Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008

In this paper, we analyze the forecasting performance associated with using machine learning, shrinkage, and variable selection methods during a historical period that contains the Great Recession of 2008. We find that these methods are most useful during “low” GDP growth periods, while simple autor...

Full description

Saved in:
Bibliographic Details
Published inEmpirical economics Vol. 64; no. 3; pp. 1421 - 1469
Main Authors Kim, Kihwan, Kim, Hyun Hak, Swanson, Norman R.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we analyze the forecasting performance associated with using machine learning, shrinkage, and variable selection methods during a historical period that contains the Great Recession of 2008. We find that these methods are most useful during “low” GDP growth periods, while simple autoregressive models are adequate during “high growth” periods. This finding stems from the introduction of very simple “hybrid” models that employ dynamic recursive (rolling) thresholding in order to switch between benchmark linear models and more complex index-driven models, depending on GDP growth conditions. In the context of predicting both quarterly real GDP growth and CPI inflation, these hybrid models are found to be superior, for all forecast horizons. When comparing the hybrid models against a host of alternatives, mean square forecast error gains reach as high as 35%, during the Great Recession, and remain significant throughout our entire prediction period. Additionally, the very best short-term GDP forecasting models contain variants of the Aruoba et al. (2009) business conditions index, although these models are most useful when diffusion indices are also incorporated. Thus, mixing mixed frequency and diffusion indices matters. Finally, across all experiments, we find strong new evidence of the usefulness of survey predictions, including those from the Survey of Professional Forecasters, and those from the Livingston Survey. While we leave the examination of alternative datasets, such as those including other recessionary periods, episodes of war, and epidemics to future research, we hypothesize that the findings in this paper point to the potential usefulness of machine learning, shrinkage, and variable selection methods during recessions, as well as to the usefulness of the hybrid models that we introduce.
AbstractList In this paper, we analyze the forecasting performance associated with using machine learning, shrinkage, and variable selection methods during a historical period that contains the Great Recession of 2008. We find that these methods are most useful during “low” GDP growth periods, while simple autoregressive models are adequate during “high growth” periods. This finding stems from the introduction of very simple “hybrid” models that employ dynamic recursive (rolling) thresholding in order to switch between benchmark linear models and more complex index-driven models, depending on GDP growth conditions. In the context of predicting both quarterly real GDP growth and CPI inflation, these hybrid models are found to be superior, for all forecast horizons. When comparing the hybrid models against a host of alternatives, mean square forecast error gains reach as high as 35%, during the Great Recession, and remain significant throughout our entire prediction period. Additionally, the very best short-term GDP forecasting models contain variants of the Aruoba et al. (2009) business conditions index, although these models are most useful when diffusion indices are also incorporated. Thus, mixing mixed frequency and diffusion indices matters. Finally, across all experiments, we find strong new evidence of the usefulness of survey predictions, including those from the Survey of Professional Forecasters, and those from the Livingston Survey. While we leave the examination of alternative datasets, such as those including other recessionary periods, episodes of war, and epidemics to future research, we hypothesize that the findings in this paper point to the potential usefulness of machine learning, shrinkage, and variable selection methods during recessions, as well as to the usefulness of the hybrid models that we introduce.
Author Swanson, Norman R.
Kim, Hyun Hak
Kim, Kihwan
Author_xml – sequence: 1
  givenname: Kihwan
  surname: Kim
  fullname: Kim, Kihwan
  organization: Korea Energy Economics Institute
– sequence: 2
  givenname: Hyun Hak
  orcidid: 0000-0002-4909-500X
  surname: Kim
  fullname: Kim, Hyun Hak
  email: hyunhak.kim@kookmin.ac.kr
  organization: Department of Economics, Kookmin University
– sequence: 3
  givenname: Norman R.
  surname: Swanson
  fullname: Swanson, Norman R.
  organization: Department of Economics, Rutgers University
BookMark eNp9kM1OQyEQhYnRxPrzAq5IXF-FoffCdWca_xKNG10TCkNL00KF26S-hY8stSbuXExmmJzvTDgn5DCmiIRccHbFGZPXhTGueMMAdqX6RhyQER-LtlE98EMyYkLKRgoBx-SklAVjTKh2PCJfL2Eb4oyuwhYd9Rk_NhjtJzXRURe835SQIg3RBYuldjpLydEhrOprp6mbqXE3daamFCxlhXGoq1LdKjgPZUg5WLOkzgyGmpw2lRrmSGcZzUAzVt-fG8lTYEydkSNvlgXPf_speb-_e5s8Ns-vD0-T2-fGChBD0wuvkEvsx1YCWCbltOtEN-2tQqccOOSqBTsGa0G4XrhWTQ1HozqL4H0vTsnl3nedU_1zGfQibXKsJzVIxdpOAfCqgr3K5lRKRq_XOaxM_tSc6V3yep-8rqnrn-S1qJDYQ6WK4wzzn_U_1Dey_olw
Cites_doi 10.1016/S0304-4076(00)00022-1
10.1016/j.ijforecast.2009.08.004
10.1016/j.ijforecast.2016.02.012
10.1016/j.jeconom.2016.04.007
10.1016/S1574-0706(05)01004-9
10.1198/016214504000002050
10.1198/016214506000001275
10.1002/for.2499
10.1198/073500106000000413
10.1080/07474930500405683
10.1080/07350015.2016.1186554
10.1162/003465300559037
10.1016/j.jeconom.2005.01.004
10.2307/1412107
10.1111/1467-937X.00053
10.1016/j.jeconom.2014.04.011
10.1080/01621459.1999.10474139
10.1198/073500102317351921
10.1016/j.jeconom.2005.01.015
10.1016/j.jeconom.2013.08.033
10.1002/for.2450
10.1016/S1574-0706(05)01010-4
10.3982/ECTA6964
10.1080/07474930600972467
10.1002/jae.695
10.1198/016214502388618960
10.1016/j.jeconom.2005.01.027
10.1162/003465303322369704
10.1016/j.ijforecast.2013.01.006
10.1002/jae.1063
10.1080/07350015.2016.1186029
10.1111/1468-0262.00273
10.1198/jbes.2009.07205
10.1257/aer.100.2.20
10.1111/j.1468-0084.2011.00642.x
10.1111/j.1468-0262.2006.00696.x
10.1016/S0304-4076(01)00071-9
10.1016/S0304-3932(99)00027-6
10.1016/j.jeconom.2013.03.007
10.1080/07350015.2015.1006773
10.1016/j.ijforecast.2018.05.002
10.1198/073500108000000015
10.24149/gwp268
10.3386/w2772
10.1086/654119
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8AO
8BJ
8FK
8FL
ABUWG
AFKRA
BENPR
BEZIV
CCPQU
DWQXO
FQK
FRNLG
F~G
JBE
K60
K6~
K8~
L.-
M0C
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s00181-022-02289-3
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Pharma Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Business Premium Collection
ProQuest One Community College
ProQuest Central
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
DELNET Management Collection
ABI/INFORM Professional Advanced
ABI/INFORM Collection
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Management Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1435-8921
EndPage 1469
ExternalDocumentID 10_1007_s00181_022_02289_3
GrantInformation_xml – fundername: NRF
  grantid: NRF-2018S1A5A8029423
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
63O
67Z
6NX
7WY
8AO
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABGEI
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTDC
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHQT
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ACYUM
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADQAN
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEOHA
AEPYU
AEQOZ
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBA
EBLON
EBO
EBR
EBS
EBU
EIOEI
EJD
EMK
EOH
EPL
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
K8~
KDC
KOV
KOW
LAS
LLZTM
M0C
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
P19
P9M
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R-Y
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7Z
Z81
Z83
Z8T
Z8U
Z8W
ZL0
ZMTXR
ZY4
ZYFGU
~8M
~EX
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
PQBZA
7XB
8BJ
8FK
FQK
JBE
L.-
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c323t-93f8e17e94c722c077b6636b9c8ed8d2de1852c42cc23d93d58ba1ea86ce2ff93
IEDL.DBID AGYKE
ISSN 0377-7332
IngestDate Thu Oct 10 16:49:04 EDT 2024
Thu Sep 12 18:21:01 EDT 2024
Sat Dec 16 12:05:03 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Diffusion index
C22
Factor model
Mixed frequency data
Kalman filter
Forecasting
C51
Recursive estimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c323t-93f8e17e94c722c077b6636b9c8ed8d2de1852c42cc23d93d58ba1ea86ce2ff93
ORCID 0000-0002-4909-500X
PQID 2780568221
PQPubID 31952
PageCount 49
ParticipantIDs proquest_journals_2780568221
crossref_primary_10_1007_s00181_022_02289_3
springer_journals_10_1007_s00181_022_02289_3
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Journal of the Institute for Advanced Studies, Vienna, Austria
PublicationTitle Empirical economics
PublicationTitleAbbrev Empir Econ
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ghysels, Santa-Clara, Valkanov (CR29) 2006; 131
Marcellino, Porqueddu, Venditti (CR35) 2015; 34
Clements, Galvao (CR20) 2008; 26
Armah, Swanson (CR1) 2010; 3
McCracken (CR37) 2000; 99
Stock, Watson (CR45) 2002; 97
Stock, Watson (CR46) 2002; 20
Forni, Hallin, Lippi, Reichlin (CR26) 2005; 100
Bai, Ng (CR5) 2002; 70
Forni, Reichlin (CR27) 1998; 65
Spearman (CR41) 1904; 15
Ghysels, Sinko, Valkanov (CR30) 2007; 26
Aruoba, Diebold (CR2) 2010; 100
Balke, Fulmer, Zhang (CR11) 2017; 36
Bai, Ng (CR9) 2009; 24
Mariano, Murasawa (CR36) 2003; 18
Timmermann, Elliott, Timmermann (CR50) 2006
Camacho, Pérez-Quirós, Poncela (CR14) 2014; 30
CR43
Carrasco, Rossi (CR16) 2016; 34
CR42
CR40
Boivin, Ng (CR12) 2005; 1
Stock, Watson, Elliott, Granger, Timmermann (CR47) 2006
Boivin, Ng (CR13) 2006; 132
Bai, Ng (CR6) 2006; 74
Ghysels, Marcellino (CR28) 2016; 193
Bai, Ng (CR10) 2013; 176
Corradi, Swanson (CR21) 2014; 182
CR17
Camacho, Pérez-Quirós, Poncela (CR15) 2018; 34
Forni, Hallin, Lippi, Reichlin (CR25) 2000; 82
Clark, McCracken (CR19) 2005; 24
Bai, Ng (CR7) 2006; 131
Kim, Swanson (CR34) 2018; 34
D’Agostino, Giannone (CR22) 2012; 74
Bai (CR4) 2003; 85
Clark, McCracken (CR18) 2001; 105
Hallin, Liska (CR31) 2007; 102
Swanson (CR49) 2016; 34
Ding, Hwang (CR23) 1999; 94
Kim, Swanson (CR32) 2014; 178
Kim, Swanson (CR33) 2018; 37
Onatski (CR38) 2009; 77
Stock, Watson (CR44) 1999; 44
Rossi, Sekhposyan (CR39) 2010; 26
Stock, Watson, Castle, Shephard (CR48) 2008
Bai, Ng (CR8) 2007; 25
Aruoba, Diebold, Scotti (CR3) 2009; 27
Durbin, Koopman (CR24) 2001
J Bai (2289_CR8) 2007; 25
S Aruoba (2289_CR3) 2009; 27
N Swanson (2289_CR49) 2016; 34
E Ghysels (2289_CR29) 2006; 131
MP Clements (2289_CR20) 2008; 26
M Camacho (2289_CR15) 2018; 34
HH Kim (2289_CR33) 2018; 37
J Bai (2289_CR6) 2006; 74
JH Stock (2289_CR47) 2006
M Carrasco (2289_CR16) 2016; 34
B Rossi (2289_CR39) 2010; 26
NA Armah (2289_CR1) 2010; 3
C Spearman (2289_CR41) 1904; 15
V Corradi (2289_CR21) 2014; 182
R Mariano (2289_CR36) 2003; 18
M Forni (2289_CR27) 1998; 65
MW McCracken (2289_CR37) 2000; 99
T Clark (2289_CR18) 2001; 105
M Forni (2289_CR25) 2000; 82
J Durbin (2289_CR24) 2001
M Forni (2289_CR26) 2005; 100
T Clark (2289_CR19) 2005; 24
2289_CR43
J Bai (2289_CR4) 2003; 85
2289_CR40
J Bai (2289_CR7) 2006; 131
2289_CR42
J Bai (2289_CR9) 2009; 24
JH Stock (2289_CR46) 2002; 20
J Boivin (2289_CR13) 2006; 132
2289_CR17
NS Balke (2289_CR11) 2017; 36
JH Stock (2289_CR45) 2002; 97
HH Kim (2289_CR32) 2014; 178
J Bai (2289_CR5) 2002; 70
M Marcellino (2289_CR35) 2015; 34
M Camacho (2289_CR14) 2014; 30
JH Stock (2289_CR48) 2008
M Hallin (2289_CR31) 2007; 102
AA Ding (2289_CR23) 1999; 94
J Bai (2289_CR10) 2013; 176
HH Kim (2289_CR34) 2018; 34
JH Stock (2289_CR44) 1999; 44
E Ghysels (2289_CR30) 2007; 26
A D’Agostino (2289_CR22) 2012; 74
J Boivin (2289_CR12) 2005; 1
S Aruoba (2289_CR2) 2010; 100
A Onatski (2289_CR38) 2009; 77
E Ghysels (2289_CR28) 2016; 193
AG Timmermann (2289_CR50) 2006
References_xml – volume: 99
  start-page: 195
  year: 2000
  end-page: 223
  ident: CR37
  article-title: Robust out-of-sample inference
  publication-title: J Econom
  doi: 10.1016/S0304-4076(00)00022-1
  contributor:
    fullname: McCracken
– volume: 26
  start-page: 808
  year: 2010
  end-page: 835
  ident: CR39
  article-title: Have economic models’ forecasting performance for us output growth and inflation changed over time, and when?
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2009.08.004
  contributor:
    fullname: Sekhposyan
– volume: 34
  start-page: 339
  issue: 2
  year: 2018
  end-page: 354
  ident: CR34
  article-title: Mining big data using parsimonious factor and shrinkage methods
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2016.02.012
  contributor:
    fullname: Swanson
– volume: 193
  start-page: 291
  year: 2016
  end-page: 293
  ident: CR28
  article-title: The econometric analysis of mixed frequency data sampling
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2016.04.007
  contributor:
    fullname: Marcellino
– start-page: 135
  year: 2006
  end-page: 196
  ident: CR50
  article-title: Forecast combinations
  publication-title: Handbook of economic forecasting chapter 4
  doi: 10.1016/S1574-0706(05)01004-9
  contributor:
    fullname: Timmermann
– volume: 100
  start-page: 830
  year: 2005
  end-page: 840
  ident: CR26
  article-title: The generalized dynamic factor model: one-sided estimation and forecasting
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000002050
  contributor:
    fullname: Reichlin
– volume: 102
  start-page: 603
  year: 2007
  end-page: 617
  ident: CR31
  article-title: Determining the number of factors in the general dynamic factor model
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000001275
  contributor:
    fullname: Liska
– volume: 37
  start-page: 281
  issue: 3
  year: 2018
  end-page: 302
  ident: CR33
  article-title: Methods for backcasting, nowcasting and forecasting using factor-midas: with an application to Korean GDP
  publication-title: J Forecast
  doi: 10.1002/for.2499
  contributor:
    fullname: Swanson
– volume: 25
  start-page: 52
  year: 2007
  end-page: 60
  ident: CR8
  article-title: Determining the number of primitive shocks in factor models
  publication-title: J Bus Econ Stat
  doi: 10.1198/073500106000000413
  contributor:
    fullname: Ng
– volume: 24
  start-page: 369
  year: 2005
  end-page: 404
  ident: CR19
  article-title: Evaluating direct multi-step forecasts
  publication-title: Econom Rev
  doi: 10.1080/07474930500405683
  contributor:
    fullname: McCracken
– ident: CR42
– volume: 34
  start-page: 348
  year: 2016
  end-page: 353
  ident: CR49
  article-title: Comment on: In sample inference and forecasting in misspecified factor models
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.2016.1186554
  contributor:
    fullname: Swanson
– volume: 1
  start-page: 117
  issue: 3
  year: 2005
  end-page: 152
  ident: CR12
  article-title: Understanding and comparing factor-based forecasts
  publication-title: Int J Cent Bank
  contributor:
    fullname: Ng
– volume: 82
  start-page: 540
  issue: 4
  year: 2000
  end-page: 554
  ident: CR25
  article-title: The generalized dynamic-factor model: identification and estimation
  publication-title: Rev Econ Stat
  doi: 10.1162/003465300559037
  contributor:
    fullname: Reichlin
– volume: 131
  start-page: 59
  year: 2006
  end-page: 95
  ident: CR29
  article-title: Predicting volatility: getting the most out of return data sampled at different frequencie
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2005.01.004
  contributor:
    fullname: Valkanov
– volume: 15
  start-page: 201
  year: 1904
  end-page: 293
  ident: CR41
  article-title: General intelligence objectively determined and measured
  publication-title: Am J Psychol
  doi: 10.2307/1412107
  contributor:
    fullname: Spearman
– volume: 65
  start-page: 453
  issue: 3
  year: 1998
  end-page: 73
  ident: CR27
  article-title: Let’s get real: a factor analytical approach to disaggregated business cycle dynamics
  publication-title: Rev Econ Stud
  doi: 10.1111/1467-937X.00053
  contributor:
    fullname: Reichlin
– volume: 182
  start-page: 100
  year: 2014
  end-page: 118
  ident: CR21
  article-title: Testing for structural stability of factor augmented forecasting models
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2014.04.011
  contributor:
    fullname: Swanson
– volume: 94
  start-page: 446
  issue: 446
  year: 1999
  end-page: 455
  ident: CR23
  article-title: Prediction intervals, factor analysis models, and high-dimensional empirical linear prediction
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1999.10474139
  contributor:
    fullname: Hwang
– year: 2008
  ident: CR48
  article-title: Forecasting in dynamic factor models subject to structural instability
  publication-title: The methodology and practice of econometrics, A Festschrift in Honour of Professor David F
  contributor:
    fullname: Shephard
– volume: 20
  start-page: 147
  issue: 2
  year: 2002
  end-page: 62
  ident: CR46
  article-title: Macroeconomic forecasting using diffusion indexes
  publication-title: J Bus Econ Stat
  doi: 10.1198/073500102317351921
  contributor:
    fullname: Watson
– volume: 131
  start-page: 507
  issue: 1–2
  year: 2006
  end-page: 537
  ident: CR7
  article-title: Evaluating latent and observed factors in macroeconomics and finance
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2005.01.015
  contributor:
    fullname: Ng
– ident: CR43
– volume: 178
  start-page: 352
  issue: 2
  year: 2014
  end-page: 367
  ident: CR32
  article-title: Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2013.08.033
  contributor:
    fullname: Swanson
– volume: 36
  start-page: 497
  issue: 5
  year: 2017
  end-page: 514
  ident: CR11
  article-title: Incorporating the beige book into a quantitative index of economic activity
  publication-title: J Forecast
  doi: 10.1002/for.2450
  contributor:
    fullname: Zhang
– start-page: 515
  year: 2006
  end-page: 554
  ident: CR47
  article-title: Forecasting with many predictors
  publication-title: Handbook of economic forecasting, volume 1, chapter 10
  doi: 10.1016/S1574-0706(05)01010-4
  contributor:
    fullname: Timmermann
– volume: 77
  start-page: 1447
  year: 2009
  end-page: 1479
  ident: CR38
  article-title: Testing hypotheses about the number of factors in large factor models
  publication-title: Econometrica
  doi: 10.3982/ECTA6964
  contributor:
    fullname: Onatski
– volume: 26
  start-page: 53
  issue: 1
  year: 2007
  end-page: 90
  ident: CR30
  article-title: Midas regressions: further results and new directions
  publication-title: Econom Rev
  doi: 10.1080/07474930600972467
  contributor:
    fullname: Valkanov
– volume: 18
  start-page: 427
  year: 2003
  end-page: 443
  ident: CR36
  article-title: A new coincident index of business cycles based on monthly and quarterly series
  publication-title: J Appl Econom
  doi: 10.1002/jae.695
  contributor:
    fullname: Murasawa
– volume: 97
  start-page: 1167
  year: 2002
  end-page: 1179
  ident: CR45
  article-title: Forecasting using principal components from a large number of predictors
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214502388618960
  contributor:
    fullname: Watson
– volume: 3
  start-page: 478
  year: 2010
  end-page: 501
  ident: CR1
  article-title: Diffusion index models and index proxies: recent results and new direction
  publication-title: Eur J Pure Appl Math
  contributor:
    fullname: Swanson
– volume: 132
  start-page: 169
  issue: 1
  year: 2006
  end-page: 194
  ident: CR13
  article-title: Are more data always better for factor analysis?
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2005.01.027
  contributor:
    fullname: Ng
– ident: CR40
– volume: 85
  start-page: 531
  issue: 3
  year: 2003
  end-page: 549
  ident: CR4
  article-title: Testing parametric conditional distributions of dynamic models
  publication-title: Rev Econ Stat
  doi: 10.1162/003465303322369704
  contributor:
    fullname: Bai
– volume: 30
  start-page: 520
  year: 2014
  end-page: 535
  ident: CR14
  article-title: Green shoots and double dips in the euro area: A real time measure
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2013.01.006
  contributor:
    fullname: Poncela
– year: 2001
  ident: CR24
  publication-title: Time series analysis by state space methods
  contributor:
    fullname: Koopman
– volume: 24
  start-page: 607
  issue: 4
  year: 2009
  end-page: 629
  ident: CR9
  article-title: Boosting diffusion indices
  publication-title: J Appl Econom
  doi: 10.1002/jae.1063
  contributor:
    fullname: Ng
– volume: 34
  start-page: 313
  year: 2016
  end-page: 338
  ident: CR16
  article-title: In-sample inference and forecasting in misspecified factor models
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.2016.1186029
  contributor:
    fullname: Rossi
– volume: 70
  start-page: 191
  issue: 1
  year: 2002
  end-page: 221
  ident: CR5
  article-title: Determining the number of factors in approximate factor models
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00273
  contributor:
    fullname: Ng
– volume: 27
  start-page: 417
  year: 2009
  end-page: 427
  ident: CR3
  article-title: Real-time measurement of business conditions
  publication-title: J Bus Econ Stat
  doi: 10.1198/jbes.2009.07205
  contributor:
    fullname: Scotti
– ident: CR17
– volume: 100
  start-page: 20
  year: 2010
  end-page: 24
  ident: CR2
  article-title: Real-time macroeconomic monitoring: real activity, inflation, and interactions
  publication-title: Am Econ Rev
  doi: 10.1257/aer.100.2.20
  contributor:
    fullname: Diebold
– volume: 74
  start-page: 306
  year: 2012
  end-page: 326
  ident: CR22
  article-title: Comparing alternative predictors based on large-panel factor models
  publication-title: Oxford Bull Econ Stat
  doi: 10.1111/j.1468-0084.2011.00642.x
  contributor:
    fullname: Giannone
– volume: 74
  start-page: 1133
  issue: 4
  year: 2006
  end-page: 1150
  ident: CR6
  article-title: Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2006.00696.x
  contributor:
    fullname: Ng
– volume: 105
  start-page: 85
  year: 2001
  end-page: 110
  ident: CR18
  article-title: Tests of equal forecast accuracy and encompassing for nested models
  publication-title: J Econom
  doi: 10.1016/S0304-4076(01)00071-9
  contributor:
    fullname: McCracken
– volume: 44
  start-page: 293
  issue: 2
  year: 1999
  end-page: 335
  ident: CR44
  article-title: Forecasting inflation
  publication-title: J Monet Econ
  doi: 10.1016/S0304-3932(99)00027-6
  contributor:
    fullname: Watson
– volume: 176
  start-page: 18
  year: 2013
  end-page: 29
  ident: CR10
  article-title: Principal components estimation and identification of static factors
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2013.03.007
  contributor:
    fullname: Ng
– volume: 34
  start-page: 118
  issue: 1
  year: 2015
  end-page: 127
  ident: CR35
  article-title: Short-term gdp forecasting with a mixed frequency dynamic factor model with stochastic volatility
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.2015.1006773
  contributor:
    fullname: Venditti
– volume: 34
  start-page: 598
  issue: 4
  year: 2018
  end-page: 611
  ident: CR15
  article-title: Markov-switching dynamic factor models in real time
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2018.05.002
  contributor:
    fullname: Poncela
– volume: 26
  start-page: 546
  year: 2008
  end-page: 554
  ident: CR20
  article-title: Macroeconomic forecasting with mixed frequency data
  publication-title: J Bus Econ Stat
  doi: 10.1198/073500108000000015
  contributor:
    fullname: Galvao
– volume: 18
  start-page: 427
  year: 2003
  ident: 2289_CR36
  publication-title: J Appl Econom
  doi: 10.1002/jae.695
  contributor:
    fullname: R Mariano
– ident: 2289_CR17
  doi: 10.24149/gwp268
– volume: 30
  start-page: 520
  year: 2014
  ident: 2289_CR14
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2013.01.006
  contributor:
    fullname: M Camacho
– volume: 65
  start-page: 453
  issue: 3
  year: 1998
  ident: 2289_CR27
  publication-title: Rev Econ Stud
  doi: 10.1111/1467-937X.00053
  contributor:
    fullname: M Forni
– ident: 2289_CR40
– volume: 34
  start-page: 598
  issue: 4
  year: 2018
  ident: 2289_CR15
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2018.05.002
  contributor:
    fullname: M Camacho
– volume: 105
  start-page: 85
  year: 2001
  ident: 2289_CR18
  publication-title: J Econom
  doi: 10.1016/S0304-4076(01)00071-9
  contributor:
    fullname: T Clark
– volume: 100
  start-page: 830
  year: 2005
  ident: 2289_CR26
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000002050
  contributor:
    fullname: M Forni
– volume: 94
  start-page: 446
  issue: 446
  year: 1999
  ident: 2289_CR23
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1999.10474139
  contributor:
    fullname: AA Ding
– volume: 20
  start-page: 147
  issue: 2
  year: 2002
  ident: 2289_CR46
  publication-title: J Bus Econ Stat
  doi: 10.1198/073500102317351921
  contributor:
    fullname: JH Stock
– volume: 132
  start-page: 169
  issue: 1
  year: 2006
  ident: 2289_CR13
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2005.01.027
  contributor:
    fullname: J Boivin
– volume: 74
  start-page: 306
  year: 2012
  ident: 2289_CR22
  publication-title: Oxford Bull Econ Stat
  doi: 10.1111/j.1468-0084.2011.00642.x
  contributor:
    fullname: A D’Agostino
– volume: 44
  start-page: 293
  issue: 2
  year: 1999
  ident: 2289_CR44
  publication-title: J Monet Econ
  doi: 10.1016/S0304-3932(99)00027-6
  contributor:
    fullname: JH Stock
– volume: 34
  start-page: 339
  issue: 2
  year: 2018
  ident: 2289_CR34
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2016.02.012
  contributor:
    fullname: HH Kim
– volume: 34
  start-page: 348
  year: 2016
  ident: 2289_CR49
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.2016.1186554
  contributor:
    fullname: N Swanson
– volume: 193
  start-page: 291
  year: 2016
  ident: 2289_CR28
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2016.04.007
  contributor:
    fullname: E Ghysels
– volume-title: Time series analysis by state space methods
  year: 2001
  ident: 2289_CR24
  contributor:
    fullname: J Durbin
– volume: 102
  start-page: 603
  year: 2007
  ident: 2289_CR31
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000001275
  contributor:
    fullname: M Hallin
– volume: 36
  start-page: 497
  issue: 5
  year: 2017
  ident: 2289_CR11
  publication-title: J Forecast
  doi: 10.1002/for.2450
  contributor:
    fullname: NS Balke
– volume: 37
  start-page: 281
  issue: 3
  year: 2018
  ident: 2289_CR33
  publication-title: J Forecast
  doi: 10.1002/for.2499
  contributor:
    fullname: HH Kim
– volume: 26
  start-page: 546
  year: 2008
  ident: 2289_CR20
  publication-title: J Bus Econ Stat
  doi: 10.1198/073500108000000015
  contributor:
    fullname: MP Clements
– volume: 34
  start-page: 313
  year: 2016
  ident: 2289_CR16
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.2016.1186029
  contributor:
    fullname: M Carrasco
– volume: 15
  start-page: 201
  year: 1904
  ident: 2289_CR41
  publication-title: Am J Psychol
  doi: 10.2307/1412107
  contributor:
    fullname: C Spearman
– volume: 26
  start-page: 808
  year: 2010
  ident: 2289_CR39
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2009.08.004
  contributor:
    fullname: B Rossi
– volume: 74
  start-page: 1133
  issue: 4
  year: 2006
  ident: 2289_CR6
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2006.00696.x
  contributor:
    fullname: J Bai
– volume: 178
  start-page: 352
  issue: 2
  year: 2014
  ident: 2289_CR32
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2013.08.033
  contributor:
    fullname: HH Kim
– volume-title: The methodology and practice of econometrics, A Festschrift in Honour of Professor David F
  year: 2008
  ident: 2289_CR48
  contributor:
    fullname: JH Stock
– volume: 77
  start-page: 1447
  year: 2009
  ident: 2289_CR38
  publication-title: Econometrica
  doi: 10.3982/ECTA6964
  contributor:
    fullname: A Onatski
– volume: 27
  start-page: 417
  year: 2009
  ident: 2289_CR3
  publication-title: J Bus Econ Stat
  doi: 10.1198/jbes.2009.07205
  contributor:
    fullname: S Aruoba
– volume: 26
  start-page: 53
  issue: 1
  year: 2007
  ident: 2289_CR30
  publication-title: Econom Rev
  doi: 10.1080/07474930600972467
  contributor:
    fullname: E Ghysels
– start-page: 135
  volume-title: Handbook of economic forecasting chapter 4
  year: 2006
  ident: 2289_CR50
  doi: 10.1016/S1574-0706(05)01004-9
  contributor:
    fullname: AG Timmermann
– volume: 182
  start-page: 100
  year: 2014
  ident: 2289_CR21
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2014.04.011
  contributor:
    fullname: V Corradi
– volume: 131
  start-page: 59
  year: 2006
  ident: 2289_CR29
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2005.01.004
  contributor:
    fullname: E Ghysels
– volume: 1
  start-page: 117
  issue: 3
  year: 2005
  ident: 2289_CR12
  publication-title: Int J Cent Bank
  contributor:
    fullname: J Boivin
– volume: 25
  start-page: 52
  year: 2007
  ident: 2289_CR8
  publication-title: J Bus Econ Stat
  doi: 10.1198/073500106000000413
  contributor:
    fullname: J Bai
– volume: 82
  start-page: 540
  issue: 4
  year: 2000
  ident: 2289_CR25
  publication-title: Rev Econ Stat
  doi: 10.1162/003465300559037
  contributor:
    fullname: M Forni
– volume: 99
  start-page: 195
  year: 2000
  ident: 2289_CR37
  publication-title: J Econom
  doi: 10.1016/S0304-4076(00)00022-1
  contributor:
    fullname: MW McCracken
– volume: 85
  start-page: 531
  issue: 3
  year: 2003
  ident: 2289_CR4
  publication-title: Rev Econ Stat
  doi: 10.1162/003465303322369704
  contributor:
    fullname: J Bai
– volume: 34
  start-page: 118
  issue: 1
  year: 2015
  ident: 2289_CR35
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.2015.1006773
  contributor:
    fullname: M Marcellino
– volume: 131
  start-page: 507
  issue: 1–2
  year: 2006
  ident: 2289_CR7
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2005.01.015
  contributor:
    fullname: J Bai
– volume: 176
  start-page: 18
  year: 2013
  ident: 2289_CR10
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2013.03.007
  contributor:
    fullname: J Bai
– ident: 2289_CR42
  doi: 10.3386/w2772
– volume: 97
  start-page: 1167
  year: 2002
  ident: 2289_CR45
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214502388618960
  contributor:
    fullname: JH Stock
– volume: 24
  start-page: 607
  issue: 4
  year: 2009
  ident: 2289_CR9
  publication-title: J Appl Econom
  doi: 10.1002/jae.1063
  contributor:
    fullname: J Bai
– volume: 3
  start-page: 478
  year: 2010
  ident: 2289_CR1
  publication-title: Eur J Pure Appl Math
  contributor:
    fullname: NA Armah
– start-page: 515
  volume-title: Handbook of economic forecasting, volume 1, chapter 10
  year: 2006
  ident: 2289_CR47
  doi: 10.1016/S1574-0706(05)01010-4
  contributor:
    fullname: JH Stock
– volume: 100
  start-page: 20
  year: 2010
  ident: 2289_CR2
  publication-title: Am Econ Rev
  doi: 10.1257/aer.100.2.20
  contributor:
    fullname: S Aruoba
– ident: 2289_CR43
  doi: 10.1086/654119
– volume: 24
  start-page: 369
  year: 2005
  ident: 2289_CR19
  publication-title: Econom Rev
  doi: 10.1080/07474930500405683
  contributor:
    fullname: T Clark
– volume: 70
  start-page: 191
  issue: 1
  year: 2002
  ident: 2289_CR5
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00273
  contributor:
    fullname: J Bai
SSID ssj0003854
Score 2.3591328
Snippet In this paper, we analyze the forecasting performance associated with using machine learning, shrinkage, and variable selection methods during a historical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1421
SubjectTerms Data
Econometrics
Economic theory
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Feature selection
Finance
Forecasting
GDP
Great Recession
Gross Domestic Product
Inflation
Insurance
Linear analysis
Machine learning
Management
Polls & surveys
Recessions
Statistics for Business
Usefulness
Variants
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSiwxEA06Lq4b8XHF8UUt3Gm4dtKPxI2oKCIoIgrumjzVhdM6M4L-hZ9sVT9muIKuuunuZJFKV50kVecwtpM7mzkTNY-pdTy11nKbuoIHUygEwNbkdRX_5VV-fpde3Gf37YbbqE2r7Hxi7ah95WiP_J8g8v0cw1ly-PLKSTWKTldbCY1ZNidwpbDfY3PHp1fXNxNfLFXWEEgVBS-kFG3ZTF08R3p0uJTGxRhxwGgu_w9NU7z57Yi0jjxni2yhhYxw1Nh4ic2EwTL701UUj1bY5-XTO7aE56f34CEOm-zoDzADDySA8kY7YkCH0-gU8AoPVeWhVpWvv8En1vgDvAczIeoEim8esOHjhEkEKJ8UzJCkmACRIzwQ5AR0mg27B1QRKNPhL7s7O709Oeet0gJ3Usgx1zKqkBRBo5mEcPtFYRGJ5FY7FbzywgeqsXapcE5Ir6XPlDVJMIr0xGLUcpX1BtUgrDFIlNEOcY9VJksD4htFPkOr3Mg8j0nss91ukMuXhlCjnFAn1yYp0RxlbZJS9tlmZ4ey_blG5XQq9NleZ5vp6597W_-9tw02T2LyTYbZJuuNh29hCyHH2G638-oL_TLTow
  priority: 102
  providerName: ProQuest
Title Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008
URI https://link.springer.com/article/10.1007/s00181-022-02289-3
https://www.proquest.com/docview/2780568221
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECVa-9Bekq6oE9eYQ28pjYjUQubmFHaDFjaCwgack8A1CYrYgRfA7VfkkzvUZnQ75CIKEkVAHGr4KM6bR8iH1OjEKC-pj7Whsdaa6thk1KlMIADWKi1Y_ONJejGLv8yT-Z7HXQS71zuShaNuuG5BPg5Xvrh2CilbJOVPSbsinrYHn6--DhsHzEVSZo3KMppxziquzL9b-X0-2oPMP_ZFi-lmdEimNWmnjDL53t9udN_8_DuH42Pe5AU5qOAnDMrx8pI8cYtX5FnNTl6_Jg_j2x02Bne3O2fBr8pI6x-gFhaCmMo2_F2DsNGNDgZLuF4uLRQK9UUdvKKVPcNzUE3STwhzpQV88KbJSgIhNhXUKsg6AaJQuA7wFdABl5lCYOkhRE28IbPRcPrpglaqDdRwxjdUci9clDmJJmfMnGaZRlSTammEs8Iy6wJf28TMGMat5DYRWkVOiaBN5r3kb0lrsVy4dwQioaRBDKWFSmKHWEkE_yNFqnia-sh3yEltu_y-TM6RN2mYi17OsYfzopdz3iHd2rx59aGucxY0HVJESVGHfKzNtb_9_9aOHlf9mDwPQvVl9FqXtDarrXuPcGaje9XwxfJ8OLn81kNIfz7D44wNfgHNW-6t
link.rule.ids 315,783,787,21400,27936,27937,33756,41093,41535,42162,42604,43817,52123,52246,74630
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPZQLKi-xUGAO3MCCxEls91IB2mrb7q4QaqXeIj-3eyBZ9iGVf9GfzEweuwKJnhIlsQ8eZ-azPfN9jL0vnM2diZrHzDqeWWu5zZzkwUiFANiaoqnin0yL0VV2fp1fdxtuqy6tsveJjaP2taM98k8pke8XGM6Sk8UvTqpRdLraSWg8ZPtEVYWLr_2vw-n3H1tfLFTeEkhJyaUQaVc20xTPkR4dLqVxMUYcMJqLv0PTDm_-c0TaRJ7TQ_a4g4zwpbXxE_YgVE_ZQV9RvHrG7ibzW2wJP-e3wUNcttnRv8FUHkgAZUM7YkCH0-gU8AqzuvbQqMo33-ATa_wx3oPZEnUCxTcP2PBmyyQClE8KZklSTIDIEWYEOQGdZsvuAXUEynR4zq5Oh5ffRrxTWuBOpGLNtYgqJDJoNFOaus9SWkQihdVOBa986gPVWLssdS4VXgufK2uSYBTpicWoxQu2V9VVeMkgUUY7xD1WmTwLiG8U-QytCiOKIiZxwD70g1wuWkKNckud3JikRHOUjUlKMWBHvR3K7udalbupMGAfe9vsXv-_t1f39_aOHYwuJ-NyfDa9eM0ekbB8m212xPbWy014g_Bjbd92c-wPL-jWnQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKwGXiqe6fcAcuIHVJk786AXx6Ko8uqoQlXqL_Cw9sCm7W6n9F_xkZhJnVyDBKVES--BxZj7bM9_H2EvpXe1tMjxVzvPKOcdd5RWPVmkEwM7Kror_ZCqPz6pP5_V5zn9a5LTKwSd2jjq0nvbI90si35cYzor9lNMiTj9M3lz95KQgRSetWU7jLttQlRQHI7bx7mh6-nXll4WuezIppbgSoswlNF0hHWnT4bIaF2bEB2O4-DNMrbHnX8elXRSaPGSbGT7C297ej9idOHvM7g_VxYsn7NfJ5Q22hB-XNzFAmveZ0rdgZwFIDOWadseADqrRQeAVLto2QKcw332DT5wNh3gPdkXaCRTrAmDD7ytWEaDcUrBzkmUCRJFwQfAT0IH2TB_QJqCsh6fsbHL07f0xz6oL3ItSLLkRScdCRYMmK0t_oJRDVCKd8ToGHcoQqd7aV6X3pQhGhFo7W0SrSVssJSOesdGsncUtBoW2xiMGctrWVUSso8l_GC2tkDIVacxeDYPcXPXkGs2KRrkzSYPmaDqTNGLMdgc7NPlHWzTraTFmrwfbrF__u7ft__f2gt3D6dV8-Tj9vMMekMZ8n3i2y0bL-XXcQySydM_zFPsNPO_ayw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixing+mixed+frequency+and+diffusion+indices+in+good+times+and+in+bad%3A+an+assessment+based+on+historical+data+around+the+great+recession+of+2008&rft.jtitle=Empirical+economics&rft.au=Kim%2C+Kihwan&rft.au=Kim%2C+Hyun+Hak&rft.au=Swanson%2C+Norman+R.&rft.date=2023-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0377-7332&rft.eissn=1435-8921&rft.volume=64&rft.issue=3&rft.spage=1421&rft.epage=1469&rft_id=info:doi/10.1007%2Fs00181-022-02289-3&rft.externalDocID=10_1007_s00181_022_02289_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-7332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-7332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-7332&client=summon