Multi-peak solutions of non-linear elliptic singularly perturbed reaction-diffusion equations using finite element simulation
The present paper deals with a review of nonlinear reaction-diffusion models appearing in different branches of science and engineering. The multi-peak solutions of non-linear elliptic singularly perturbed reaction-diffusion equations do not appear to have been previously studied in detail, computat...
Saved in:
Published in | Journal of the Taiwan Institute of Chemical Engineers Vol. 50; pp. 56 - 68 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present paper deals with a review of nonlinear reaction-diffusion models appearing in different branches of science and engineering. The multi-peak solutions of non-linear elliptic singularly perturbed reaction-diffusion equations do not appear to have been previously studied in detail, computationally. The finite element method for the solution of non-linear elliptic singularly perturbed reaction-diffusion equations (subject to appropriate Dirichlet's boundary condition) is discussed, and a variant of Newton's method having fifth order of convergence is used to linearize the nonlinear system of equations. Examples of nonlinear elliptic singularly perturbed reaction-diffusion equation having non-linearity in homogeneous/non-homogeneous form are considered to show the existence of multi-peak solutions. |
---|---|
AbstractList | The present paper deals with a review of nonlinear reaction-diffusion models appearing in different branches of science and engineering. The multi-peak solutions of non-linear elliptic singularly perturbed reaction-diffusion equations do not appear to have been previously studied in detail, computationally. The finite element method for the solution of non-linear elliptic singularly perturbed reaction-diffusion equations (subject to appropriate Dirichlet's boundary condition) is discussed, and a variant of Newton's method having fifth order of convergence is used to linearize the nonlinear system of equations. Examples of nonlinear elliptic singularly perturbed reaction-diffusion equation having non-linearity in homogeneous/non-homogeneous form are considered to show the existence of multi-peak solutions. |
Author | Singh, Akhilesh Kumar Kumar, Manoj |
Author_xml | – sequence: 1 givenname: Akhilesh Kumar surname: Singh fullname: Singh, Akhilesh Kumar email: au.akhilesh@gmail.com, akhilesh.singh@jiit.ac.in organization: Department of Mathematics, Jaypee Institute of Information Technology (Deemed University), Sector-128, Noida 201 304, U.P., India – sequence: 2 givenname: Manoj surname: Kumar fullname: Kumar, Manoj email: manoj@mnnit.ac.in organization: Department of Mathematics, Motilal Nehru National Institute of Technology, Allahabad 211 004, U.P |
BookMark | eNp9kL9OwzAQhy1UJErpE7D4BRLspEncgQFV_JOKWGC2LvYZObhOsROkDrw7DkWM3HI33Pfd6XdOZr73SMglZzlnvL7q8m6wCvOC8VXOi5wxfkLmXDR1xplYz_7mhp2RZYwdm6phRVHNydfT6Aab7RHeaezdONjeR9obmo5kznqEQNE5u08naLT-bXQQ3IHuMQxjaFHTgKAmKtPWmDGmieLHCEfROCHUWG8HTB7coR-SZpcs08IFOTXgIi5_-4K83t2-bB6y7fP94-Zmm6myKIdMKAFtBVCvTF20uuKNwrYuVVsK4C1UAgSsWmGg0BUCaAVYqaop1wpNrRpdLkh59KrQxxjQyH2wOwgHyZmcQpSd_AlRTiFKXsgUYqKujxSm1z4tBhmVRa9Q24BqkLq3__LfMfuDhQ |
Cites_doi | 10.1007/s002110050322 10.1016/j.apnum.2004.07.001 10.1006/jdeq.2000.3795 10.1007/978-1-4757-3658-8 10.1142/6640 10.1093/oso/9780195096705.001.0001 10.1007/s00526-005-0339-4 10.1215/S0012-7094-96-08423-9 10.1016/j.cam.2003.08.035 10.1002/9780470287095 10.1017/S0022112071001733 10.1090/S0025-5718-96-00753-3 10.1007/BFb0070595 10.1016/0025-5564(75)90026-7 10.1016/j.amc.2012.06.011 10.1113/jphysiol.1952.sp004764 10.1098/rsta.1980.0265 10.1090/S0025-5718-05-01762-X 10.1016/S0006-3495(61)86902-6 10.1007/s005260050147 10.1111/j.1469-1809.1937.tb02153.x 10.1006/jdeq.1996.0120 10.1002/cpa.3160480704 10.1080/03605309808821354 10.1016/S0898-1221(97)00279-4 10.1007/s40009-013-0125-3 10.1098/rstb.1952.0012 10.1007/s10483-008-0814-x 10.1109/TCT.1965.1082476 10.1007/s00229-008-0225-4 10.4153/CJM-2000-024-x 10.1215/S0012-7094-93-07004-4 |
ContentType | Journal Article |
Copyright | 2014 Taiwan Institute of Chemical Engineers |
Copyright_xml | – notice: 2014 Taiwan Institute of Chemical Engineers |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jtice.2014.12.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1876-1089 |
EndPage | 68 |
ExternalDocumentID | 10_1016_j_jtice_2014_12_001 S1876107014003988 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 8RM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC DU5 EBS EFJIC EFLBG EJD ENUVR EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSG SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c323t-8c8ab5aa64f62bd517ceb63cb38a1ba58a8a4b8fa2d5eaadcae5c5739cef6c7d3 |
IEDL.DBID | .~1 |
ISSN | 1876-1070 |
IngestDate | Tue Jul 01 00:40:40 EDT 2025 Fri Feb 23 02:28:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element method Newton's method Reaction-diffusion equation Non-linear elliptic boundary value problem Singular perturbation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c323t-8c8ab5aa64f62bd517ceb63cb38a1ba58a8a4b8fa2d5eaadcae5c5739cef6c7d3 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_jtice_2014_12_001 elsevier_sciencedirect_doi_10_1016_j_jtice_2014_12_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of the Taiwan Institute of Chemical Engineers |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Boglaev (bib0004) 2004; 162 Ni, Takagi (bib0028) 1993; 70 Pesin, Yurchenko (bib0031) 2000; 59 Jiaqi (bib0018) 2008; 29 Kumar, Srivastava, Mishra (bib0021) 2013; 36 Sun, Stynes (bib0035) 1996; 65 Stewartson, Stuart (bib0034) 1971; 48 Ni, Wei (bib0029) 1995; 48 Adams (bib0001) 1978 Maginu (bib0026) 1975; 27 Epstein IR, Pojman JA. An introduction to nonlinear chemical dynamics. Oxford University Press; 1998. Turing (bib0036) 1952; 237 Hodgkin, Huxley (bib0017) 1952; 117 Li, Navon (bib0025) 1998; 35 Wei (bib0038) 1996; 129 Blennerhassett (bib0003) 1980; 298 Dancer, Micheletti, Pistoia (bib0010) 2009; 128 Kolmogorov AN, Petrovskii IG, Piskunov NS. A Study of the Diffusion Equation with Increase in the Amount of Substance, and its Application to a Biological Problem in Selected Works of A. N. Kolmogorov, Kluwer Academic Publishers; 1937; 1: 242-270 (Appeared in Bulletin of Moscow University, Math and Mech 1937; 1:6: 1-26). Gui (bib0015) 1996; 84 Kumar, Srivastava, Singh (bib0022) 2012; 219 Pao (bib0030) 1992 Cao, Noussair (bib0007) 2000; 166 Verfurth (bib0037) 1998; 78 Brenner SC, Scott LR. The mathematical theory of finite element method. Springer-Verlag; 2002. Fisher (bib0013) 1937; 7 Nagumo, Arimoto, Yoshizawa (bib0027) 1965; 12 Pino, Felmer, Wei (bib0032) 2000; 10 Clavero, Gracia, O'Riordan (bib0008) 2005; 74 Kopteva, Stynes (bib0020) 2004; 51 Dancer, Wei (bib0009) 1998; 11 FitzHugh (bib0014) 1961; 1 Byeon, Park (bib0006) 2005; 24 Gui, Wei (bib0016) 2000; 52 Fisher (bib0012) 1930 Li (bib0024) 1998; 23 Aronson, Weinberger (bib0002) 1975; 446 Logan JD. An introduction to nonlinear partial differential equations, second ed. Pure and applied mathematics: a Wiley interscience series of texts, monographs and tracts; 2008. Shi J. Solution set of semilinear elliptic equations, global bifurcations and exact multiplicity. World Scientific Publishing; 2010. Pesin (10.1016/j.jtice.2014.12.001_bib0031) 2000; 59 Turing (10.1016/j.jtice.2014.12.001_bib0036) 1952; 237 Pino (10.1016/j.jtice.2014.12.001_bib0032) 2000; 10 Blennerhassett (10.1016/j.jtice.2014.12.001_bib0003) 1980; 298 Nagumo (10.1016/j.jtice.2014.12.001_bib0027) 1965; 12 Boglaev (10.1016/j.jtice.2014.12.001_bib0004) 2004; 162 Dancer (10.1016/j.jtice.2014.12.001_bib0009) 1998; 11 10.1016/j.jtice.2014.12.001_bib0011 10.1016/j.jtice.2014.12.001_bib0033 Cao (10.1016/j.jtice.2014.12.001_bib0007) 2000; 166 Fisher (10.1016/j.jtice.2014.12.001_bib0012) 1930 Hodgkin (10.1016/j.jtice.2014.12.001_bib0017) 1952; 117 Gui (10.1016/j.jtice.2014.12.001_bib0015) 1996; 84 10.1016/j.jtice.2014.12.001_bib0019 Maginu (10.1016/j.jtice.2014.12.001_bib0026) 1975; 27 Kumar (10.1016/j.jtice.2014.12.001_bib0021) 2013; 36 Verfurth (10.1016/j.jtice.2014.12.001_bib0037) 1998; 78 Li (10.1016/j.jtice.2014.12.001_bib0024) 1998; 23 Byeon (10.1016/j.jtice.2014.12.001_bib0006) 2005; 24 Ni (10.1016/j.jtice.2014.12.001_bib0028) 1993; 70 Li (10.1016/j.jtice.2014.12.001_bib0025) 1998; 35 Kumar (10.1016/j.jtice.2014.12.001_bib0022) 2012; 219 Clavero (10.1016/j.jtice.2014.12.001_bib0008) 2005; 74 Fisher (10.1016/j.jtice.2014.12.001_bib0013) 1937; 7 Pao (10.1016/j.jtice.2014.12.001_bib0030) 1992 Adams (10.1016/j.jtice.2014.12.001_bib0001) 1978 Jiaqi (10.1016/j.jtice.2014.12.001_bib0018) 2008; 29 10.1016/j.jtice.2014.12.001_bib0023 Kopteva (10.1016/j.jtice.2014.12.001_bib0020) 2004; 51 10.1016/j.jtice.2014.12.001_bib0005 Ni (10.1016/j.jtice.2014.12.001_bib0029) 1995; 48 Wei (10.1016/j.jtice.2014.12.001_bib0038) 1996; 129 Stewartson (10.1016/j.jtice.2014.12.001_bib0034) 1971; 48 Dancer (10.1016/j.jtice.2014.12.001_bib0010) 2009; 128 Sun (10.1016/j.jtice.2014.12.001_bib0035) 1996; 65 FitzHugh (10.1016/j.jtice.2014.12.001_bib0014) 1961; 1 Aronson (10.1016/j.jtice.2014.12.001_bib0002) 1975; 446 Gui (10.1016/j.jtice.2014.12.001_bib0016) 2000; 52 |
References_xml | – volume: 12 start-page: 400 year: 1965 end-page: 412 ident: bib0027 article-title: Bistable transmission lines publication-title: IEEE Trans Circuit Theory – volume: 219 start-page: 226 year: 2012 end-page: 236 ident: bib0022 article-title: Numerical solution of singularly perturbed non-Linear elliptic boundary value problems using finite element method publication-title: Appl Math Comput – volume: 27 start-page: 17 year: 1975 end-page: 98 ident: bib0026 article-title: Reaction-diffusion equation describing morphogenesis. I. Waveform stability of stationary solutions in a one dimensional model publication-title: Math Biosci – reference: Shi J. Solution set of semilinear elliptic equations, global bifurcations and exact multiplicity. World Scientific Publishing; 2010. – volume: 117 start-page: 500 year: 1952 end-page: 544 ident: bib0017 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: J Physiol – volume: 51 start-page: 273 year: 2004 end-page: 288 ident: bib0020 article-title: Numerical analysis of a singularly perturbed nonlinear reaction-diffusion problem with multiple solutions publication-title: Appl Numer Math – volume: 48 start-page: 529 year: 1971 end-page: 545 ident: bib0034 article-title: A non-linear instability theory for a wave system in plane Poiseuille flow publication-title: J Fluid Mech – volume: 10 start-page: 119 year: 2000 end-page: 134 ident: bib0032 article-title: Multiple peak solutions for singular perturbation problems publication-title: Calc Var Partial Dif – volume: 298 start-page: 451 year: 1980 end-page: 494 ident: bib0003 article-title: On the generation of waves by wind publication-title: Philos T Roy Soc A – volume: 36 start-page: 239 year: 2013 end-page: 252 ident: bib0021 article-title: Numerical simulation of a non-linear singular perturbed Schrodinger equation using finite element approximation publication-title: Natl Acad Sci Lett – volume: 59 start-page: 1 year: 2000 end-page: 38 ident: bib0031 article-title: Some physical models of the reaction-diffusion equation and coupled map lattices publication-title: Russ Math Surv – reference: Logan JD. An introduction to nonlinear partial differential equations, second ed. Pure and applied mathematics: a Wiley interscience series of texts, monographs and tracts; 2008. – year: 1930 ident: bib0012 article-title: The genetical theory of natural selection – volume: 1 start-page: 445 year: 1961 end-page: 466 ident: bib0014 article-title: Impulses and physiological models of nerve membrane publication-title: Biophys J – volume: 65 start-page: 1085 year: 1996 end-page: 1109 ident: bib0035 article-title: A uniformly convergent method for a singularly perturbed semilinear reaction-diffusion problem with multiple solutions publication-title: Math Comput – volume: 78 start-page: 479 year: 1998 end-page: 493 ident: bib0037 article-title: Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation publication-title: Numer Math – volume: 52 start-page: 522 year: 2000 end-page: 538 ident: bib0016 article-title: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems publication-title: Can J Math – volume: 237 start-page: 5 year: 1952 end-page: 72 ident: bib0036 article-title: The chemical basis of morphogenesis publication-title: Philos T Roy Soc B – volume: 166 start-page: 266 year: 2000 end-page: 289 ident: bib0007 article-title: Multi-peak solutions for a singularly perturbed semilinear elliptic problem publication-title: J Differ Equations – reference: Kolmogorov AN, Petrovskii IG, Piskunov NS. A Study of the Diffusion Equation with Increase in the Amount of Substance, and its Application to a Biological Problem in Selected Works of A. N. Kolmogorov, Kluwer Academic Publishers; 1937; 1: 242-270 (Appeared in Bulletin of Moscow University, Math and Mech 1937; 1:6: 1-26). – volume: 446 start-page: 5 year: 1975 end-page: 49 ident: bib0002 article-title: Nonlinear diffusion in population genetics, combustion and nerve propagation publication-title: Lect Notes Math – volume: 7 start-page: 355 year: 1937 end-page: 369 ident: bib0013 article-title: The advance of advantageous genes publication-title: Ann Eugen – reference: Epstein IR, Pojman JA. An introduction to nonlinear chemical dynamics. Oxford University Press; 1998. – volume: 70 start-page: 247 year: 1993 end-page: 281 ident: bib0028 article-title: Locating the peaks of least-energy solutions to a semilinear Neumann problem publication-title: Duke Math J – volume: 84 start-page: 739 year: 1996 end-page: 769 ident: bib0015 article-title: Multipeak solutions for a semilinear Neumann problem publication-title: Duke Math J – volume: 129 start-page: 315 year: 1996 end-page: 333 ident: bib0038 article-title: On the construction of single-peaked solutions to a singularly perturbed elliptic Dirichlet problem publication-title: J Differ Equations – volume: 162 start-page: 445 year: 2004 end-page: 466 ident: bib0004 article-title: On monotone iterative methods for a nonlinear singularly perturbed reaction-diffusion problem publication-title: J Comput Appl Math – year: 1978 ident: bib0001 article-title: Sobolev spaces – volume: 24 start-page: 459 year: 2005 end-page: 477 ident: bib0006 article-title: Singularly perturbed nonlinear elliptic problems on manifolds publication-title: Calc Var Partial Dif – volume: 23 start-page: 487 year: 1998 end-page: 545 ident: bib0024 article-title: On a singularly perturbed equation with Neumann boundary conditions publication-title: Commun Part Diff Eq – volume: 48 start-page: 731 year: 1995 end-page: 768 ident: bib0029 article-title: On the location and profile of spike-layer solutions to singularity perturbed semilinear Dirichlet problems publication-title: Commun Pur Appl Math – year: 1992 ident: bib0030 article-title: Nonlinear parabolic and elliptic equations – volume: 11 start-page: 227 year: 1998 end-page: 248 ident: bib0009 article-title: On the effect of domain topology in a singular perturbation problem publication-title: Topol Method Nonl An – volume: 128 start-page: 163 year: 2009 end-page: 193 ident: bib0010 article-title: Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds publication-title: Manuscripta Math – reference: Brenner SC, Scott LR. The mathematical theory of finite element method. Springer-Verlag; 2002. – volume: 35 start-page: 57 year: 1998 end-page: 70 ident: bib0025 article-title: Uniformly convergent finite element method for singularly perturbed elliptic boundary value problems I: reaction-diffusion type publication-title: Comput Math Appl – volume: 29 start-page: 1105 year: 2008 end-page: 1110 ident: bib0018 article-title: Singular perturbation for the weakly nonlinear reaction-diffusion equation with boundary perturbation publication-title: Appl Math Mech-Engl – volume: 74 start-page: 1743 year: 2005 end-page: 1758 ident: bib0008 article-title: A parameter robust numerical method for a two dimensional reaction-diffusion problem publication-title: Math Comput – volume: 78 start-page: 479 year: 1998 ident: 10.1016/j.jtice.2014.12.001_bib0037 article-title: Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation publication-title: Numer Math doi: 10.1007/s002110050322 – volume: 51 start-page: 273 year: 2004 ident: 10.1016/j.jtice.2014.12.001_bib0020 article-title: Numerical analysis of a singularly perturbed nonlinear reaction-diffusion problem with multiple solutions publication-title: Appl Numer Math doi: 10.1016/j.apnum.2004.07.001 – volume: 166 start-page: 266 year: 2000 ident: 10.1016/j.jtice.2014.12.001_bib0007 article-title: Multi-peak solutions for a singularly perturbed semilinear elliptic problem publication-title: J Differ Equations doi: 10.1006/jdeq.2000.3795 – ident: 10.1016/j.jtice.2014.12.001_bib0005 doi: 10.1007/978-1-4757-3658-8 – ident: 10.1016/j.jtice.2014.12.001_bib0033 doi: 10.1142/6640 – ident: 10.1016/j.jtice.2014.12.001_bib0011 doi: 10.1093/oso/9780195096705.001.0001 – volume: 24 start-page: 459 year: 2005 ident: 10.1016/j.jtice.2014.12.001_bib0006 article-title: Singularly perturbed nonlinear elliptic problems on manifolds publication-title: Calc Var Partial Dif doi: 10.1007/s00526-005-0339-4 – year: 1978 ident: 10.1016/j.jtice.2014.12.001_bib0001 – volume: 84 start-page: 739 year: 1996 ident: 10.1016/j.jtice.2014.12.001_bib0015 article-title: Multipeak solutions for a semilinear Neumann problem publication-title: Duke Math J doi: 10.1215/S0012-7094-96-08423-9 – volume: 162 start-page: 445 year: 2004 ident: 10.1016/j.jtice.2014.12.001_bib0004 article-title: On monotone iterative methods for a nonlinear singularly perturbed reaction-diffusion problem publication-title: J Comput Appl Math doi: 10.1016/j.cam.2003.08.035 – ident: 10.1016/j.jtice.2014.12.001_bib0023 doi: 10.1002/9780470287095 – year: 1992 ident: 10.1016/j.jtice.2014.12.001_bib0030 – volume: 48 start-page: 529 year: 1971 ident: 10.1016/j.jtice.2014.12.001_bib0034 article-title: A non-linear instability theory for a wave system in plane Poiseuille flow publication-title: J Fluid Mech doi: 10.1017/S0022112071001733 – volume: 65 start-page: 1085 year: 1996 ident: 10.1016/j.jtice.2014.12.001_bib0035 article-title: A uniformly convergent method for a singularly perturbed semilinear reaction-diffusion problem with multiple solutions publication-title: Math Comput doi: 10.1090/S0025-5718-96-00753-3 – year: 1930 ident: 10.1016/j.jtice.2014.12.001_bib0012 – volume: 446 start-page: 5 year: 1975 ident: 10.1016/j.jtice.2014.12.001_bib0002 article-title: Nonlinear diffusion in population genetics, combustion and nerve propagation publication-title: Lect Notes Math doi: 10.1007/BFb0070595 – volume: 27 start-page: 17 year: 1975 ident: 10.1016/j.jtice.2014.12.001_bib0026 article-title: Reaction-diffusion equation describing morphogenesis. I. Waveform stability of stationary solutions in a one dimensional model publication-title: Math Biosci doi: 10.1016/0025-5564(75)90026-7 – volume: 219 start-page: 226 year: 2012 ident: 10.1016/j.jtice.2014.12.001_bib0022 article-title: Numerical solution of singularly perturbed non-Linear elliptic boundary value problems using finite element method publication-title: Appl Math Comput doi: 10.1016/j.amc.2012.06.011 – volume: 117 start-page: 500 year: 1952 ident: 10.1016/j.jtice.2014.12.001_bib0017 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: J Physiol doi: 10.1113/jphysiol.1952.sp004764 – volume: 298 start-page: 451 year: 1980 ident: 10.1016/j.jtice.2014.12.001_bib0003 article-title: On the generation of waves by wind publication-title: Philos T Roy Soc A doi: 10.1098/rsta.1980.0265 – volume: 74 start-page: 1743 year: 2005 ident: 10.1016/j.jtice.2014.12.001_bib0008 article-title: A parameter robust numerical method for a two dimensional reaction-diffusion problem publication-title: Math Comput doi: 10.1090/S0025-5718-05-01762-X – volume: 1 start-page: 445 year: 1961 ident: 10.1016/j.jtice.2014.12.001_bib0014 article-title: Impulses and physiological models of nerve membrane publication-title: Biophys J doi: 10.1016/S0006-3495(61)86902-6 – volume: 10 start-page: 119 year: 2000 ident: 10.1016/j.jtice.2014.12.001_bib0032 article-title: Multiple peak solutions for singular perturbation problems publication-title: Calc Var Partial Dif doi: 10.1007/s005260050147 – volume: 59 start-page: 1 year: 2000 ident: 10.1016/j.jtice.2014.12.001_bib0031 article-title: Some physical models of the reaction-diffusion equation and coupled map lattices publication-title: Russ Math Surv – volume: 7 start-page: 355 year: 1937 ident: 10.1016/j.jtice.2014.12.001_bib0013 article-title: The advance of advantageous genes publication-title: Ann Eugen doi: 10.1111/j.1469-1809.1937.tb02153.x – ident: 10.1016/j.jtice.2014.12.001_bib0019 – volume: 129 start-page: 315 year: 1996 ident: 10.1016/j.jtice.2014.12.001_bib0038 article-title: On the construction of single-peaked solutions to a singularly perturbed elliptic Dirichlet problem publication-title: J Differ Equations doi: 10.1006/jdeq.1996.0120 – volume: 48 start-page: 731 year: 1995 ident: 10.1016/j.jtice.2014.12.001_bib0029 article-title: On the location and profile of spike-layer solutions to singularity perturbed semilinear Dirichlet problems publication-title: Commun Pur Appl Math doi: 10.1002/cpa.3160480704 – volume: 23 start-page: 487 year: 1998 ident: 10.1016/j.jtice.2014.12.001_bib0024 article-title: On a singularly perturbed equation with Neumann boundary conditions publication-title: Commun Part Diff Eq doi: 10.1080/03605309808821354 – volume: 35 start-page: 57 year: 1998 ident: 10.1016/j.jtice.2014.12.001_bib0025 article-title: Uniformly convergent finite element method for singularly perturbed elliptic boundary value problems I: reaction-diffusion type publication-title: Comput Math Appl doi: 10.1016/S0898-1221(97)00279-4 – volume: 36 start-page: 239 year: 2013 ident: 10.1016/j.jtice.2014.12.001_bib0021 article-title: Numerical simulation of a non-linear singular perturbed Schrodinger equation using finite element approximation publication-title: Natl Acad Sci Lett doi: 10.1007/s40009-013-0125-3 – volume: 237 start-page: 5 year: 1952 ident: 10.1016/j.jtice.2014.12.001_bib0036 article-title: The chemical basis of morphogenesis publication-title: Philos T Roy Soc B doi: 10.1098/rstb.1952.0012 – volume: 29 start-page: 1105 year: 2008 ident: 10.1016/j.jtice.2014.12.001_bib0018 article-title: Singular perturbation for the weakly nonlinear reaction-diffusion equation with boundary perturbation publication-title: Appl Math Mech-Engl doi: 10.1007/s10483-008-0814-x – volume: 12 start-page: 400 year: 1965 ident: 10.1016/j.jtice.2014.12.001_bib0027 article-title: Bistable transmission lines publication-title: IEEE Trans Circuit Theory doi: 10.1109/TCT.1965.1082476 – volume: 128 start-page: 163 year: 2009 ident: 10.1016/j.jtice.2014.12.001_bib0010 article-title: Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds publication-title: Manuscripta Math doi: 10.1007/s00229-008-0225-4 – volume: 11 start-page: 227 year: 1998 ident: 10.1016/j.jtice.2014.12.001_bib0009 article-title: On the effect of domain topology in a singular perturbation problem publication-title: Topol Method Nonl An – volume: 52 start-page: 522 year: 2000 ident: 10.1016/j.jtice.2014.12.001_bib0016 article-title: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems publication-title: Can J Math doi: 10.4153/CJM-2000-024-x – volume: 70 start-page: 247 year: 1993 ident: 10.1016/j.jtice.2014.12.001_bib0028 article-title: Locating the peaks of least-energy solutions to a semilinear Neumann problem publication-title: Duke Math J doi: 10.1215/S0012-7094-93-07004-4 |
SSID | ssj0000070225 |
Score | 2.0138974 |
Snippet | The present paper deals with a review of nonlinear reaction-diffusion models appearing in different branches of science and engineering. The multi-peak... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 56 |
SubjectTerms | Finite element method Newton's method Non-linear elliptic boundary value problem Reaction-diffusion equation Singular perturbation |
Title | Multi-peak solutions of non-linear elliptic singularly perturbed reaction-diffusion equations using finite element simulation |
URI | https://dx.doi.org/10.1016/j.jtice.2014.12.001 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07SwNBEF5EC7UQnxhfbGHpmtxjHylDMESFNCqkO_Yp8XnGWFjob3dm704igoXlHbfDsjs3883wzQwhx8ohyJaBBWcVyx33DFBRykTwNnjBZahYviMxvMkvxny8QPpNLQzSKmvbX9n0aK3rN-36NNvlZNK-SuBHhuAFQ4RO1lVY8JvnErX89DP5zrNgP5s0zl7F7xkuaJoPRZrXHXLMkOKVx7RgPRzml4OaczqDdbJWo0Xaqza0QRb80yZZboqJXzfJ6lw_wS3yEctpWen1Pf3WKfocKMT4DPGknlJswAlmwlJMEiAH9eGdln4Knsd4RwFCxkIHhoNT3jCTRv1L1Q38lSJH_paGCcJUkBMTiyDmsZ4Atk1uBmfX_SGr5yswm6XZjCmrtOFaizyI1DieSOuNyKzJlE6M5kornRsVdApXqLWz2nPLZda1PggrXbZDFmH_fpdQgHkSkEbiO87kXoauF2nHSZDasRCi8RY5aQ61KKs2GkXDL7sr4h0UeAdFkiLLrkVEc_DFD20owND_tXDvvwv3yQo88YrKeEAWZ9M3fwhwY2aOoj4dkaXe-eVw9AXoVdml |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TgMxEB1BKIACcYpwuqDESvaw1ykRAiUcaSBSupVPFM4QQkHBvzOzRwRCoqDd1ViWj_Gb0Zs3AEfKEcjOAg_OKp464TmiopjL4G3wUmShZPn2ZXeQXgzFcA5O61oYolVWvr_06YW3rr60qtVsjUej1k2EFxmDFwoR2klHqXlYIHUq0YCFk95ltz9LtZCkTVy0XyUTTja1_lDB9LonmhmxvNIiM1j1h_n1Rn17d85XYaUCjOyknNMazPnndVis64nf1mH5m6TgBnwWFbV87PUDmx0r9hIYhvmcIKWeMNLgRE9hGeUJiIb6-MHGfoKPj_GOIYosah049U55p2Qa86-lIPgbI5r8HQsjQqo4TpFbxGGeqiZgmzA4P7s97fKqxQK3SZxMubJKG6G1TIOMjRNRZr2RiTWJ0pHRQmmlU6OCjnEXtXZWe2FFlnSsD9JmLtmCBs7fbwNDpJch2Ih825nUZ6HjZdx2GY7athiliSYc14uaj0sljbymmN3nxR7ktAd5FBPRrgmyXvj8x4HI0df_ZbjzX8NDWOzeXl_lV73-5S4s4R9RMhv3oDGdvPt9RB9Tc1Cdri9fztxW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-peak+solutions+of+non-linear+elliptic+singularly+perturbed+reaction-diffusion+equations+using+finite+element+simulation&rft.jtitle=Journal+of+the+Taiwan+Institute+of+Chemical+Engineers&rft.au=Singh%2C+Akhilesh+Kumar&rft.au=Kumar%2C+Manoj&rft.date=2015-05-01&rft.pub=Elsevier+B.V&rft.issn=1876-1070&rft.eissn=1876-1089&rft.volume=50&rft.spage=56&rft.epage=68&rft_id=info:doi/10.1016%2Fj.jtice.2014.12.001&rft.externalDocID=S1876107014003988 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1876-1070&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1876-1070&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1876-1070&client=summon |