_10_1002_chem_202301700
crossref_primary_10_1002_chem_202301700
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-12
PublicationDateYYYYMMDD 2023-09-12
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-12
  day: 12
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_108_1
e_1_2_7_3_2
e_1_2_7_104_1
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_3
e_1_2_7_15_2
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_41_2
e_1_2_7_11_1
e_1_2_7_68_1
e_1_2_7_45_2
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_2
e_1_2_7_75_1
e_1_2_7_33_2
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_2
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_40_2
e_1_2_7_12_3
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_86_1
e_1_2_7_44_2
e_1_2_7_44_3
e_1_2_7_67_1
e_1_2_7_48_2
e_1_2_7_48_3
e_1_2_7_29_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_2
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_2
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_5_2
e_1_2_7_106_1
e_1_2_7_9_2
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_3
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_89_1
e_1_2_7_47_2
e_1_2_7_47_3
e_1_2_7_28_2
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_2
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_2
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_1
e_1_2_7_39_2
e_1_2_7_2_2
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_6_2
e_1_2_7_103_1
e_1_2_7_18_2
e_1_2_7_122_2
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_14_2
e_1_2_7_88_1
e_1_2_7_42_2
e_1_2_7_10_3
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_46_2
e_1_2_7_69_1
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_2
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_34_2
e_1_2_7_38_2
References_xml – ident: e_1_2_7_122_2
  doi: 10.1002/ange.201902155
– ident: e_1_2_7_20_2
  doi: 10.1002/asia.201701163
– ident: e_1_2_7_47_3
  doi: 10.1002/ange.201810261
– ident: e_1_2_7_29_1
  doi: 10.1021/acs.orglett.7b01969
– ident: e_1_2_7_90_1
  doi: 10.1080/10426507.2017.1330827
– ident: e_1_2_7_53_1
  doi: 10.1021/jo1023975
– ident: e_1_2_7_11_1
– ident: e_1_2_7_23_2
  doi: 10.1021/acs.joc.6b00659
– ident: e_1_2_7_27_3
  doi: 10.1002/ange.201811630
– ident: e_1_2_7_48_3
  doi: 10.1002/ange.201511567
– ident: e_1_2_7_75_1
  doi: 10.1021/acsomega.7b00988
– ident: e_1_2_7_7_2
  doi: 10.1021/acs.chemrev.6b00574
– ident: e_1_2_7_8_1
– ident: e_1_2_7_36_2
  doi: 10.1021/acs.orglett.2c03563
– ident: e_1_2_7_50_1
  doi: 10.1039/c3sc51206a
– ident: e_1_2_7_46_2
  doi: 10.1021/jacs.8b12149
– ident: e_1_2_7_85_1
  doi: 10.1021/acs.joc.7b01841
– ident: e_1_2_7_34_2
  doi: 10.1002/chem.201502280
– ident: e_1_2_7_115_1
  doi: 10.1021/acs.orglett.7b01060
– ident: e_1_2_7_5_2
  doi: 10.1021/acs.chemrev.8b00077
– ident: e_1_2_7_43_1
– ident: e_1_2_7_116_1
  doi: 10.1002/ejoc.201700356
– ident: e_1_2_7_87_1
  doi: 10.1021/acs.orglett.0c01973
– ident: e_1_2_7_88_1
  doi: 10.1002/cctc.202000284
– ident: e_1_2_7_41_2
  doi: 10.1016/j.ejmech.2017.02.042
– ident: e_1_2_7_99_1
  doi: 10.1039/C4CY00919C
– ident: e_1_2_7_71_1
  doi: 10.1002/cjoc.201600493
– ident: e_1_2_7_94_1
  doi: 10.1021/jo300592t
– ident: e_1_2_7_119_1
  doi: 10.1021/acs.joc.9b01506
– ident: e_1_2_7_54_1
  doi: 10.1016/j.jfluchem.2012.05.009
– ident: e_1_2_7_10_3
  doi: 10.1002/ange.201804929
– ident: e_1_2_7_12_3
  doi: 10.1002/ange.201610168
– ident: e_1_2_7_117_1
  doi: 10.1039/C8OB00240A
– ident: e_1_2_7_73_1
  doi: 10.1039/C8OB01263F
– ident: e_1_2_7_31_1
  doi: 10.1055/s-0040-1706406
– ident: e_1_2_7_24_2
  doi: 10.1021/jo402215s
– ident: e_1_2_7_78_1
  doi: 10.1002/anie.201913400
– ident: e_1_2_7_109_1
– ident: e_1_2_7_21_2
  doi: 10.1002/ejoc.201500587
– ident: e_1_2_7_102_1
  doi: 10.1021/acs.orglett.9b01641
– ident: e_1_2_7_64_1
  doi: 10.1021/ar4003202
– ident: e_1_2_7_15_2
  doi: 10.1002/anie.202013852
– ident: e_1_2_7_13_3
  doi: 10.1002/ange.201802206
– ident: e_1_2_7_81_1
  doi: 10.1016/j.tet.2016.10.056
– ident: e_1_2_7_65_1
  doi: 10.1021/ja102175w
– ident: e_1_2_7_67_1
  doi: 10.1016/j.tetlet.2012.05.076
– ident: e_1_2_7_44_3
  doi: 10.1002/ange.201900977
– ident: e_1_2_7_62_1
  doi: 10.1039/B919396K
– ident: e_1_2_7_110_2
  doi: 10.3390/ijms17060860
– ident: e_1_2_7_66_1
  doi: 10.1021/ja209992w
– ident: e_1_2_7_112_1
  doi: 10.1021/acs.joc.6b02683
– ident: e_1_2_7_38_2
  doi: 10.1021/acs.joc.5b01990
– ident: e_1_2_7_103_1
  doi: 10.1021/ol100560k
– ident: e_1_2_7_107_1
  doi: 10.1039/c3ra40999f
– ident: e_1_2_7_18_2
  doi: 10.1021/acscatal.9b00925
– ident: e_1_2_7_121_1
  doi: 10.1021/acs.orglett.0c01066
– ident: e_1_2_7_55_1
  doi: 10.1002/anie.201107605
– ident: e_1_2_7_76_1
  doi: 10.1021/acs.orglett.7b00428
– ident: e_1_2_7_63_1
  doi: 10.1021/ol200154s
– ident: e_1_2_7_45_2
  doi: 10.1038/s41557-018-0178-5
– ident: e_1_2_7_108_1
  doi: 10.1021/ol501483k
– ident: e_1_2_7_26_1
– ident: e_1_2_7_42_2
  doi: 10.1016/j.ejmech.2016.02.069
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.orglett.9b02763
– ident: e_1_2_7_80_1
  doi: 10.1002/chem.202202240
– ident: e_1_2_7_100_1
  doi: 10.1021/acs.joc.5b02838
– ident: e_1_2_7_35_2
  doi: 10.1002/chem.202203269
– ident: e_1_2_7_59_1
  doi: 10.1021/ol501933h
– ident: e_1_2_7_13_2
  doi: 10.1002/anie.201802206
– ident: e_1_2_7_6_2
  doi: 10.1021/acs.chemrev.8b00372
– ident: e_1_2_7_25_2
  doi: 10.1021/acs.joc.0c02249
– ident: e_1_2_7_93_1
  doi: 10.1021/ol202409r
– ident: e_1_2_7_40_2
  doi: 10.1021/cr900195a
– ident: e_1_2_7_70_1
  doi: 10.1021/jacs.6b00127
– ident: e_1_2_7_114_1
  doi: 10.1016/j.cattod.2017.02.005
– ident: e_1_2_7_17_1
– ident: e_1_2_7_61_1
  doi: 10.1002/adsc.201800684
– ident: e_1_2_7_91_1
  doi: 10.1016/j.tetlet.2019.151121
– ident: e_1_2_7_4_1
– ident: e_1_2_7_122_1
  doi: 10.1002/anie.201902155
– ident: e_1_2_7_89_1
  doi: 10.1002/adsc.201200360
– ident: e_1_2_7_39_2
  doi: 10.1021/jacs.8b11838
– ident: e_1_2_7_69_1
  doi: 10.1039/C5GC00753D
– ident: e_1_2_7_72_1
  doi: 10.1002/adsc.201600291
– ident: e_1_2_7_104_1
  doi: 10.1039/C1SC00619C
– ident: e_1_2_7_105_1
  doi: 10.1021/ol1030266
– ident: e_1_2_7_32_1
– ident: e_1_2_7_3_2
  doi: 10.1021/acs.chemrev.6b00664
– ident: e_1_2_7_106_1
  doi: 10.1055/s-0030-1258818
– ident: e_1_2_7_27_2
  doi: 10.1002/anie.201811630
– ident: e_1_2_7_74_1
  doi: 10.1002/asia.202101369
– ident: e_1_2_7_2_2
  doi: 10.1021/acs.chemrev.6b00657
– ident: e_1_2_7_49_1
  doi: 10.1002/cctc.201000223
– ident: e_1_2_7_57_1
  doi: 10.1039/c3ob42454e
– ident: e_1_2_7_97_1
  doi: 10.1002/adsc.201400466
– ident: e_1_2_7_28_2
  doi: 10.1021/acscatal.7b04434
– ident: e_1_2_7_48_2
  doi: 10.1002/anie.201511567
– ident: e_1_2_7_15_3
  doi: 10.1002/ange.202013852
– ident: e_1_2_7_37_1
– ident: e_1_2_7_19_2
  doi: 10.1002/chem.202104292
– ident: e_1_2_7_77_1
  doi: 10.1002/adsc.201800464
– ident: e_1_2_7_101_1
  doi: 10.1039/C6RA00852F
– ident: e_1_2_7_33_2
  doi: 10.1002/chem.201200657
– ident: e_1_2_7_120_1
  doi: 10.1021/acssuschemeng.9b05298
– ident: e_1_2_7_44_2
  doi: 10.1002/anie.201900977
– ident: e_1_2_7_68_1
  doi: 10.1021/ol503035z
– ident: e_1_2_7_58_1
  doi: 10.1021/jo5017822
– ident: e_1_2_7_95_1
  doi: 10.1021/ol402750r
– ident: e_1_2_7_86_1
  doi: 10.1021/acs.orglett.8b03079
– ident: e_1_2_7_22_1
– ident: e_1_2_7_98_1
  doi: 10.1002/chem.201502487
– ident: e_1_2_7_118_1
  doi: 10.1039/C8OB01844H
– ident: e_1_2_7_47_2
  doi: 10.1002/anie.201810261
– ident: e_1_2_7_1_1
– ident: e_1_2_7_56_1
  doi: 10.1039/C4CC04508D
– ident: e_1_2_7_82_1
  doi: 10.1021/acs.joc.2c00669
– ident: e_1_2_7_16_2
  doi: 10.1039/C4CS00347K
– ident: e_1_2_7_60_1
  doi: 10.1039/C6RA26126D
– ident: e_1_2_7_113_1
  doi: 10.1002/adsc.201601137
– ident: e_1_2_7_79_1
  doi: 10.1039/D1GC02886C
– ident: e_1_2_7_83_1
  doi: 10.1021/jo200447x
– ident: e_1_2_7_84_1
  doi: 10.1021/jo502115a
– ident: e_1_2_7_52_1
  doi: 10.1021/jacs.8b01896
– ident: e_1_2_7_111_2
  doi: 10.1515/znb-2018-0084
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.201804929
– ident: e_1_2_7_92_1
  doi: 10.1021/ja2015586
– ident: e_1_2_7_51_1
  doi: 10.1021/acs.orglett.6b02530
– ident: e_1_2_7_12_2
  doi: 10.1002/anie.201610168
– ident: e_1_2_7_9_2
  doi: 10.1021/acs.accounts.7b00611
– ident: e_1_2_7_96_1
  doi: 10.1021/jo5005179
– ident: e_1_2_7_14_2
  doi: 10.1002/chem.201905595
– ident: e_1_2_7_78_2
  doi: 10.1002/ange.201913400
SSID ssj0009633
Score 2.4490242
SecondaryResourceType review_article
Snippet Aerobic oxidative cross‐coupling represents one of the most straightforward and atom‐economic methods for construction of C−C and C−X (X=N, O, S, or P) bonds...
Aerobic oxidative cross coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X = N, O, S, or P) bonds...
Aerobic oxidative cross-coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X=N, O, S, or P) bonds...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage e202301700
SubjectTerms Agrochemicals
Atom economy
Chemical bonds
Chemical reactions
Chemistry
Coupling (molecular)
Cross coupling
Functional groups
Functional materials
Heterocyclic compounds
Hydrogen bonds
Natural products
Oxidants
Oxidizing agents
Oxygen
Title Recent Advances in Aerobic Oxidative of C−H Bond by Molecular Oxygen Focus on Heterocycles
URI https://www.ncbi.nlm.nih.gov/pubmed/37390122
https://www.proquest.com/docview/2863690897
https://www.proquest.com/docview/2832572073
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fi9QwEA_r-aAvh_9dPSWC4sNS7Sbptnlc9jyKnCfIHawglDZNsaDtcbbg-gl88sGP6CdxJmnTrt7BKSxladImzfwyM5lMZgh5KrVMi1xEXqGl8ATPAy9LfeUV4byQTMtAZsbL92gRn4jX62A9mfwYeS21TfZCfTv3XMn_UBXuAV3xlOw_UNa9FG7Af6AvXIHCcL0UjUHnw638pd3HN56tS42BldTs7dcytzG90d_CuDREzySLZ5hHGHXON31eXKi6gRZmB7Vqzd5BjB4ytdqgv9xYd131ueFm9oT0liG_7-vYBn2oS-dL8T7tRKQx3tvyo3QoX5dD-WGrrFl2v_1cNmeDL9FH3bGmzko0Nlkw7pmUC2Pbowg9jIlrhVDHedkcuV0wZs2dMcRC0Aam_Yvl2xCygHCMKwALKgw4OAi3fkP_D5nnPBFt1GaW4POJe_4Kucpg2YEZMfbfDeHIgFkZj4W--30QUJ-93G5_W8m5YOViNJjjG2S3W3rQpcXRTTLR1S1yzVH1Nvlg8UR7PNGyoh2eqMMTrQu6-vX9Z0wRSTTbUIckapFEDZJoXdExku6Qk4NXx6vY67JveIoz3ngykirQOtKg0eciy2XmB7pItZK-hGV6wTjMZBQQiudFiD8mcgY6l4I5Ps8lv0t2qrrS9wnNtPTDcA6aPsuFUPAyLlRUpIFSfpRLNSVeP1yJ6kLTY4aUT8n55JmS567-qQ3KcmHNvX70k24yfElYtOAL3O8Op-SJK4axxr2ytNJ1i3U4CDMG3zcl9yzVXFM8REMhYw8u3Y2H5PowD_bITnPW6kegzDbZY4Ow3y7NmrA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Aerobic+Oxidative+of+C%E2%88%92H+Bond+by+Molecular+Oxygen+Focus+on+Heterocycles&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zhang%2C+Lei%E2%80%90Yang&rft.au=Wang%2C+Nai%E2%80%90Xing&rft.au=Lucan%2C+Dumitra&rft.au=Cheung%2C+William&rft.date=2023-09-12&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=29&rft.issue=51&rft_id=info:doi/10.1002%2Fchem.202301700&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_202301700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon