Recent Advances in Aerobic Oxidative of C−H Bond by Molecular Oxygen Focus on Heterocycles
Aerobic oxidative cross‐coupling represents one of the most straightforward and atom‐economic methods for construction of C−C and C−X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C−H bonds in heterocyclic compounds can effectively increase their mole...
Saved in:
Published in | Chemistry : a European journal Vol. 29; no. 51; p. e202301700 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
12.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aerobic oxidative cross‐coupling represents one of the most straightforward and atom‐economic methods for construction of C−C and C−X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C−H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C−H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C−H bond using O
2
or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it. |
---|---|
AbstractList | Aerobic oxidative cross coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X = N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C-H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C-H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C-H bond using O2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it. Aerobic oxidative cross‐coupling represents one of the most straightforward and atom‐economic methods for construction of C−C and C−X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C−H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C−H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C−H bond using O2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it. Aerobic oxidative cross‐coupling represents one of the most straightforward and atom‐economic methods for construction of C−C and C−X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C−H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C−H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C−H bond using O 2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it. Aerobic oxidative cross-coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C-H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C-H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C-H bond using O2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it.Aerobic oxidative cross-coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C-H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C-H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C-H bond using O2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it. |
Author | Wang, Nai‐Xing Zhang, Lei‐Yang Cheung, William Xing, Yalan Lucan, Dumitra |
Author_xml | – sequence: 1 givenname: Lei‐Yang surname: Zhang fullname: Zhang, Lei‐Yang organization: Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China – sequence: 2 givenname: Nai‐Xing orcidid: 0000-0001-9520-3254 surname: Wang fullname: Wang, Nai‐Xing organization: Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China – sequence: 3 givenname: Dumitra surname: Lucan fullname: Lucan, Dumitra organization: Technical Sciences Academy of Romania ASTR Dacia Avenue no.26 Bucharest Romania – sequence: 4 givenname: William surname: Cheung fullname: Cheung, William organization: Department of Chemistry Hofstra University Hempstead NY 11549 United States – sequence: 5 givenname: Yalan surname: Xing fullname: Xing, Yalan organization: Department of Chemistry Hofstra University Hempstead NY 11549 United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37390122$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1LxDAQhoMoun5cPUrAi5eu02TbNMd1UVdYEURvQmiTqVa6iSbt4v4Dz_5Ef4lZVj0IwsBcnudlmHeXbFpnkZDDFIYpADvVTzgfMmAcUgGwQQZpxtKEizzbJAOQI5HkGZc7ZDeEZwCQOefbZIcLLiFlbEAeblGj7ejYLEqrMdDG0jF6VzWa3rw1puyaBVJX08nn-8eUnjlraLWk165F3belj9DyES29cLoP1Fk6xS7qeqlbDPtkqy7bgAffe4_cX5zfTabJ7ObyajKeJZoz3iWykDpDLBAyYUaVkRVkWJeoJciCFTXjKDMQHDQ3tVgNGxmmMQIMUyP5HjlZ575499pj6NS8CRrbtrTo-qBYwVkmWIyI6PEf9Nn13sbrIpXzXEIhRaSOvqm-mqNRL76Zl36pfv4WgdEa0N6F4LFWuunir5ztfNm0KgW1qket6lG_9URt-Ef7Sf5H-AKfn5FR |
CitedBy_id | crossref_primary_10_1002_ajoc_202400043 crossref_primary_10_1039_D4OB00133H crossref_primary_10_1002_ajoc_202400339 crossref_primary_10_1021_jacs_4c15196 crossref_primary_10_1055_s_0043_1763690 |
Cites_doi | 10.1002/ange.201902155 10.1002/asia.201701163 10.1002/ange.201810261 10.1021/acs.orglett.7b01969 10.1080/10426507.2017.1330827 10.1021/jo1023975 10.1021/acs.joc.6b00659 10.1002/ange.201811630 10.1002/ange.201511567 10.1021/acsomega.7b00988 10.1021/acs.chemrev.6b00574 10.1021/acs.orglett.2c03563 10.1039/c3sc51206a 10.1021/jacs.8b12149 10.1021/acs.joc.7b01841 10.1002/chem.201502280 10.1021/acs.orglett.7b01060 10.1021/acs.chemrev.8b00077 10.1002/ejoc.201700356 10.1021/acs.orglett.0c01973 10.1002/cctc.202000284 10.1016/j.ejmech.2017.02.042 10.1039/C4CY00919C 10.1002/cjoc.201600493 10.1021/jo300592t 10.1021/acs.joc.9b01506 10.1016/j.jfluchem.2012.05.009 10.1002/ange.201804929 10.1002/ange.201610168 10.1039/C8OB00240A 10.1039/C8OB01263F 10.1055/s-0040-1706406 10.1021/jo402215s 10.1002/anie.201913400 10.1002/ejoc.201500587 10.1021/acs.orglett.9b01641 10.1021/ar4003202 10.1002/anie.202013852 10.1002/ange.201802206 10.1016/j.tet.2016.10.056 10.1021/ja102175w 10.1016/j.tetlet.2012.05.076 10.1002/ange.201900977 10.1039/B919396K 10.3390/ijms17060860 10.1021/ja209992w 10.1021/acs.joc.6b02683 10.1021/acs.joc.5b01990 10.1021/ol100560k 10.1039/c3ra40999f 10.1021/acscatal.9b00925 10.1021/acs.orglett.0c01066 10.1002/anie.201107605 10.1021/acs.orglett.7b00428 10.1021/ol200154s 10.1038/s41557-018-0178-5 10.1021/ol501483k 10.1016/j.ejmech.2016.02.069 10.1021/acs.orglett.9b02763 10.1002/chem.202202240 10.1021/acs.joc.5b02838 10.1002/chem.202203269 10.1021/ol501933h 10.1002/anie.201802206 10.1021/acs.chemrev.8b00372 10.1021/acs.joc.0c02249 10.1021/ol202409r 10.1021/cr900195a 10.1021/jacs.6b00127 10.1016/j.cattod.2017.02.005 10.1002/adsc.201800684 10.1016/j.tetlet.2019.151121 10.1002/anie.201902155 10.1002/adsc.201200360 10.1021/jacs.8b11838 10.1039/C5GC00753D 10.1002/adsc.201600291 10.1039/C1SC00619C 10.1021/ol1030266 10.1021/acs.chemrev.6b00664 10.1055/s-0030-1258818 10.1002/anie.201811630 10.1002/asia.202101369 10.1021/acs.chemrev.6b00657 10.1002/cctc.201000223 10.1039/c3ob42454e 10.1002/adsc.201400466 10.1021/acscatal.7b04434 10.1002/anie.201511567 10.1002/ange.202013852 10.1002/chem.202104292 10.1002/adsc.201800464 10.1039/C6RA00852F 10.1002/chem.201200657 10.1021/acssuschemeng.9b05298 10.1002/anie.201900977 10.1021/ol503035z 10.1021/jo5017822 10.1021/ol402750r 10.1021/acs.orglett.8b03079 10.1002/chem.201502487 10.1039/C8OB01844H 10.1002/anie.201810261 10.1039/C4CC04508D 10.1021/acs.joc.2c00669 10.1039/C4CS00347K 10.1039/C6RA26126D 10.1002/adsc.201601137 10.1039/D1GC02886C 10.1021/jo200447x 10.1021/jo502115a 10.1021/jacs.8b01896 10.1515/znb-2018-0084 10.1002/anie.201804929 10.1021/ja2015586 10.1021/acs.orglett.6b02530 10.1002/anie.201610168 10.1021/acs.accounts.7b00611 10.1021/jo5005179 10.1002/chem.201905595 10.1002/ange.201913400 |
ContentType | Journal Article |
Copyright | 2023 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202301700 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
ExternalDocumentID | 37390122 10_1002_chem_202301700 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c323t-989c5ee8e057d4bd9b05efaec909828f23e950730c3df7df7d24d2ceec92e1d93 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 12:38:42 EDT 2025 Fri Jul 25 10:51:08 EDT 2025 Mon Jul 21 05:54:55 EDT 2025 Tue Jul 01 00:43:52 EDT 2025 Thu Apr 24 23:04:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | C-H bond activation aerobic oxidative Heterocyclic compounds molecular oxygen cross-dehydrogenative coupling |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c323t-989c5ee8e057d4bd9b05efaec909828f23e950730c3df7df7d24d2ceec92e1d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9520-3254 |
PMID | 37390122 |
PQID | 2863690897 |
PQPubID | 986340 |
ParticipantIDs | proquest_miscellaneous_2832572073 proquest_journals_2863690897 pubmed_primary_37390122 crossref_citationtrail_10_1002_chem_202301700 crossref_primary_10_1002_chem_202301700 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-12 |
PublicationDateYYYYMMDD | 2023-09-12 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_7_108_1 e_1_2_7_3_2 e_1_2_7_104_1 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_3 e_1_2_7_15_2 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_41_2 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_2 e_1_2_7_75_1 e_1_2_7_33_2 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_2 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_40_2 e_1_2_7_12_3 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_86_1 e_1_2_7_44_2 e_1_2_7_44_3 e_1_2_7_67_1 e_1_2_7_48_2 e_1_2_7_48_3 e_1_2_7_29_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_2 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_2 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_5_2 e_1_2_7_106_1 e_1_2_7_9_2 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_3 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_89_1 e_1_2_7_47_2 e_1_2_7_47_3 e_1_2_7_28_2 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_2 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_2 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_1 e_1_2_7_39_2 e_1_2_7_2_2 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_6_2 e_1_2_7_103_1 e_1_2_7_18_2 e_1_2_7_122_2 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_14_2 e_1_2_7_88_1 e_1_2_7_42_2 e_1_2_7_10_3 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_46_2 e_1_2_7_69_1 e_1_2_7_27_2 e_1_2_7_27_3 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_2 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_34_2 e_1_2_7_38_2 |
References_xml | – ident: e_1_2_7_122_2 doi: 10.1002/ange.201902155 – ident: e_1_2_7_20_2 doi: 10.1002/asia.201701163 – ident: e_1_2_7_47_3 doi: 10.1002/ange.201810261 – ident: e_1_2_7_29_1 doi: 10.1021/acs.orglett.7b01969 – ident: e_1_2_7_90_1 doi: 10.1080/10426507.2017.1330827 – ident: e_1_2_7_53_1 doi: 10.1021/jo1023975 – ident: e_1_2_7_11_1 – ident: e_1_2_7_23_2 doi: 10.1021/acs.joc.6b00659 – ident: e_1_2_7_27_3 doi: 10.1002/ange.201811630 – ident: e_1_2_7_48_3 doi: 10.1002/ange.201511567 – ident: e_1_2_7_75_1 doi: 10.1021/acsomega.7b00988 – ident: e_1_2_7_7_2 doi: 10.1021/acs.chemrev.6b00574 – ident: e_1_2_7_8_1 – ident: e_1_2_7_36_2 doi: 10.1021/acs.orglett.2c03563 – ident: e_1_2_7_50_1 doi: 10.1039/c3sc51206a – ident: e_1_2_7_46_2 doi: 10.1021/jacs.8b12149 – ident: e_1_2_7_85_1 doi: 10.1021/acs.joc.7b01841 – ident: e_1_2_7_34_2 doi: 10.1002/chem.201502280 – ident: e_1_2_7_115_1 doi: 10.1021/acs.orglett.7b01060 – ident: e_1_2_7_5_2 doi: 10.1021/acs.chemrev.8b00077 – ident: e_1_2_7_43_1 – ident: e_1_2_7_116_1 doi: 10.1002/ejoc.201700356 – ident: e_1_2_7_87_1 doi: 10.1021/acs.orglett.0c01973 – ident: e_1_2_7_88_1 doi: 10.1002/cctc.202000284 – ident: e_1_2_7_41_2 doi: 10.1016/j.ejmech.2017.02.042 – ident: e_1_2_7_99_1 doi: 10.1039/C4CY00919C – ident: e_1_2_7_71_1 doi: 10.1002/cjoc.201600493 – ident: e_1_2_7_94_1 doi: 10.1021/jo300592t – ident: e_1_2_7_119_1 doi: 10.1021/acs.joc.9b01506 – ident: e_1_2_7_54_1 doi: 10.1016/j.jfluchem.2012.05.009 – ident: e_1_2_7_10_3 doi: 10.1002/ange.201804929 – ident: e_1_2_7_12_3 doi: 10.1002/ange.201610168 – ident: e_1_2_7_117_1 doi: 10.1039/C8OB00240A – ident: e_1_2_7_73_1 doi: 10.1039/C8OB01263F – ident: e_1_2_7_31_1 doi: 10.1055/s-0040-1706406 – ident: e_1_2_7_24_2 doi: 10.1021/jo402215s – ident: e_1_2_7_78_1 doi: 10.1002/anie.201913400 – ident: e_1_2_7_109_1 – ident: e_1_2_7_21_2 doi: 10.1002/ejoc.201500587 – ident: e_1_2_7_102_1 doi: 10.1021/acs.orglett.9b01641 – ident: e_1_2_7_64_1 doi: 10.1021/ar4003202 – ident: e_1_2_7_15_2 doi: 10.1002/anie.202013852 – ident: e_1_2_7_13_3 doi: 10.1002/ange.201802206 – ident: e_1_2_7_81_1 doi: 10.1016/j.tet.2016.10.056 – ident: e_1_2_7_65_1 doi: 10.1021/ja102175w – ident: e_1_2_7_67_1 doi: 10.1016/j.tetlet.2012.05.076 – ident: e_1_2_7_44_3 doi: 10.1002/ange.201900977 – ident: e_1_2_7_62_1 doi: 10.1039/B919396K – ident: e_1_2_7_110_2 doi: 10.3390/ijms17060860 – ident: e_1_2_7_66_1 doi: 10.1021/ja209992w – ident: e_1_2_7_112_1 doi: 10.1021/acs.joc.6b02683 – ident: e_1_2_7_38_2 doi: 10.1021/acs.joc.5b01990 – ident: e_1_2_7_103_1 doi: 10.1021/ol100560k – ident: e_1_2_7_107_1 doi: 10.1039/c3ra40999f – ident: e_1_2_7_18_2 doi: 10.1021/acscatal.9b00925 – ident: e_1_2_7_121_1 doi: 10.1021/acs.orglett.0c01066 – ident: e_1_2_7_55_1 doi: 10.1002/anie.201107605 – ident: e_1_2_7_76_1 doi: 10.1021/acs.orglett.7b00428 – ident: e_1_2_7_63_1 doi: 10.1021/ol200154s – ident: e_1_2_7_45_2 doi: 10.1038/s41557-018-0178-5 – ident: e_1_2_7_108_1 doi: 10.1021/ol501483k – ident: e_1_2_7_26_1 – ident: e_1_2_7_42_2 doi: 10.1016/j.ejmech.2016.02.069 – ident: e_1_2_7_30_1 doi: 10.1021/acs.orglett.9b02763 – ident: e_1_2_7_80_1 doi: 10.1002/chem.202202240 – ident: e_1_2_7_100_1 doi: 10.1021/acs.joc.5b02838 – ident: e_1_2_7_35_2 doi: 10.1002/chem.202203269 – ident: e_1_2_7_59_1 doi: 10.1021/ol501933h – ident: e_1_2_7_13_2 doi: 10.1002/anie.201802206 – ident: e_1_2_7_6_2 doi: 10.1021/acs.chemrev.8b00372 – ident: e_1_2_7_25_2 doi: 10.1021/acs.joc.0c02249 – ident: e_1_2_7_93_1 doi: 10.1021/ol202409r – ident: e_1_2_7_40_2 doi: 10.1021/cr900195a – ident: e_1_2_7_70_1 doi: 10.1021/jacs.6b00127 – ident: e_1_2_7_114_1 doi: 10.1016/j.cattod.2017.02.005 – ident: e_1_2_7_17_1 – ident: e_1_2_7_61_1 doi: 10.1002/adsc.201800684 – ident: e_1_2_7_91_1 doi: 10.1016/j.tetlet.2019.151121 – ident: e_1_2_7_4_1 – ident: e_1_2_7_122_1 doi: 10.1002/anie.201902155 – ident: e_1_2_7_89_1 doi: 10.1002/adsc.201200360 – ident: e_1_2_7_39_2 doi: 10.1021/jacs.8b11838 – ident: e_1_2_7_69_1 doi: 10.1039/C5GC00753D – ident: e_1_2_7_72_1 doi: 10.1002/adsc.201600291 – ident: e_1_2_7_104_1 doi: 10.1039/C1SC00619C – ident: e_1_2_7_105_1 doi: 10.1021/ol1030266 – ident: e_1_2_7_32_1 – ident: e_1_2_7_3_2 doi: 10.1021/acs.chemrev.6b00664 – ident: e_1_2_7_106_1 doi: 10.1055/s-0030-1258818 – ident: e_1_2_7_27_2 doi: 10.1002/anie.201811630 – ident: e_1_2_7_74_1 doi: 10.1002/asia.202101369 – ident: e_1_2_7_2_2 doi: 10.1021/acs.chemrev.6b00657 – ident: e_1_2_7_49_1 doi: 10.1002/cctc.201000223 – ident: e_1_2_7_57_1 doi: 10.1039/c3ob42454e – ident: e_1_2_7_97_1 doi: 10.1002/adsc.201400466 – ident: e_1_2_7_28_2 doi: 10.1021/acscatal.7b04434 – ident: e_1_2_7_48_2 doi: 10.1002/anie.201511567 – ident: e_1_2_7_15_3 doi: 10.1002/ange.202013852 – ident: e_1_2_7_37_1 – ident: e_1_2_7_19_2 doi: 10.1002/chem.202104292 – ident: e_1_2_7_77_1 doi: 10.1002/adsc.201800464 – ident: e_1_2_7_101_1 doi: 10.1039/C6RA00852F – ident: e_1_2_7_33_2 doi: 10.1002/chem.201200657 – ident: e_1_2_7_120_1 doi: 10.1021/acssuschemeng.9b05298 – ident: e_1_2_7_44_2 doi: 10.1002/anie.201900977 – ident: e_1_2_7_68_1 doi: 10.1021/ol503035z – ident: e_1_2_7_58_1 doi: 10.1021/jo5017822 – ident: e_1_2_7_95_1 doi: 10.1021/ol402750r – ident: e_1_2_7_86_1 doi: 10.1021/acs.orglett.8b03079 – ident: e_1_2_7_22_1 – ident: e_1_2_7_98_1 doi: 10.1002/chem.201502487 – ident: e_1_2_7_118_1 doi: 10.1039/C8OB01844H – ident: e_1_2_7_47_2 doi: 10.1002/anie.201810261 – ident: e_1_2_7_1_1 – ident: e_1_2_7_56_1 doi: 10.1039/C4CC04508D – ident: e_1_2_7_82_1 doi: 10.1021/acs.joc.2c00669 – ident: e_1_2_7_16_2 doi: 10.1039/C4CS00347K – ident: e_1_2_7_60_1 doi: 10.1039/C6RA26126D – ident: e_1_2_7_113_1 doi: 10.1002/adsc.201601137 – ident: e_1_2_7_79_1 doi: 10.1039/D1GC02886C – ident: e_1_2_7_83_1 doi: 10.1021/jo200447x – ident: e_1_2_7_84_1 doi: 10.1021/jo502115a – ident: e_1_2_7_52_1 doi: 10.1021/jacs.8b01896 – ident: e_1_2_7_111_2 doi: 10.1515/znb-2018-0084 – ident: e_1_2_7_10_2 doi: 10.1002/anie.201804929 – ident: e_1_2_7_92_1 doi: 10.1021/ja2015586 – ident: e_1_2_7_51_1 doi: 10.1021/acs.orglett.6b02530 – ident: e_1_2_7_12_2 doi: 10.1002/anie.201610168 – ident: e_1_2_7_9_2 doi: 10.1021/acs.accounts.7b00611 – ident: e_1_2_7_96_1 doi: 10.1021/jo5005179 – ident: e_1_2_7_14_2 doi: 10.1002/chem.201905595 – ident: e_1_2_7_78_2 doi: 10.1002/ange.201913400 |
SSID | ssj0009633 |
Score | 2.4490242 |
SecondaryResourceType | review_article |
Snippet | Aerobic oxidative cross‐coupling represents one of the most straightforward and atom‐economic methods for construction of C−C and C−X (X=N, O, S, or P) bonds... Aerobic oxidative cross coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X = N, O, S, or P) bonds... Aerobic oxidative cross-coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X=N, O, S, or P) bonds... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | e202301700 |
SubjectTerms | Agrochemicals Atom economy Chemical bonds Chemical reactions Chemistry Coupling (molecular) Cross coupling Functional groups Functional materials Heterocyclic compounds Hydrogen bonds Natural products Oxidants Oxidizing agents Oxygen |
Title | Recent Advances in Aerobic Oxidative of C−H Bond by Molecular Oxygen Focus on Heterocycles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37390122 https://www.proquest.com/docview/2863690897 https://www.proquest.com/docview/2832572073 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fi9QwEA_r-aAvh_9dPSWC4sNS7Sbptnlc9jyKnCfIHawglDZNsaDtcbbg-gl88sGP6CdxJmnTrt7BKSxladImzfwyM5lMZgh5KrVMi1xEXqGl8ATPAy9LfeUV4byQTMtAZsbL92gRn4jX62A9mfwYeS21TfZCfTv3XMn_UBXuAV3xlOw_UNa9FG7Af6AvXIHCcL0UjUHnw638pd3HN56tS42BldTs7dcytzG90d_CuDREzySLZ5hHGHXON31eXKi6gRZmB7Vqzd5BjB4ytdqgv9xYd131ueFm9oT0liG_7-vYBn2oS-dL8T7tRKQx3tvyo3QoX5dD-WGrrFl2v_1cNmeDL9FH3bGmzko0Nlkw7pmUC2Pbowg9jIlrhVDHedkcuV0wZs2dMcRC0Aam_Yvl2xCygHCMKwALKgw4OAi3fkP_D5nnPBFt1GaW4POJe_4Kucpg2YEZMfbfDeHIgFkZj4W--30QUJ-93G5_W8m5YOViNJjjG2S3W3rQpcXRTTLR1S1yzVH1Nvlg8UR7PNGyoh2eqMMTrQu6-vX9Z0wRSTTbUIckapFEDZJoXdExku6Qk4NXx6vY67JveIoz3ngykirQOtKg0eciy2XmB7pItZK-hGV6wTjMZBQQiudFiD8mcgY6l4I5Ps8lv0t2qrrS9wnNtPTDcA6aPsuFUPAyLlRUpIFSfpRLNSVeP1yJ6kLTY4aUT8n55JmS567-qQ3KcmHNvX70k24yfElYtOAL3O8Op-SJK4axxr2ytNJ1i3U4CDMG3zcl9yzVXFM8REMhYw8u3Y2H5PowD_bITnPW6kegzDbZY4Ow3y7NmrA |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Aerobic+Oxidative+of+C%E2%88%92H+Bond+by+Molecular+Oxygen+Focus+on+Heterocycles&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zhang%2C+Lei%E2%80%90Yang&rft.au=Wang%2C+Nai%E2%80%90Xing&rft.au=Lucan%2C+Dumitra&rft.au=Cheung%2C+William&rft.date=2023-09-12&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=29&rft.issue=51&rft_id=info:doi/10.1002%2Fchem.202301700&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_202301700 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |