Multi-peak solutions of non-linear elliptic singularly perturbed reaction-diffusion equations using finite element simulation

The present paper deals with a review of nonlinear reaction-diffusion models appearing in different branches of science and engineering. The multi-peak solutions of non-linear elliptic singularly perturbed reaction-diffusion equations do not appear to have been previously studied in detail, computat...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Taiwan Institute of Chemical Engineers Vol. 50; pp. 56 - 68
Main Authors Singh, Akhilesh Kumar, Kumar, Manoj
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present paper deals with a review of nonlinear reaction-diffusion models appearing in different branches of science and engineering. The multi-peak solutions of non-linear elliptic singularly perturbed reaction-diffusion equations do not appear to have been previously studied in detail, computationally. The finite element method for the solution of non-linear elliptic singularly perturbed reaction-diffusion equations (subject to appropriate Dirichlet's boundary condition) is discussed, and a variant of Newton's method having fifth order of convergence is used to linearize the nonlinear system of equations. Examples of nonlinear elliptic singularly perturbed reaction-diffusion equation having non-linearity in homogeneous/non-homogeneous form are considered to show the existence of multi-peak solutions.
AbstractList The present paper deals with a review of nonlinear reaction-diffusion models appearing in different branches of science and engineering. The multi-peak solutions of non-linear elliptic singularly perturbed reaction-diffusion equations do not appear to have been previously studied in detail, computationally. The finite element method for the solution of non-linear elliptic singularly perturbed reaction-diffusion equations (subject to appropriate Dirichlet's boundary condition) is discussed, and a variant of Newton's method having fifth order of convergence is used to linearize the nonlinear system of equations. Examples of nonlinear elliptic singularly perturbed reaction-diffusion equation having non-linearity in homogeneous/non-homogeneous form are considered to show the existence of multi-peak solutions.
Author Singh, Akhilesh Kumar
Kumar, Manoj
Author_xml – sequence: 1
  givenname: Akhilesh Kumar
  surname: Singh
  fullname: Singh, Akhilesh Kumar
  email: au.akhilesh@gmail.com, akhilesh.singh@jiit.ac.in
  organization: Department of Mathematics, Jaypee Institute of Information Technology (Deemed University), Sector-128, Noida 201 304, U.P., India
– sequence: 2
  givenname: Manoj
  surname: Kumar
  fullname: Kumar, Manoj
  email: manoj@mnnit.ac.in
  organization: Department of Mathematics, Motilal Nehru National Institute of Technology, Allahabad 211 004, U.P
BookMark eNp9kL9OwzAQhy1UJErpE7D4BRLspEncgQFV_JOKWGC2LvYZObhOsROkDrw7DkWM3HI33Pfd6XdOZr73SMglZzlnvL7q8m6wCvOC8VXOi5wxfkLmXDR1xplYz_7mhp2RZYwdm6phRVHNydfT6Aab7RHeaezdONjeR9obmo5kznqEQNE5u08naLT-bXQQ3IHuMQxjaFHTgKAmKtPWmDGmieLHCEfROCHUWG8HTB7coR-SZpcs08IFOTXgIi5_-4K83t2-bB6y7fP94-Zmm6myKIdMKAFtBVCvTF20uuKNwrYuVVsK4C1UAgSsWmGg0BUCaAVYqaop1wpNrRpdLkh59KrQxxjQyH2wOwgHyZmcQpSd_AlRTiFKXsgUYqKujxSm1z4tBhmVRa9Q24BqkLq3__LfMfuDhQ
Cites_doi 10.1007/s002110050322
10.1016/j.apnum.2004.07.001
10.1006/jdeq.2000.3795
10.1007/978-1-4757-3658-8
10.1142/6640
10.1093/oso/9780195096705.001.0001
10.1007/s00526-005-0339-4
10.1215/S0012-7094-96-08423-9
10.1016/j.cam.2003.08.035
10.1002/9780470287095
10.1017/S0022112071001733
10.1090/S0025-5718-96-00753-3
10.1007/BFb0070595
10.1016/0025-5564(75)90026-7
10.1016/j.amc.2012.06.011
10.1113/jphysiol.1952.sp004764
10.1098/rsta.1980.0265
10.1090/S0025-5718-05-01762-X
10.1016/S0006-3495(61)86902-6
10.1007/s005260050147
10.1111/j.1469-1809.1937.tb02153.x
10.1006/jdeq.1996.0120
10.1002/cpa.3160480704
10.1080/03605309808821354
10.1016/S0898-1221(97)00279-4
10.1007/s40009-013-0125-3
10.1098/rstb.1952.0012
10.1007/s10483-008-0814-x
10.1109/TCT.1965.1082476
10.1007/s00229-008-0225-4
10.4153/CJM-2000-024-x
10.1215/S0012-7094-93-07004-4
ContentType Journal Article
Copyright 2014 Taiwan Institute of Chemical Engineers
Copyright_xml – notice: 2014 Taiwan Institute of Chemical Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.jtice.2014.12.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1876-1089
EndPage 68
ExternalDocumentID 10_1016_j_jtice_2014_12_001
S1876107014003988
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
8RM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSG
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c323t-8c8ab5aa64f62bd517ceb63cb38a1ba58a8a4b8fa2d5eaadcae5c5739cef6c7d3
IEDL.DBID .~1
ISSN 1876-1070
IngestDate Tue Jul 01 00:40:40 EDT 2025
Fri Feb 23 02:28:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Newton's method
Reaction-diffusion equation
Non-linear elliptic boundary value problem
Singular perturbation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c323t-8c8ab5aa64f62bd517ceb63cb38a1ba58a8a4b8fa2d5eaadcae5c5739cef6c7d3
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_jtice_2014_12_001
elsevier_sciencedirect_doi_10_1016_j_jtice_2014_12_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of the Taiwan Institute of Chemical Engineers
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Boglaev (bib0004) 2004; 162
Ni, Takagi (bib0028) 1993; 70
Pesin, Yurchenko (bib0031) 2000; 59
Jiaqi (bib0018) 2008; 29
Kumar, Srivastava, Mishra (bib0021) 2013; 36
Sun, Stynes (bib0035) 1996; 65
Stewartson, Stuart (bib0034) 1971; 48
Ni, Wei (bib0029) 1995; 48
Adams (bib0001) 1978
Maginu (bib0026) 1975; 27
Epstein IR, Pojman JA. An introduction to nonlinear chemical dynamics. Oxford University Press; 1998.
Turing (bib0036) 1952; 237
Hodgkin, Huxley (bib0017) 1952; 117
Li, Navon (bib0025) 1998; 35
Wei (bib0038) 1996; 129
Blennerhassett (bib0003) 1980; 298
Dancer, Micheletti, Pistoia (bib0010) 2009; 128
Kolmogorov AN, Petrovskii IG, Piskunov NS. A Study of the Diffusion Equation with Increase in the Amount of Substance, and its Application to a Biological Problem in Selected Works of A. N. Kolmogorov, Kluwer Academic Publishers; 1937; 1: 242-270 (Appeared in Bulletin of Moscow University, Math and Mech 1937; 1:6: 1-26).
Gui (bib0015) 1996; 84
Kumar, Srivastava, Singh (bib0022) 2012; 219
Pao (bib0030) 1992
Cao, Noussair (bib0007) 2000; 166
Verfurth (bib0037) 1998; 78
Brenner SC, Scott LR. The mathematical theory of finite element method. Springer-Verlag; 2002.
Fisher (bib0013) 1937; 7
Nagumo, Arimoto, Yoshizawa (bib0027) 1965; 12
Pino, Felmer, Wei (bib0032) 2000; 10
Clavero, Gracia, O'Riordan (bib0008) 2005; 74
Kopteva, Stynes (bib0020) 2004; 51
Dancer, Wei (bib0009) 1998; 11
FitzHugh (bib0014) 1961; 1
Byeon, Park (bib0006) 2005; 24
Gui, Wei (bib0016) 2000; 52
Fisher (bib0012) 1930
Li (bib0024) 1998; 23
Aronson, Weinberger (bib0002) 1975; 446
Logan JD. An introduction to nonlinear partial differential equations, second ed. Pure and applied mathematics: a Wiley interscience series of texts, monographs and tracts; 2008.
Shi J. Solution set of semilinear elliptic equations, global bifurcations and exact multiplicity. World Scientific Publishing; 2010.
Pesin (10.1016/j.jtice.2014.12.001_bib0031) 2000; 59
Turing (10.1016/j.jtice.2014.12.001_bib0036) 1952; 237
Pino (10.1016/j.jtice.2014.12.001_bib0032) 2000; 10
Blennerhassett (10.1016/j.jtice.2014.12.001_bib0003) 1980; 298
Nagumo (10.1016/j.jtice.2014.12.001_bib0027) 1965; 12
Boglaev (10.1016/j.jtice.2014.12.001_bib0004) 2004; 162
Dancer (10.1016/j.jtice.2014.12.001_bib0009) 1998; 11
10.1016/j.jtice.2014.12.001_bib0011
10.1016/j.jtice.2014.12.001_bib0033
Cao (10.1016/j.jtice.2014.12.001_bib0007) 2000; 166
Fisher (10.1016/j.jtice.2014.12.001_bib0012) 1930
Hodgkin (10.1016/j.jtice.2014.12.001_bib0017) 1952; 117
Gui (10.1016/j.jtice.2014.12.001_bib0015) 1996; 84
10.1016/j.jtice.2014.12.001_bib0019
Maginu (10.1016/j.jtice.2014.12.001_bib0026) 1975; 27
Kumar (10.1016/j.jtice.2014.12.001_bib0021) 2013; 36
Verfurth (10.1016/j.jtice.2014.12.001_bib0037) 1998; 78
Li (10.1016/j.jtice.2014.12.001_bib0024) 1998; 23
Byeon (10.1016/j.jtice.2014.12.001_bib0006) 2005; 24
Ni (10.1016/j.jtice.2014.12.001_bib0028) 1993; 70
Li (10.1016/j.jtice.2014.12.001_bib0025) 1998; 35
Kumar (10.1016/j.jtice.2014.12.001_bib0022) 2012; 219
Clavero (10.1016/j.jtice.2014.12.001_bib0008) 2005; 74
Fisher (10.1016/j.jtice.2014.12.001_bib0013) 1937; 7
Pao (10.1016/j.jtice.2014.12.001_bib0030) 1992
Adams (10.1016/j.jtice.2014.12.001_bib0001) 1978
Jiaqi (10.1016/j.jtice.2014.12.001_bib0018) 2008; 29
10.1016/j.jtice.2014.12.001_bib0023
Kopteva (10.1016/j.jtice.2014.12.001_bib0020) 2004; 51
10.1016/j.jtice.2014.12.001_bib0005
Ni (10.1016/j.jtice.2014.12.001_bib0029) 1995; 48
Wei (10.1016/j.jtice.2014.12.001_bib0038) 1996; 129
Stewartson (10.1016/j.jtice.2014.12.001_bib0034) 1971; 48
Dancer (10.1016/j.jtice.2014.12.001_bib0010) 2009; 128
Sun (10.1016/j.jtice.2014.12.001_bib0035) 1996; 65
FitzHugh (10.1016/j.jtice.2014.12.001_bib0014) 1961; 1
Aronson (10.1016/j.jtice.2014.12.001_bib0002) 1975; 446
Gui (10.1016/j.jtice.2014.12.001_bib0016) 2000; 52
References_xml – volume: 12
  start-page: 400
  year: 1965
  end-page: 412
  ident: bib0027
  article-title: Bistable transmission lines
  publication-title: IEEE Trans Circuit Theory
– volume: 219
  start-page: 226
  year: 2012
  end-page: 236
  ident: bib0022
  article-title: Numerical solution of singularly perturbed non-Linear elliptic boundary value problems using finite element method
  publication-title: Appl Math Comput
– volume: 27
  start-page: 17
  year: 1975
  end-page: 98
  ident: bib0026
  article-title: Reaction-diffusion equation describing morphogenesis. I. Waveform stability of stationary solutions in a one dimensional model
  publication-title: Math Biosci
– reference: Shi J. Solution set of semilinear elliptic equations, global bifurcations and exact multiplicity. World Scientific Publishing; 2010.
– volume: 117
  start-page: 500
  year: 1952
  end-page: 544
  ident: bib0017
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: J Physiol
– volume: 51
  start-page: 273
  year: 2004
  end-page: 288
  ident: bib0020
  article-title: Numerical analysis of a singularly perturbed nonlinear reaction-diffusion problem with multiple solutions
  publication-title: Appl Numer Math
– volume: 48
  start-page: 529
  year: 1971
  end-page: 545
  ident: bib0034
  article-title: A non-linear instability theory for a wave system in plane Poiseuille flow
  publication-title: J Fluid Mech
– volume: 10
  start-page: 119
  year: 2000
  end-page: 134
  ident: bib0032
  article-title: Multiple peak solutions for singular perturbation problems
  publication-title: Calc Var Partial Dif
– volume: 298
  start-page: 451
  year: 1980
  end-page: 494
  ident: bib0003
  article-title: On the generation of waves by wind
  publication-title: Philos T Roy Soc A
– volume: 36
  start-page: 239
  year: 2013
  end-page: 252
  ident: bib0021
  article-title: Numerical simulation of a non-linear singular perturbed Schrodinger equation using finite element approximation
  publication-title: Natl Acad Sci Lett
– volume: 59
  start-page: 1
  year: 2000
  end-page: 38
  ident: bib0031
  article-title: Some physical models of the reaction-diffusion equation and coupled map lattices
  publication-title: Russ Math Surv
– reference: Logan JD. An introduction to nonlinear partial differential equations, second ed. Pure and applied mathematics: a Wiley interscience series of texts, monographs and tracts; 2008.
– year: 1930
  ident: bib0012
  article-title: The genetical theory of natural selection
– volume: 1
  start-page: 445
  year: 1961
  end-page: 466
  ident: bib0014
  article-title: Impulses and physiological models of nerve membrane
  publication-title: Biophys J
– volume: 65
  start-page: 1085
  year: 1996
  end-page: 1109
  ident: bib0035
  article-title: A uniformly convergent method for a singularly perturbed semilinear reaction-diffusion problem with multiple solutions
  publication-title: Math Comput
– volume: 78
  start-page: 479
  year: 1998
  end-page: 493
  ident: bib0037
  article-title: Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation
  publication-title: Numer Math
– volume: 52
  start-page: 522
  year: 2000
  end-page: 538
  ident: bib0016
  article-title: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems
  publication-title: Can J Math
– volume: 237
  start-page: 5
  year: 1952
  end-page: 72
  ident: bib0036
  article-title: The chemical basis of morphogenesis
  publication-title: Philos T Roy Soc B
– volume: 166
  start-page: 266
  year: 2000
  end-page: 289
  ident: bib0007
  article-title: Multi-peak solutions for a singularly perturbed semilinear elliptic problem
  publication-title: J Differ Equations
– reference: Kolmogorov AN, Petrovskii IG, Piskunov NS. A Study of the Diffusion Equation with Increase in the Amount of Substance, and its Application to a Biological Problem in Selected Works of A. N. Kolmogorov, Kluwer Academic Publishers; 1937; 1: 242-270 (Appeared in Bulletin of Moscow University, Math and Mech 1937; 1:6: 1-26).
– volume: 446
  start-page: 5
  year: 1975
  end-page: 49
  ident: bib0002
  article-title: Nonlinear diffusion in population genetics, combustion and nerve propagation
  publication-title: Lect Notes Math
– volume: 7
  start-page: 355
  year: 1937
  end-page: 369
  ident: bib0013
  article-title: The advance of advantageous genes
  publication-title: Ann Eugen
– reference: Epstein IR, Pojman JA. An introduction to nonlinear chemical dynamics. Oxford University Press; 1998.
– volume: 70
  start-page: 247
  year: 1993
  end-page: 281
  ident: bib0028
  article-title: Locating the peaks of least-energy solutions to a semilinear Neumann problem
  publication-title: Duke Math J
– volume: 84
  start-page: 739
  year: 1996
  end-page: 769
  ident: bib0015
  article-title: Multipeak solutions for a semilinear Neumann problem
  publication-title: Duke Math J
– volume: 129
  start-page: 315
  year: 1996
  end-page: 333
  ident: bib0038
  article-title: On the construction of single-peaked solutions to a singularly perturbed elliptic Dirichlet problem
  publication-title: J Differ Equations
– volume: 162
  start-page: 445
  year: 2004
  end-page: 466
  ident: bib0004
  article-title: On monotone iterative methods for a nonlinear singularly perturbed reaction-diffusion problem
  publication-title: J Comput Appl Math
– year: 1978
  ident: bib0001
  article-title: Sobolev spaces
– volume: 24
  start-page: 459
  year: 2005
  end-page: 477
  ident: bib0006
  article-title: Singularly perturbed nonlinear elliptic problems on manifolds
  publication-title: Calc Var Partial Dif
– volume: 23
  start-page: 487
  year: 1998
  end-page: 545
  ident: bib0024
  article-title: On a singularly perturbed equation with Neumann boundary conditions
  publication-title: Commun Part Diff Eq
– volume: 48
  start-page: 731
  year: 1995
  end-page: 768
  ident: bib0029
  article-title: On the location and profile of spike-layer solutions to singularity perturbed semilinear Dirichlet problems
  publication-title: Commun Pur Appl Math
– year: 1992
  ident: bib0030
  article-title: Nonlinear parabolic and elliptic equations
– volume: 11
  start-page: 227
  year: 1998
  end-page: 248
  ident: bib0009
  article-title: On the effect of domain topology in a singular perturbation problem
  publication-title: Topol Method Nonl An
– volume: 128
  start-page: 163
  year: 2009
  end-page: 193
  ident: bib0010
  article-title: Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds
  publication-title: Manuscripta Math
– reference: Brenner SC, Scott LR. The mathematical theory of finite element method. Springer-Verlag; 2002.
– volume: 35
  start-page: 57
  year: 1998
  end-page: 70
  ident: bib0025
  article-title: Uniformly convergent finite element method for singularly perturbed elliptic boundary value problems I: reaction-diffusion type
  publication-title: Comput Math Appl
– volume: 29
  start-page: 1105
  year: 2008
  end-page: 1110
  ident: bib0018
  article-title: Singular perturbation for the weakly nonlinear reaction-diffusion equation with boundary perturbation
  publication-title: Appl Math Mech-Engl
– volume: 74
  start-page: 1743
  year: 2005
  end-page: 1758
  ident: bib0008
  article-title: A parameter robust numerical method for a two dimensional reaction-diffusion problem
  publication-title: Math Comput
– volume: 78
  start-page: 479
  year: 1998
  ident: 10.1016/j.jtice.2014.12.001_bib0037
  article-title: Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation
  publication-title: Numer Math
  doi: 10.1007/s002110050322
– volume: 51
  start-page: 273
  year: 2004
  ident: 10.1016/j.jtice.2014.12.001_bib0020
  article-title: Numerical analysis of a singularly perturbed nonlinear reaction-diffusion problem with multiple solutions
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2004.07.001
– volume: 166
  start-page: 266
  year: 2000
  ident: 10.1016/j.jtice.2014.12.001_bib0007
  article-title: Multi-peak solutions for a singularly perturbed semilinear elliptic problem
  publication-title: J Differ Equations
  doi: 10.1006/jdeq.2000.3795
– ident: 10.1016/j.jtice.2014.12.001_bib0005
  doi: 10.1007/978-1-4757-3658-8
– ident: 10.1016/j.jtice.2014.12.001_bib0033
  doi: 10.1142/6640
– ident: 10.1016/j.jtice.2014.12.001_bib0011
  doi: 10.1093/oso/9780195096705.001.0001
– volume: 24
  start-page: 459
  year: 2005
  ident: 10.1016/j.jtice.2014.12.001_bib0006
  article-title: Singularly perturbed nonlinear elliptic problems on manifolds
  publication-title: Calc Var Partial Dif
  doi: 10.1007/s00526-005-0339-4
– year: 1978
  ident: 10.1016/j.jtice.2014.12.001_bib0001
– volume: 84
  start-page: 739
  year: 1996
  ident: 10.1016/j.jtice.2014.12.001_bib0015
  article-title: Multipeak solutions for a semilinear Neumann problem
  publication-title: Duke Math J
  doi: 10.1215/S0012-7094-96-08423-9
– volume: 162
  start-page: 445
  year: 2004
  ident: 10.1016/j.jtice.2014.12.001_bib0004
  article-title: On monotone iterative methods for a nonlinear singularly perturbed reaction-diffusion problem
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2003.08.035
– ident: 10.1016/j.jtice.2014.12.001_bib0023
  doi: 10.1002/9780470287095
– year: 1992
  ident: 10.1016/j.jtice.2014.12.001_bib0030
– volume: 48
  start-page: 529
  year: 1971
  ident: 10.1016/j.jtice.2014.12.001_bib0034
  article-title: A non-linear instability theory for a wave system in plane Poiseuille flow
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112071001733
– volume: 65
  start-page: 1085
  year: 1996
  ident: 10.1016/j.jtice.2014.12.001_bib0035
  article-title: A uniformly convergent method for a singularly perturbed semilinear reaction-diffusion problem with multiple solutions
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-96-00753-3
– year: 1930
  ident: 10.1016/j.jtice.2014.12.001_bib0012
– volume: 446
  start-page: 5
  year: 1975
  ident: 10.1016/j.jtice.2014.12.001_bib0002
  article-title: Nonlinear diffusion in population genetics, combustion and nerve propagation
  publication-title: Lect Notes Math
  doi: 10.1007/BFb0070595
– volume: 27
  start-page: 17
  year: 1975
  ident: 10.1016/j.jtice.2014.12.001_bib0026
  article-title: Reaction-diffusion equation describing morphogenesis. I. Waveform stability of stationary solutions in a one dimensional model
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(75)90026-7
– volume: 219
  start-page: 226
  year: 2012
  ident: 10.1016/j.jtice.2014.12.001_bib0022
  article-title: Numerical solution of singularly perturbed non-Linear elliptic boundary value problems using finite element method
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2012.06.011
– volume: 117
  start-page: 500
  year: 1952
  ident: 10.1016/j.jtice.2014.12.001_bib0017
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1952.sp004764
– volume: 298
  start-page: 451
  year: 1980
  ident: 10.1016/j.jtice.2014.12.001_bib0003
  article-title: On the generation of waves by wind
  publication-title: Philos T Roy Soc A
  doi: 10.1098/rsta.1980.0265
– volume: 74
  start-page: 1743
  year: 2005
  ident: 10.1016/j.jtice.2014.12.001_bib0008
  article-title: A parameter robust numerical method for a two dimensional reaction-diffusion problem
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-05-01762-X
– volume: 1
  start-page: 445
  year: 1961
  ident: 10.1016/j.jtice.2014.12.001_bib0014
  article-title: Impulses and physiological models of nerve membrane
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(61)86902-6
– volume: 10
  start-page: 119
  year: 2000
  ident: 10.1016/j.jtice.2014.12.001_bib0032
  article-title: Multiple peak solutions for singular perturbation problems
  publication-title: Calc Var Partial Dif
  doi: 10.1007/s005260050147
– volume: 59
  start-page: 1
  year: 2000
  ident: 10.1016/j.jtice.2014.12.001_bib0031
  article-title: Some physical models of the reaction-diffusion equation and coupled map lattices
  publication-title: Russ Math Surv
– volume: 7
  start-page: 355
  year: 1937
  ident: 10.1016/j.jtice.2014.12.001_bib0013
  article-title: The advance of advantageous genes
  publication-title: Ann Eugen
  doi: 10.1111/j.1469-1809.1937.tb02153.x
– ident: 10.1016/j.jtice.2014.12.001_bib0019
– volume: 129
  start-page: 315
  year: 1996
  ident: 10.1016/j.jtice.2014.12.001_bib0038
  article-title: On the construction of single-peaked solutions to a singularly perturbed elliptic Dirichlet problem
  publication-title: J Differ Equations
  doi: 10.1006/jdeq.1996.0120
– volume: 48
  start-page: 731
  year: 1995
  ident: 10.1016/j.jtice.2014.12.001_bib0029
  article-title: On the location and profile of spike-layer solutions to singularity perturbed semilinear Dirichlet problems
  publication-title: Commun Pur Appl Math
  doi: 10.1002/cpa.3160480704
– volume: 23
  start-page: 487
  year: 1998
  ident: 10.1016/j.jtice.2014.12.001_bib0024
  article-title: On a singularly perturbed equation with Neumann boundary conditions
  publication-title: Commun Part Diff Eq
  doi: 10.1080/03605309808821354
– volume: 35
  start-page: 57
  year: 1998
  ident: 10.1016/j.jtice.2014.12.001_bib0025
  article-title: Uniformly convergent finite element method for singularly perturbed elliptic boundary value problems I: reaction-diffusion type
  publication-title: Comput Math Appl
  doi: 10.1016/S0898-1221(97)00279-4
– volume: 36
  start-page: 239
  year: 2013
  ident: 10.1016/j.jtice.2014.12.001_bib0021
  article-title: Numerical simulation of a non-linear singular perturbed Schrodinger equation using finite element approximation
  publication-title: Natl Acad Sci Lett
  doi: 10.1007/s40009-013-0125-3
– volume: 237
  start-page: 5
  year: 1952
  ident: 10.1016/j.jtice.2014.12.001_bib0036
  article-title: The chemical basis of morphogenesis
  publication-title: Philos T Roy Soc B
  doi: 10.1098/rstb.1952.0012
– volume: 29
  start-page: 1105
  year: 2008
  ident: 10.1016/j.jtice.2014.12.001_bib0018
  article-title: Singular perturbation for the weakly nonlinear reaction-diffusion equation with boundary perturbation
  publication-title: Appl Math Mech-Engl
  doi: 10.1007/s10483-008-0814-x
– volume: 12
  start-page: 400
  year: 1965
  ident: 10.1016/j.jtice.2014.12.001_bib0027
  article-title: Bistable transmission lines
  publication-title: IEEE Trans Circuit Theory
  doi: 10.1109/TCT.1965.1082476
– volume: 128
  start-page: 163
  year: 2009
  ident: 10.1016/j.jtice.2014.12.001_bib0010
  article-title: Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds
  publication-title: Manuscripta Math
  doi: 10.1007/s00229-008-0225-4
– volume: 11
  start-page: 227
  year: 1998
  ident: 10.1016/j.jtice.2014.12.001_bib0009
  article-title: On the effect of domain topology in a singular perturbation problem
  publication-title: Topol Method Nonl An
– volume: 52
  start-page: 522
  year: 2000
  ident: 10.1016/j.jtice.2014.12.001_bib0016
  article-title: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems
  publication-title: Can J Math
  doi: 10.4153/CJM-2000-024-x
– volume: 70
  start-page: 247
  year: 1993
  ident: 10.1016/j.jtice.2014.12.001_bib0028
  article-title: Locating the peaks of least-energy solutions to a semilinear Neumann problem
  publication-title: Duke Math J
  doi: 10.1215/S0012-7094-93-07004-4
SSID ssj0000070225
Score 2.0138974
Snippet The present paper deals with a review of nonlinear reaction-diffusion models appearing in different branches of science and engineering. The multi-peak...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 56
SubjectTerms Finite element method
Newton's method
Non-linear elliptic boundary value problem
Reaction-diffusion equation
Singular perturbation
Title Multi-peak solutions of non-linear elliptic singularly perturbed reaction-diffusion equations using finite element simulation
URI https://dx.doi.org/10.1016/j.jtice.2014.12.001
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07SwNBEF5EC7UQnxhfbGHpmtxjHylDMESFNCqkO_Yp8XnGWFjob3dm704igoXlHbfDsjs3883wzQwhx8ohyJaBBWcVyx33DFBRykTwNnjBZahYviMxvMkvxny8QPpNLQzSKmvbX9n0aK3rN-36NNvlZNK-SuBHhuAFQ4RO1lVY8JvnErX89DP5zrNgP5s0zl7F7xkuaJoPRZrXHXLMkOKVx7RgPRzml4OaczqDdbJWo0Xaqza0QRb80yZZboqJXzfJ6lw_wS3yEctpWen1Pf3WKfocKMT4DPGknlJswAlmwlJMEiAH9eGdln4Knsd4RwFCxkIHhoNT3jCTRv1L1Q38lSJH_paGCcJUkBMTiyDmsZ4Atk1uBmfX_SGr5yswm6XZjCmrtOFaizyI1DieSOuNyKzJlE6M5kornRsVdApXqLWz2nPLZda1PggrXbZDFmH_fpdQgHkSkEbiO87kXoauF2nHSZDasRCi8RY5aQ61KKs2GkXDL7sr4h0UeAdFkiLLrkVEc_DFD20owND_tXDvvwv3yQo88YrKeEAWZ9M3fwhwY2aOoj4dkaXe-eVw9AXoVdml
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TgMxEB1BKIACcYpwuqDESvaw1ykRAiUcaSBSupVPFM4QQkHBvzOzRwRCoqDd1ViWj_Gb0Zs3AEfKEcjOAg_OKp464TmiopjL4G3wUmShZPn2ZXeQXgzFcA5O61oYolVWvr_06YW3rr60qtVsjUej1k2EFxmDFwoR2klHqXlYIHUq0YCFk95ltz9LtZCkTVy0XyUTTja1_lDB9LonmhmxvNIiM1j1h_n1Rn17d85XYaUCjOyknNMazPnndVis64nf1mH5m6TgBnwWFbV87PUDmx0r9hIYhvmcIKWeMNLgRE9hGeUJiIb6-MHGfoKPj_GOIYosah049U55p2Qa86-lIPgbI5r8HQsjQqo4TpFbxGGeqiZgmzA4P7s97fKqxQK3SZxMubJKG6G1TIOMjRNRZr2RiTWJ0pHRQmmlU6OCjnEXtXZWe2FFlnSsD9JmLtmCBs7fbwNDpJch2Ih825nUZ6HjZdx2GY7athiliSYc14uaj0sljbymmN3nxR7ktAd5FBPRrgmyXvj8x4HI0df_ZbjzX8NDWOzeXl_lV73-5S4s4R9RMhv3oDGdvPt9RB9Tc1Cdri9fztxW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-peak+solutions+of+non-linear+elliptic+singularly+perturbed+reaction-diffusion+equations+using+finite+element+simulation&rft.jtitle=Journal+of+the+Taiwan+Institute+of+Chemical+Engineers&rft.au=Singh%2C+Akhilesh+Kumar&rft.au=Kumar%2C+Manoj&rft.date=2015-05-01&rft.pub=Elsevier+B.V&rft.issn=1876-1070&rft.eissn=1876-1089&rft.volume=50&rft.spage=56&rft.epage=68&rft_id=info:doi/10.1016%2Fj.jtice.2014.12.001&rft.externalDocID=S1876107014003988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1876-1070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1876-1070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1876-1070&client=summon