Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008
In this paper, we analyze the forecasting performance associated with using machine learning, shrinkage, and variable selection methods during a historical period that contains the Great Recession of 2008. We find that these methods are most useful during “low” GDP growth periods, while simple autor...
Saved in:
Published in | Empirical economics Vol. 64; no. 3; pp. 1421 - 1469 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we analyze the forecasting performance associated with using machine learning, shrinkage, and variable selection methods during a historical period that contains the Great Recession of 2008. We find that these methods are most useful during “low” GDP growth periods, while simple autoregressive models are adequate during “high growth” periods. This finding stems from the introduction of very simple “hybrid” models that employ dynamic recursive (rolling) thresholding in order to switch between benchmark linear models and more complex index-driven models, depending on GDP growth conditions. In the context of predicting both quarterly real GDP growth and CPI inflation, these hybrid models are found to be superior, for all forecast horizons. When comparing the hybrid models against a host of alternatives, mean square forecast error gains reach as high as 35%, during the Great Recession, and remain significant throughout our entire prediction period. Additionally, the very best short-term GDP forecasting models contain variants of the Aruoba et al. (2009) business conditions index, although these models are most useful when diffusion indices are also incorporated. Thus, mixing mixed frequency and diffusion indices matters. Finally, across all experiments, we find strong new evidence of the usefulness of survey predictions, including those from the Survey of Professional Forecasters, and those from the Livingston Survey. While we leave the examination of alternative datasets, such as those including other recessionary periods, episodes of war, and epidemics to future research, we hypothesize that the findings in this paper point to the potential usefulness of machine learning, shrinkage, and variable selection methods during recessions, as well as to the usefulness of the hybrid models that we introduce. |
---|---|
AbstractList | In this paper, we analyze the forecasting performance associated with using machine learning, shrinkage, and variable selection methods during a historical period that contains the Great Recession of 2008. We find that these methods are most useful during “low” GDP growth periods, while simple autoregressive models are adequate during “high growth” periods. This finding stems from the introduction of very simple “hybrid” models that employ dynamic recursive (rolling) thresholding in order to switch between benchmark linear models and more complex index-driven models, depending on GDP growth conditions. In the context of predicting both quarterly real GDP growth and CPI inflation, these hybrid models are found to be superior, for all forecast horizons. When comparing the hybrid models against a host of alternatives, mean square forecast error gains reach as high as 35%, during the Great Recession, and remain significant throughout our entire prediction period. Additionally, the very best short-term GDP forecasting models contain variants of the Aruoba et al. (2009) business conditions index, although these models are most useful when diffusion indices are also incorporated. Thus, mixing mixed frequency and diffusion indices matters. Finally, across all experiments, we find strong new evidence of the usefulness of survey predictions, including those from the Survey of Professional Forecasters, and those from the Livingston Survey. While we leave the examination of alternative datasets, such as those including other recessionary periods, episodes of war, and epidemics to future research, we hypothesize that the findings in this paper point to the potential usefulness of machine learning, shrinkage, and variable selection methods during recessions, as well as to the usefulness of the hybrid models that we introduce. |
Author | Swanson, Norman R. Kim, Hyun Hak Kim, Kihwan |
Author_xml | – sequence: 1 givenname: Kihwan surname: Kim fullname: Kim, Kihwan organization: Korea Energy Economics Institute – sequence: 2 givenname: Hyun Hak orcidid: 0000-0002-4909-500X surname: Kim fullname: Kim, Hyun Hak email: hyunhak.kim@kookmin.ac.kr organization: Department of Economics, Kookmin University – sequence: 3 givenname: Norman R. surname: Swanson fullname: Swanson, Norman R. organization: Department of Economics, Rutgers University |
BookMark | eNp9kM1OQyEQhYnRxPrzAq5IXF-FoffCdWca_xKNG10TCkNL00KF26S-hY8stSbuXExmmJzvTDgn5DCmiIRccHbFGZPXhTGueMMAdqX6RhyQER-LtlE98EMyYkLKRgoBx-SklAVjTKh2PCJfL2Eb4oyuwhYd9Rk_NhjtJzXRURe835SQIg3RBYuldjpLydEhrOprp6mbqXE3daamFCxlhXGoq1LdKjgPZUg5WLOkzgyGmpw2lRrmSGcZzUAzVt-fG8lTYEydkSNvlgXPf_speb-_e5s8Ns-vD0-T2-fGChBD0wuvkEvsx1YCWCbltOtEN-2tQqccOOSqBTsGa0G4XrhWTQ1HozqL4H0vTsnl3nedU_1zGfQibXKsJzVIxdpOAfCqgr3K5lRKRq_XOaxM_tSc6V3yep-8rqnrn-S1qJDYQ6WK4wzzn_U_1Dey_olw |
Cites_doi | 10.1016/S0304-4076(00)00022-1 10.1016/j.ijforecast.2009.08.004 10.1016/j.ijforecast.2016.02.012 10.1016/j.jeconom.2016.04.007 10.1016/S1574-0706(05)01004-9 10.1198/016214504000002050 10.1198/016214506000001275 10.1002/for.2499 10.1198/073500106000000413 10.1080/07474930500405683 10.1080/07350015.2016.1186554 10.1162/003465300559037 10.1016/j.jeconom.2005.01.004 10.2307/1412107 10.1111/1467-937X.00053 10.1016/j.jeconom.2014.04.011 10.1080/01621459.1999.10474139 10.1198/073500102317351921 10.1016/j.jeconom.2005.01.015 10.1016/j.jeconom.2013.08.033 10.1002/for.2450 10.1016/S1574-0706(05)01010-4 10.3982/ECTA6964 10.1080/07474930600972467 10.1002/jae.695 10.1198/016214502388618960 10.1016/j.jeconom.2005.01.027 10.1162/003465303322369704 10.1016/j.ijforecast.2013.01.006 10.1002/jae.1063 10.1080/07350015.2016.1186029 10.1111/1468-0262.00273 10.1198/jbes.2009.07205 10.1257/aer.100.2.20 10.1111/j.1468-0084.2011.00642.x 10.1111/j.1468-0262.2006.00696.x 10.1016/S0304-4076(01)00071-9 10.1016/S0304-3932(99)00027-6 10.1016/j.jeconom.2013.03.007 10.1080/07350015.2015.1006773 10.1016/j.ijforecast.2018.05.002 10.1198/073500108000000015 10.24149/gwp268 10.3386/w2772 10.1086/654119 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8AO 8BJ 8FK 8FL ABUWG AFKRA BENPR BEZIV CCPQU DWQXO FQK FRNLG F~G JBE K60 K6~ K8~ L.- M0C PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s00181-022-02289-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Pharma Collection International Bibliography of the Social Sciences (IBSS) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest Business Premium Collection ProQuest One Community College ProQuest Central International Bibliography of the Social Sciences Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) International Bibliography of the Social Sciences ProQuest Business Collection (Alumni Edition) ProQuest Business Collection DELNET Management Collection ABI/INFORM Professional Advanced ABI/INFORM Collection One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest DELNET Management Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 1435-8921 |
EndPage | 1469 |
ExternalDocumentID | 10_1007_s00181_022_02289_3 |
GrantInformation_xml | – fundername: NRF grantid: NRF-2018S1A5A8029423 |
GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 63O 67Z 6NX 7WY 8AO 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABGEI ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTDC ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHQT ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ACYUM ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADQAN ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEOHA AEPYU AEQOZ AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBA EBLON EBO EBR EBS EBU EIOEI EJD EMK EOH EPL ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ K8~ KDC KOV KOW LAS LLZTM M0C M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM P19 P9M PF0 PQBIZ PQQKQ PROAC PT4 PT5 Q2X QOK QOS QWB R-Y R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7Z Z81 Z83 Z8T Z8U Z8W ZL0 ZMTXR ZY4 ZYFGU ~8M ~EX AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION PQBZA 7XB 8BJ 8FK FQK JBE L.- PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c323t-93f8e17e94c722c077b6636b9c8ed8d2de1852c42cc23d93d58ba1ea86ce2ff93 |
IEDL.DBID | AGYKE |
ISSN | 0377-7332 |
IngestDate | Thu Oct 10 16:49:04 EDT 2024 Thu Sep 12 18:21:01 EDT 2024 Sat Dec 16 12:05:03 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Diffusion index C22 Factor model Mixed frequency data Kalman filter Forecasting C51 Recursive estimation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c323t-93f8e17e94c722c077b6636b9c8ed8d2de1852c42cc23d93d58ba1ea86ce2ff93 |
ORCID | 0000-0002-4909-500X |
PQID | 2780568221 |
PQPubID | 31952 |
PageCount | 49 |
ParticipantIDs | proquest_journals_2780568221 crossref_primary_10_1007_s00181_022_02289_3 springer_journals_10_1007_s00181_022_02289_3 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Journal of the Institute for Advanced Studies, Vienna, Austria |
PublicationTitle | Empirical economics |
PublicationTitleAbbrev | Empir Econ |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Ghysels, Santa-Clara, Valkanov (CR29) 2006; 131 Marcellino, Porqueddu, Venditti (CR35) 2015; 34 Clements, Galvao (CR20) 2008; 26 Armah, Swanson (CR1) 2010; 3 McCracken (CR37) 2000; 99 Stock, Watson (CR45) 2002; 97 Stock, Watson (CR46) 2002; 20 Forni, Hallin, Lippi, Reichlin (CR26) 2005; 100 Bai, Ng (CR5) 2002; 70 Forni, Reichlin (CR27) 1998; 65 Spearman (CR41) 1904; 15 Ghysels, Sinko, Valkanov (CR30) 2007; 26 Aruoba, Diebold (CR2) 2010; 100 Balke, Fulmer, Zhang (CR11) 2017; 36 Bai, Ng (CR9) 2009; 24 Mariano, Murasawa (CR36) 2003; 18 Timmermann, Elliott, Timmermann (CR50) 2006 Camacho, Pérez-Quirós, Poncela (CR14) 2014; 30 CR43 Carrasco, Rossi (CR16) 2016; 34 CR42 CR40 Boivin, Ng (CR12) 2005; 1 Stock, Watson, Elliott, Granger, Timmermann (CR47) 2006 Boivin, Ng (CR13) 2006; 132 Bai, Ng (CR6) 2006; 74 Ghysels, Marcellino (CR28) 2016; 193 Bai, Ng (CR10) 2013; 176 Corradi, Swanson (CR21) 2014; 182 CR17 Camacho, Pérez-Quirós, Poncela (CR15) 2018; 34 Forni, Hallin, Lippi, Reichlin (CR25) 2000; 82 Clark, McCracken (CR19) 2005; 24 Bai, Ng (CR7) 2006; 131 Kim, Swanson (CR34) 2018; 34 D’Agostino, Giannone (CR22) 2012; 74 Bai (CR4) 2003; 85 Clark, McCracken (CR18) 2001; 105 Hallin, Liska (CR31) 2007; 102 Swanson (CR49) 2016; 34 Ding, Hwang (CR23) 1999; 94 Kim, Swanson (CR32) 2014; 178 Kim, Swanson (CR33) 2018; 37 Onatski (CR38) 2009; 77 Stock, Watson (CR44) 1999; 44 Rossi, Sekhposyan (CR39) 2010; 26 Stock, Watson, Castle, Shephard (CR48) 2008 Bai, Ng (CR8) 2007; 25 Aruoba, Diebold, Scotti (CR3) 2009; 27 Durbin, Koopman (CR24) 2001 J Bai (2289_CR8) 2007; 25 S Aruoba (2289_CR3) 2009; 27 N Swanson (2289_CR49) 2016; 34 E Ghysels (2289_CR29) 2006; 131 MP Clements (2289_CR20) 2008; 26 M Camacho (2289_CR15) 2018; 34 HH Kim (2289_CR33) 2018; 37 J Bai (2289_CR6) 2006; 74 JH Stock (2289_CR47) 2006 M Carrasco (2289_CR16) 2016; 34 B Rossi (2289_CR39) 2010; 26 NA Armah (2289_CR1) 2010; 3 C Spearman (2289_CR41) 1904; 15 V Corradi (2289_CR21) 2014; 182 R Mariano (2289_CR36) 2003; 18 M Forni (2289_CR27) 1998; 65 MW McCracken (2289_CR37) 2000; 99 T Clark (2289_CR18) 2001; 105 M Forni (2289_CR25) 2000; 82 J Durbin (2289_CR24) 2001 M Forni (2289_CR26) 2005; 100 T Clark (2289_CR19) 2005; 24 2289_CR43 J Bai (2289_CR4) 2003; 85 2289_CR40 J Bai (2289_CR7) 2006; 131 2289_CR42 J Bai (2289_CR9) 2009; 24 JH Stock (2289_CR46) 2002; 20 J Boivin (2289_CR13) 2006; 132 2289_CR17 NS Balke (2289_CR11) 2017; 36 JH Stock (2289_CR45) 2002; 97 HH Kim (2289_CR32) 2014; 178 J Bai (2289_CR5) 2002; 70 M Marcellino (2289_CR35) 2015; 34 M Camacho (2289_CR14) 2014; 30 JH Stock (2289_CR48) 2008 M Hallin (2289_CR31) 2007; 102 AA Ding (2289_CR23) 1999; 94 J Bai (2289_CR10) 2013; 176 HH Kim (2289_CR34) 2018; 34 JH Stock (2289_CR44) 1999; 44 E Ghysels (2289_CR30) 2007; 26 A D’Agostino (2289_CR22) 2012; 74 J Boivin (2289_CR12) 2005; 1 S Aruoba (2289_CR2) 2010; 100 A Onatski (2289_CR38) 2009; 77 E Ghysels (2289_CR28) 2016; 193 AG Timmermann (2289_CR50) 2006 |
References_xml | – volume: 99 start-page: 195 year: 2000 end-page: 223 ident: CR37 article-title: Robust out-of-sample inference publication-title: J Econom doi: 10.1016/S0304-4076(00)00022-1 contributor: fullname: McCracken – volume: 26 start-page: 808 year: 2010 end-page: 835 ident: CR39 article-title: Have economic models’ forecasting performance for us output growth and inflation changed over time, and when? publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2009.08.004 contributor: fullname: Sekhposyan – volume: 34 start-page: 339 issue: 2 year: 2018 end-page: 354 ident: CR34 article-title: Mining big data using parsimonious factor and shrinkage methods publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2016.02.012 contributor: fullname: Swanson – volume: 193 start-page: 291 year: 2016 end-page: 293 ident: CR28 article-title: The econometric analysis of mixed frequency data sampling publication-title: J Econom doi: 10.1016/j.jeconom.2016.04.007 contributor: fullname: Marcellino – start-page: 135 year: 2006 end-page: 196 ident: CR50 article-title: Forecast combinations publication-title: Handbook of economic forecasting chapter 4 doi: 10.1016/S1574-0706(05)01004-9 contributor: fullname: Timmermann – volume: 100 start-page: 830 year: 2005 end-page: 840 ident: CR26 article-title: The generalized dynamic factor model: one-sided estimation and forecasting publication-title: J Am Stat Assoc doi: 10.1198/016214504000002050 contributor: fullname: Reichlin – volume: 102 start-page: 603 year: 2007 end-page: 617 ident: CR31 article-title: Determining the number of factors in the general dynamic factor model publication-title: J Am Stat Assoc doi: 10.1198/016214506000001275 contributor: fullname: Liska – volume: 37 start-page: 281 issue: 3 year: 2018 end-page: 302 ident: CR33 article-title: Methods for backcasting, nowcasting and forecasting using factor-midas: with an application to Korean GDP publication-title: J Forecast doi: 10.1002/for.2499 contributor: fullname: Swanson – volume: 25 start-page: 52 year: 2007 end-page: 60 ident: CR8 article-title: Determining the number of primitive shocks in factor models publication-title: J Bus Econ Stat doi: 10.1198/073500106000000413 contributor: fullname: Ng – volume: 24 start-page: 369 year: 2005 end-page: 404 ident: CR19 article-title: Evaluating direct multi-step forecasts publication-title: Econom Rev doi: 10.1080/07474930500405683 contributor: fullname: McCracken – ident: CR42 – volume: 34 start-page: 348 year: 2016 end-page: 353 ident: CR49 article-title: Comment on: In sample inference and forecasting in misspecified factor models publication-title: J Bus Econ Stat doi: 10.1080/07350015.2016.1186554 contributor: fullname: Swanson – volume: 1 start-page: 117 issue: 3 year: 2005 end-page: 152 ident: CR12 article-title: Understanding and comparing factor-based forecasts publication-title: Int J Cent Bank contributor: fullname: Ng – volume: 82 start-page: 540 issue: 4 year: 2000 end-page: 554 ident: CR25 article-title: The generalized dynamic-factor model: identification and estimation publication-title: Rev Econ Stat doi: 10.1162/003465300559037 contributor: fullname: Reichlin – volume: 131 start-page: 59 year: 2006 end-page: 95 ident: CR29 article-title: Predicting volatility: getting the most out of return data sampled at different frequencie publication-title: J Econom doi: 10.1016/j.jeconom.2005.01.004 contributor: fullname: Valkanov – volume: 15 start-page: 201 year: 1904 end-page: 293 ident: CR41 article-title: General intelligence objectively determined and measured publication-title: Am J Psychol doi: 10.2307/1412107 contributor: fullname: Spearman – volume: 65 start-page: 453 issue: 3 year: 1998 end-page: 73 ident: CR27 article-title: Let’s get real: a factor analytical approach to disaggregated business cycle dynamics publication-title: Rev Econ Stud doi: 10.1111/1467-937X.00053 contributor: fullname: Reichlin – volume: 182 start-page: 100 year: 2014 end-page: 118 ident: CR21 article-title: Testing for structural stability of factor augmented forecasting models publication-title: J Econom doi: 10.1016/j.jeconom.2014.04.011 contributor: fullname: Swanson – volume: 94 start-page: 446 issue: 446 year: 1999 end-page: 455 ident: CR23 article-title: Prediction intervals, factor analysis models, and high-dimensional empirical linear prediction publication-title: J Am Stat Assoc doi: 10.1080/01621459.1999.10474139 contributor: fullname: Hwang – year: 2008 ident: CR48 article-title: Forecasting in dynamic factor models subject to structural instability publication-title: The methodology and practice of econometrics, A Festschrift in Honour of Professor David F contributor: fullname: Shephard – volume: 20 start-page: 147 issue: 2 year: 2002 end-page: 62 ident: CR46 article-title: Macroeconomic forecasting using diffusion indexes publication-title: J Bus Econ Stat doi: 10.1198/073500102317351921 contributor: fullname: Watson – volume: 131 start-page: 507 issue: 1–2 year: 2006 end-page: 537 ident: CR7 article-title: Evaluating latent and observed factors in macroeconomics and finance publication-title: J Econom doi: 10.1016/j.jeconom.2005.01.015 contributor: fullname: Ng – ident: CR43 – volume: 178 start-page: 352 issue: 2 year: 2014 end-page: 367 ident: CR32 article-title: Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence publication-title: J Econom doi: 10.1016/j.jeconom.2013.08.033 contributor: fullname: Swanson – volume: 36 start-page: 497 issue: 5 year: 2017 end-page: 514 ident: CR11 article-title: Incorporating the beige book into a quantitative index of economic activity publication-title: J Forecast doi: 10.1002/for.2450 contributor: fullname: Zhang – start-page: 515 year: 2006 end-page: 554 ident: CR47 article-title: Forecasting with many predictors publication-title: Handbook of economic forecasting, volume 1, chapter 10 doi: 10.1016/S1574-0706(05)01010-4 contributor: fullname: Timmermann – volume: 77 start-page: 1447 year: 2009 end-page: 1479 ident: CR38 article-title: Testing hypotheses about the number of factors in large factor models publication-title: Econometrica doi: 10.3982/ECTA6964 contributor: fullname: Onatski – volume: 26 start-page: 53 issue: 1 year: 2007 end-page: 90 ident: CR30 article-title: Midas regressions: further results and new directions publication-title: Econom Rev doi: 10.1080/07474930600972467 contributor: fullname: Valkanov – volume: 18 start-page: 427 year: 2003 end-page: 443 ident: CR36 article-title: A new coincident index of business cycles based on monthly and quarterly series publication-title: J Appl Econom doi: 10.1002/jae.695 contributor: fullname: Murasawa – volume: 97 start-page: 1167 year: 2002 end-page: 1179 ident: CR45 article-title: Forecasting using principal components from a large number of predictors publication-title: J Am Stat Assoc doi: 10.1198/016214502388618960 contributor: fullname: Watson – volume: 3 start-page: 478 year: 2010 end-page: 501 ident: CR1 article-title: Diffusion index models and index proxies: recent results and new direction publication-title: Eur J Pure Appl Math contributor: fullname: Swanson – volume: 132 start-page: 169 issue: 1 year: 2006 end-page: 194 ident: CR13 article-title: Are more data always better for factor analysis? publication-title: J Econom doi: 10.1016/j.jeconom.2005.01.027 contributor: fullname: Ng – ident: CR40 – volume: 85 start-page: 531 issue: 3 year: 2003 end-page: 549 ident: CR4 article-title: Testing parametric conditional distributions of dynamic models publication-title: Rev Econ Stat doi: 10.1162/003465303322369704 contributor: fullname: Bai – volume: 30 start-page: 520 year: 2014 end-page: 535 ident: CR14 article-title: Green shoots and double dips in the euro area: A real time measure publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2013.01.006 contributor: fullname: Poncela – year: 2001 ident: CR24 publication-title: Time series analysis by state space methods contributor: fullname: Koopman – volume: 24 start-page: 607 issue: 4 year: 2009 end-page: 629 ident: CR9 article-title: Boosting diffusion indices publication-title: J Appl Econom doi: 10.1002/jae.1063 contributor: fullname: Ng – volume: 34 start-page: 313 year: 2016 end-page: 338 ident: CR16 article-title: In-sample inference and forecasting in misspecified factor models publication-title: J Bus Econ Stat doi: 10.1080/07350015.2016.1186029 contributor: fullname: Rossi – volume: 70 start-page: 191 issue: 1 year: 2002 end-page: 221 ident: CR5 article-title: Determining the number of factors in approximate factor models publication-title: Econometrica doi: 10.1111/1468-0262.00273 contributor: fullname: Ng – volume: 27 start-page: 417 year: 2009 end-page: 427 ident: CR3 article-title: Real-time measurement of business conditions publication-title: J Bus Econ Stat doi: 10.1198/jbes.2009.07205 contributor: fullname: Scotti – ident: CR17 – volume: 100 start-page: 20 year: 2010 end-page: 24 ident: CR2 article-title: Real-time macroeconomic monitoring: real activity, inflation, and interactions publication-title: Am Econ Rev doi: 10.1257/aer.100.2.20 contributor: fullname: Diebold – volume: 74 start-page: 306 year: 2012 end-page: 326 ident: CR22 article-title: Comparing alternative predictors based on large-panel factor models publication-title: Oxford Bull Econ Stat doi: 10.1111/j.1468-0084.2011.00642.x contributor: fullname: Giannone – volume: 74 start-page: 1133 issue: 4 year: 2006 end-page: 1150 ident: CR6 article-title: Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions publication-title: Econometrica doi: 10.1111/j.1468-0262.2006.00696.x contributor: fullname: Ng – volume: 105 start-page: 85 year: 2001 end-page: 110 ident: CR18 article-title: Tests of equal forecast accuracy and encompassing for nested models publication-title: J Econom doi: 10.1016/S0304-4076(01)00071-9 contributor: fullname: McCracken – volume: 44 start-page: 293 issue: 2 year: 1999 end-page: 335 ident: CR44 article-title: Forecasting inflation publication-title: J Monet Econ doi: 10.1016/S0304-3932(99)00027-6 contributor: fullname: Watson – volume: 176 start-page: 18 year: 2013 end-page: 29 ident: CR10 article-title: Principal components estimation and identification of static factors publication-title: J Econom doi: 10.1016/j.jeconom.2013.03.007 contributor: fullname: Ng – volume: 34 start-page: 118 issue: 1 year: 2015 end-page: 127 ident: CR35 article-title: Short-term gdp forecasting with a mixed frequency dynamic factor model with stochastic volatility publication-title: J Bus Econ Stat doi: 10.1080/07350015.2015.1006773 contributor: fullname: Venditti – volume: 34 start-page: 598 issue: 4 year: 2018 end-page: 611 ident: CR15 article-title: Markov-switching dynamic factor models in real time publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2018.05.002 contributor: fullname: Poncela – volume: 26 start-page: 546 year: 2008 end-page: 554 ident: CR20 article-title: Macroeconomic forecasting with mixed frequency data publication-title: J Bus Econ Stat doi: 10.1198/073500108000000015 contributor: fullname: Galvao – volume: 18 start-page: 427 year: 2003 ident: 2289_CR36 publication-title: J Appl Econom doi: 10.1002/jae.695 contributor: fullname: R Mariano – ident: 2289_CR17 doi: 10.24149/gwp268 – volume: 30 start-page: 520 year: 2014 ident: 2289_CR14 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2013.01.006 contributor: fullname: M Camacho – volume: 65 start-page: 453 issue: 3 year: 1998 ident: 2289_CR27 publication-title: Rev Econ Stud doi: 10.1111/1467-937X.00053 contributor: fullname: M Forni – ident: 2289_CR40 – volume: 34 start-page: 598 issue: 4 year: 2018 ident: 2289_CR15 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2018.05.002 contributor: fullname: M Camacho – volume: 105 start-page: 85 year: 2001 ident: 2289_CR18 publication-title: J Econom doi: 10.1016/S0304-4076(01)00071-9 contributor: fullname: T Clark – volume: 100 start-page: 830 year: 2005 ident: 2289_CR26 publication-title: J Am Stat Assoc doi: 10.1198/016214504000002050 contributor: fullname: M Forni – volume: 94 start-page: 446 issue: 446 year: 1999 ident: 2289_CR23 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1999.10474139 contributor: fullname: AA Ding – volume: 20 start-page: 147 issue: 2 year: 2002 ident: 2289_CR46 publication-title: J Bus Econ Stat doi: 10.1198/073500102317351921 contributor: fullname: JH Stock – volume: 132 start-page: 169 issue: 1 year: 2006 ident: 2289_CR13 publication-title: J Econom doi: 10.1016/j.jeconom.2005.01.027 contributor: fullname: J Boivin – volume: 74 start-page: 306 year: 2012 ident: 2289_CR22 publication-title: Oxford Bull Econ Stat doi: 10.1111/j.1468-0084.2011.00642.x contributor: fullname: A D’Agostino – volume: 44 start-page: 293 issue: 2 year: 1999 ident: 2289_CR44 publication-title: J Monet Econ doi: 10.1016/S0304-3932(99)00027-6 contributor: fullname: JH Stock – volume: 34 start-page: 339 issue: 2 year: 2018 ident: 2289_CR34 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2016.02.012 contributor: fullname: HH Kim – volume: 34 start-page: 348 year: 2016 ident: 2289_CR49 publication-title: J Bus Econ Stat doi: 10.1080/07350015.2016.1186554 contributor: fullname: N Swanson – volume: 193 start-page: 291 year: 2016 ident: 2289_CR28 publication-title: J Econom doi: 10.1016/j.jeconom.2016.04.007 contributor: fullname: E Ghysels – volume-title: Time series analysis by state space methods year: 2001 ident: 2289_CR24 contributor: fullname: J Durbin – volume: 102 start-page: 603 year: 2007 ident: 2289_CR31 publication-title: J Am Stat Assoc doi: 10.1198/016214506000001275 contributor: fullname: M Hallin – volume: 36 start-page: 497 issue: 5 year: 2017 ident: 2289_CR11 publication-title: J Forecast doi: 10.1002/for.2450 contributor: fullname: NS Balke – volume: 37 start-page: 281 issue: 3 year: 2018 ident: 2289_CR33 publication-title: J Forecast doi: 10.1002/for.2499 contributor: fullname: HH Kim – volume: 26 start-page: 546 year: 2008 ident: 2289_CR20 publication-title: J Bus Econ Stat doi: 10.1198/073500108000000015 contributor: fullname: MP Clements – volume: 34 start-page: 313 year: 2016 ident: 2289_CR16 publication-title: J Bus Econ Stat doi: 10.1080/07350015.2016.1186029 contributor: fullname: M Carrasco – volume: 15 start-page: 201 year: 1904 ident: 2289_CR41 publication-title: Am J Psychol doi: 10.2307/1412107 contributor: fullname: C Spearman – volume: 26 start-page: 808 year: 2010 ident: 2289_CR39 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2009.08.004 contributor: fullname: B Rossi – volume: 74 start-page: 1133 issue: 4 year: 2006 ident: 2289_CR6 publication-title: Econometrica doi: 10.1111/j.1468-0262.2006.00696.x contributor: fullname: J Bai – volume: 178 start-page: 352 issue: 2 year: 2014 ident: 2289_CR32 publication-title: J Econom doi: 10.1016/j.jeconom.2013.08.033 contributor: fullname: HH Kim – volume-title: The methodology and practice of econometrics, A Festschrift in Honour of Professor David F year: 2008 ident: 2289_CR48 contributor: fullname: JH Stock – volume: 77 start-page: 1447 year: 2009 ident: 2289_CR38 publication-title: Econometrica doi: 10.3982/ECTA6964 contributor: fullname: A Onatski – volume: 27 start-page: 417 year: 2009 ident: 2289_CR3 publication-title: J Bus Econ Stat doi: 10.1198/jbes.2009.07205 contributor: fullname: S Aruoba – volume: 26 start-page: 53 issue: 1 year: 2007 ident: 2289_CR30 publication-title: Econom Rev doi: 10.1080/07474930600972467 contributor: fullname: E Ghysels – start-page: 135 volume-title: Handbook of economic forecasting chapter 4 year: 2006 ident: 2289_CR50 doi: 10.1016/S1574-0706(05)01004-9 contributor: fullname: AG Timmermann – volume: 182 start-page: 100 year: 2014 ident: 2289_CR21 publication-title: J Econom doi: 10.1016/j.jeconom.2014.04.011 contributor: fullname: V Corradi – volume: 131 start-page: 59 year: 2006 ident: 2289_CR29 publication-title: J Econom doi: 10.1016/j.jeconom.2005.01.004 contributor: fullname: E Ghysels – volume: 1 start-page: 117 issue: 3 year: 2005 ident: 2289_CR12 publication-title: Int J Cent Bank contributor: fullname: J Boivin – volume: 25 start-page: 52 year: 2007 ident: 2289_CR8 publication-title: J Bus Econ Stat doi: 10.1198/073500106000000413 contributor: fullname: J Bai – volume: 82 start-page: 540 issue: 4 year: 2000 ident: 2289_CR25 publication-title: Rev Econ Stat doi: 10.1162/003465300559037 contributor: fullname: M Forni – volume: 99 start-page: 195 year: 2000 ident: 2289_CR37 publication-title: J Econom doi: 10.1016/S0304-4076(00)00022-1 contributor: fullname: MW McCracken – volume: 85 start-page: 531 issue: 3 year: 2003 ident: 2289_CR4 publication-title: Rev Econ Stat doi: 10.1162/003465303322369704 contributor: fullname: J Bai – volume: 34 start-page: 118 issue: 1 year: 2015 ident: 2289_CR35 publication-title: J Bus Econ Stat doi: 10.1080/07350015.2015.1006773 contributor: fullname: M Marcellino – volume: 131 start-page: 507 issue: 1–2 year: 2006 ident: 2289_CR7 publication-title: J Econom doi: 10.1016/j.jeconom.2005.01.015 contributor: fullname: J Bai – volume: 176 start-page: 18 year: 2013 ident: 2289_CR10 publication-title: J Econom doi: 10.1016/j.jeconom.2013.03.007 contributor: fullname: J Bai – ident: 2289_CR42 doi: 10.3386/w2772 – volume: 97 start-page: 1167 year: 2002 ident: 2289_CR45 publication-title: J Am Stat Assoc doi: 10.1198/016214502388618960 contributor: fullname: JH Stock – volume: 24 start-page: 607 issue: 4 year: 2009 ident: 2289_CR9 publication-title: J Appl Econom doi: 10.1002/jae.1063 contributor: fullname: J Bai – volume: 3 start-page: 478 year: 2010 ident: 2289_CR1 publication-title: Eur J Pure Appl Math contributor: fullname: NA Armah – start-page: 515 volume-title: Handbook of economic forecasting, volume 1, chapter 10 year: 2006 ident: 2289_CR47 doi: 10.1016/S1574-0706(05)01010-4 contributor: fullname: JH Stock – volume: 100 start-page: 20 year: 2010 ident: 2289_CR2 publication-title: Am Econ Rev doi: 10.1257/aer.100.2.20 contributor: fullname: S Aruoba – ident: 2289_CR43 doi: 10.1086/654119 – volume: 24 start-page: 369 year: 2005 ident: 2289_CR19 publication-title: Econom Rev doi: 10.1080/07474930500405683 contributor: fullname: T Clark – volume: 70 start-page: 191 issue: 1 year: 2002 ident: 2289_CR5 publication-title: Econometrica doi: 10.1111/1468-0262.00273 contributor: fullname: J Bai |
SSID | ssj0003854 |
Score | 2.3591328 |
Snippet | In this paper, we analyze the forecasting performance associated with using machine learning, shrinkage, and variable selection methods during a historical... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1421 |
SubjectTerms | Data Econometrics Economic theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Feature selection Finance Forecasting GDP Great Recession Gross Domestic Product Inflation Insurance Linear analysis Machine learning Management Polls & surveys Recessions Statistics for Business Usefulness Variants |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSiwxEA06Lq4b8XHF8UUt3Gm4dtKPxI2oKCIoIgrumjzVhdM6M4L-hZ9sVT9muIKuuunuZJFKV50kVecwtpM7mzkTNY-pdTy11nKbuoIHUygEwNbkdRX_5VV-fpde3Gf37YbbqE2r7Hxi7ah95WiP_J8g8v0cw1ly-PLKSTWKTldbCY1ZNidwpbDfY3PHp1fXNxNfLFXWEEgVBS-kFG3ZTF08R3p0uJTGxRhxwGgu_w9NU7z57Yi0jjxni2yhhYxw1Nh4ic2EwTL701UUj1bY5-XTO7aE56f34CEOm-zoDzADDySA8kY7YkCH0-gU8AoPVeWhVpWvv8En1vgDvAczIeoEim8esOHjhEkEKJ8UzJCkmACRIzwQ5AR0mg27B1QRKNPhL7s7O709Oeet0gJ3Usgx1zKqkBRBo5mEcPtFYRGJ5FY7FbzywgeqsXapcE5Ir6XPlDVJMIr0xGLUcpX1BtUgrDFIlNEOcY9VJksD4htFPkOr3Mg8j0nss91ukMuXhlCjnFAn1yYp0RxlbZJS9tlmZ4ey_blG5XQq9NleZ5vp6597W_-9tw02T2LyTYbZJuuNh29hCyHH2G638-oL_TLTow priority: 102 providerName: ProQuest |
Title | Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008 |
URI | https://link.springer.com/article/10.1007/s00181-022-02289-3 https://www.proquest.com/docview/2780568221 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECVa-9Bekq6oE9eYQ28pjYjUQubmFHaDFjaCwgack8A1CYrYgRfA7VfkkzvUZnQ75CIKEkVAHGr4KM6bR8iH1OjEKC-pj7Whsdaa6thk1KlMIADWKi1Y_ONJejGLv8yT-Z7HXQS71zuShaNuuG5BPg5Xvrh2CilbJOVPSbsinrYHn6--DhsHzEVSZo3KMppxziquzL9b-X0-2oPMP_ZFi-lmdEimNWmnjDL53t9udN_8_DuH42Pe5AU5qOAnDMrx8pI8cYtX5FnNTl6_Jg_j2x02Bne3O2fBr8pI6x-gFhaCmMo2_F2DsNGNDgZLuF4uLRQK9UUdvKKVPcNzUE3STwhzpQV88KbJSgIhNhXUKsg6AaJQuA7wFdABl5lCYOkhRE28IbPRcPrpglaqDdRwxjdUci9clDmJJmfMnGaZRlSTammEs8Iy6wJf28TMGMat5DYRWkVOiaBN5r3kb0lrsVy4dwQioaRBDKWFSmKHWEkE_yNFqnia-sh3yEltu_y-TM6RN2mYi17OsYfzopdz3iHd2rx59aGucxY0HVJESVGHfKzNtb_9_9aOHlf9mDwPQvVl9FqXtDarrXuPcGaje9XwxfJ8OLn81kNIfz7D44wNfgHNW-6t |
link.rule.ids | 315,783,787,21400,27936,27937,33756,41093,41535,42162,42604,43817,52123,52246,74630 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPZQLKi-xUGAO3MCCxEls91IB2mrb7q4QaqXeIj-3eyBZ9iGVf9GfzEweuwKJnhIlsQ8eZ-azPfN9jL0vnM2diZrHzDqeWWu5zZzkwUiFANiaoqnin0yL0VV2fp1fdxtuqy6tsveJjaP2taM98k8pke8XGM6Sk8UvTqpRdLraSWg8ZPtEVYWLr_2vw-n3H1tfLFTeEkhJyaUQaVc20xTPkR4dLqVxMUYcMJqLv0PTDm_-c0TaRJ7TQ_a4g4zwpbXxE_YgVE_ZQV9RvHrG7ibzW2wJP-e3wUNcttnRv8FUHkgAZUM7YkCH0-gU8AqzuvbQqMo33-ATa_wx3oPZEnUCxTcP2PBmyyQClE8KZklSTIDIEWYEOQGdZsvuAXUEynR4zq5Oh5ffRrxTWuBOpGLNtYgqJDJoNFOaus9SWkQihdVOBa986gPVWLssdS4VXgufK2uSYBTpicWoxQu2V9VVeMkgUUY7xD1WmTwLiG8U-QytCiOKIiZxwD70g1wuWkKNckud3JikRHOUjUlKMWBHvR3K7udalbupMGAfe9vsXv-_t1f39_aOHYwuJ-NyfDa9eM0ekbB8m212xPbWy014g_Bjbd92c-wPL-jWnQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKwGXiqe6fcAcuIHVJk786AXx6Ko8uqoQlXqL_Cw9sCm7W6n9F_xkZhJnVyDBKVES--BxZj7bM9_H2EvpXe1tMjxVzvPKOcdd5RWPVmkEwM7Kror_ZCqPz6pP5_V5zn9a5LTKwSd2jjq0nvbI90si35cYzor9lNMiTj9M3lz95KQgRSetWU7jLttQlRQHI7bx7mh6-nXll4WuezIppbgSoswlNF0hHWnT4bIaF2bEB2O4-DNMrbHnX8elXRSaPGSbGT7C297ej9idOHvM7g_VxYsn7NfJ5Q22hB-XNzFAmveZ0rdgZwFIDOWadseADqrRQeAVLto2QKcw332DT5wNh3gPdkXaCRTrAmDD7ytWEaDcUrBzkmUCRJFwQfAT0IH2TB_QJqCsh6fsbHL07f0xz6oL3ItSLLkRScdCRYMmK0t_oJRDVCKd8ToGHcoQqd7aV6X3pQhGhFo7W0SrSVssJSOesdGsncUtBoW2xiMGctrWVUSso8l_GC2tkDIVacxeDYPcXPXkGs2KRrkzSYPmaDqTNGLMdgc7NPlHWzTraTFmrwfbrF__u7ft__f2gt3D6dV8-Tj9vMMekMZ8n3i2y0bL-XXcQySydM_zFPsNPO_ayw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixing+mixed+frequency+and+diffusion+indices+in+good+times+and+in+bad%3A+an+assessment+based+on+historical+data+around+the+great+recession+of+2008&rft.jtitle=Empirical+economics&rft.au=Kim%2C+Kihwan&rft.au=Kim%2C+Hyun+Hak&rft.au=Swanson%2C+Norman+R.&rft.date=2023-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0377-7332&rft.eissn=1435-8921&rft.volume=64&rft.issue=3&rft.spage=1421&rft.epage=1469&rft_id=info:doi/10.1007%2Fs00181-022-02289-3&rft.externalDocID=10_1007_s00181_022_02289_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-7332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-7332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-7332&client=summon |