Robust and Sustainable Indium Anode Leading to Efficient and Stable Organic Solar Cells
The fast degradation of the charge‐extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long‐term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non‐sustainable indium to construct efficient and stable OSCs and scale‐up modu...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 39; p. e2303729 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fast degradation of the charge‐extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long‐term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non‐sustainable indium to construct efficient and stable OSCs and scale‐up modules is developed. It is revealed that the recovered indium chloride (InCl
3
) from indium oxide waste can be applied as an effective hole‐selective interfacial layer for the ITO electrode (noted as InCl
3
–ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl
3
–ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm
2
), respectively. More importantly, the InCl
3
–ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T
80
lifetime of ≈10 000 h. |
---|---|
AbstractList | The fast degradation of the charge-extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long-term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non-sustainable indium to construct efficient and stable OSCs and scale-up modules is developed. It is revealed that the recovered indium chloride (InCl
) from indium oxide waste can be applied as an effective hole-selective interfacial layer for the ITO electrode (noted as InCl
-ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl
-ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm
), respectively. More importantly, the InCl
-ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T
lifetime of ≈10 000 h. The fast degradation of the charge‐extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long‐term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non‐sustainable indium to construct efficient and stable OSCs and scale‐up modules is developed. It is revealed that the recovered indium chloride (InCl 3 ) from indium oxide waste can be applied as an effective hole‐selective interfacial layer for the ITO electrode (noted as InCl 3 –ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl 3 –ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm 2 ), respectively. More importantly, the InCl 3 –ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T 80 lifetime of ≈10 000 h. The fast degradation of the charge-extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long-term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non-sustainable indium to construct efficient and stable OSCs and scale-up modules is developed. It is revealed that the recovered indium chloride (InCl3 ) from indium oxide waste can be applied as an effective hole-selective interfacial layer for the ITO electrode (noted as InCl3 -ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl3 -ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm2 ), respectively. More importantly, the InCl3 -ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T80 lifetime of ≈10 000 h.The fast degradation of the charge-extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long-term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non-sustainable indium to construct efficient and stable OSCs and scale-up modules is developed. It is revealed that the recovered indium chloride (InCl3 ) from indium oxide waste can be applied as an effective hole-selective interfacial layer for the ITO electrode (noted as InCl3 -ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl3 -ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm2 ), respectively. More importantly, the InCl3 -ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T80 lifetime of ≈10 000 h. The fast degradation of the charge‐extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long‐term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non‐sustainable indium to construct efficient and stable OSCs and scale‐up modules is developed. It is revealed that the recovered indium chloride (InCl3) from indium oxide waste can be applied as an effective hole‐selective interfacial layer for the ITO electrode (noted as InCl3–ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl3–ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm2), respectively. More importantly, the InCl3–ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T80 lifetime of ≈10 000 h. |
Author | Xiang, Jiale Chen, Hongzheng Li, Chang‐Zhi Liu, Zhi‐Xi |
Author_xml | – sequence: 1 givenname: Jiale surname: Xiang fullname: Xiang, Jiale organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P. R. China – sequence: 2 givenname: Zhi‐Xi orcidid: 0000-0002-6742-2465 surname: Liu fullname: Liu, Zhi‐Xi organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P. R. China – sequence: 3 givenname: Hongzheng surname: Chen fullname: Chen, Hongzheng organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P. R. China – sequence: 4 givenname: Chang‐Zhi orcidid: 0000-0003-1968-2032 surname: Li fullname: Li, Chang‐Zhi organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37452690$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LHTEUxUNR6tN222UJdNPNvOY7k6U8bCs8EKriMtxJMhKZSWwys_C_b6zPLoSu7ln8zuFwzyk6SjkFhD5RsqWEsG_gZ9gywjjhmpl3aEMlo50gRh6hDTFcdkaJ_gSd1vpACDGKqPfohGshmTJkg-5-5WGtC4bk8XUTEBMMU8CXycd1xucp-4D3AXxM93jJ-GIco4shHRzLX_iq3EOKDl_nCQrehWmqH9DxCFMNHw_3DN1-v7jZ_ez2Vz8ud-f7znHGl64fAvREM08GKvTAndeMaAeCEyebhpFT6JXUsndcjIp6OQYthBoGrj3r-Rn6-pL7WPLvNdTFzrG61gBSyGu1DemZMIaKhn55gz7ktaTWrlHKtMdJoRr1-UCtwxy8fSxxhvJkX1_WAPECuJJrLWG0Li6wxJyWAnGylNjnZezzMvbfMs22fWN7Tf6P4Q9gWI2w |
CitedBy_id | crossref_primary_10_1021_acsami_4c12238 crossref_primary_10_1021_acsami_4c14315 crossref_primary_10_1007_s11426_024_2272_3 crossref_primary_10_1039_D4EE03394A crossref_primary_10_1002_anie_202416866 crossref_primary_10_1002_ange_202416866 crossref_primary_10_1002_smll_202410917 crossref_primary_10_1016_j_xcrp_2024_101883 crossref_primary_10_1039_D4TC02217C crossref_primary_10_1002_adma_202420308 |
Cites_doi | 10.1002/adma.202208997 10.1039/D2EE03246E 10.1002/adma.202212236 10.1021/acs.jpclett.9b03184 10.1038/s41560-021-00820-x 10.1016/j.cej.2022.139312 10.2320/matertrans.M2011106 10.1007/s10118-022-2750-0 10.1021/acsapm.0c00791 10.1002/adma.202110569 10.1016/j.synthmet.2012.10.021 10.1039/c2gc36241d 10.1038/s41560-022-00997-9 10.1038/am.2013.33 10.1002/advs.201903259 10.1002/aenm.201900887 10.1039/D0EE02503H 10.1002/adma.201908205 10.1016/j.jechem.2022.03.030 10.1002/aenm.202103892 10.1063/1.1469220 10.1016/j.joule.2019.01.004 10.1016/j.cclet.2022.06.015 10.1038/s41467-021-23389-1 10.1002/adfm.202205398 10.1021/jacs.0c07439 10.1038/s41586-019-1544-1 10.1126/science.1202992 10.1002/adma.202102420 10.1002/admt.202101487 10.1021/acsenergylett.0c01554 10.1002/inf2.12370 10.1039/D2EE03966D 10.1016/j.resconrec.2015.07.015 10.1002/adfm.202106846 10.1002/aenm.202200361 10.1002/adfm.202107827 10.1002/adma.202300400 10.1038/s41566-018-0104-9 10.1038/s41563-022-01244-y 10.1093/nsr/nwz200 10.1007/s12274‐023‐5425‐9 10.1002/aenm.202201076 10.1038/s41560-020-00732-2 10.1016/j.orgel.2008.10.008 10.1016/j.resenv.2021.100018 10.1039/C4EE03824J 10.1021/am3011324 10.1063/1.4946774 10.1002/inf2.12276 10.1039/D2EE00977C 10.1039/C8QO00788H 10.1002/anie.202214931 10.1038/s41560-022-01155-x 10.1016/j.joule.2021.09.001 10.1016/j.joule.2021.03.014 |
ContentType | Journal Article |
Copyright | 2023 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202303729 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
ExternalDocumentID | 37452690 10_1002_adma_202303729 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2019YFA0705900 – fundername: Postdoctoral Science Foundation Funded Project of Zhejiang Province grantid: zj2022019 – fundername: Fundamental Research Funds for the Central Universities grantid: 226-2023-00113 – fundername: National Natural Science Foundation of China grantid: 22125901 – fundername: China Postdoctoral Science Foundation grantid: 2022M722725 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT AEUQT AFPWT NPM RWI RWM WRC 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c323t-8bea8072d0b147b3cd7207ca430c5d72af31a865758c34f61d5fe7446bb37d283 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 05:08:04 EDT 2025 Mon Jul 14 07:40:33 EDT 2025 Wed Feb 19 02:23:01 EST 2025 Tue Jul 01 02:33:38 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Keywords | organic solar cells anode interfacial layers high stability indium recovery modules |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c323t-8bea8072d0b147b3cd7207ca430c5d72af31a865758c34f61d5fe7446bb37d283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6742-2465 0000-0003-1968-2032 |
PMID | 37452690 |
PQID | 2869152546 |
PQPubID | 2045203 |
ParticipantIDs | proquest_miscellaneous_2838249914 proquest_journals_2869152546 pubmed_primary_37452690 crossref_citationtrail_10_1002_adma_202303729 crossref_primary_10_1002_adma_202303729 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_3_1 doi: 10.1002/adma.202208997 – ident: e_1_2_8_10_1 doi: 10.1039/D2EE03246E – ident: e_1_2_8_18_1 doi: 10.1002/adma.202212236 – ident: e_1_2_8_42_1 doi: 10.1021/acs.jpclett.9b03184 – ident: e_1_2_8_51_1 doi: 10.1038/s41560-021-00820-x – ident: e_1_2_8_28_1 doi: 10.1016/j.cej.2022.139312 – ident: e_1_2_8_12_1 doi: 10.2320/matertrans.M2011106 – ident: e_1_2_8_25_1 doi: 10.1007/s10118-022-2750-0 – ident: e_1_2_8_45_1 doi: 10.1021/acsapm.0c00791 – ident: e_1_2_8_55_1 doi: 10.1002/adma.202110569 – ident: e_1_2_8_34_1 doi: 10.1016/j.synthmet.2012.10.021 – ident: e_1_2_8_13_1 doi: 10.1039/c2gc36241d – ident: e_1_2_8_21_1 doi: 10.1038/s41560-022-00997-9 – ident: e_1_2_8_41_1 doi: 10.1038/am.2013.33 – ident: e_1_2_8_5_1 doi: 10.1002/advs.201903259 – ident: e_1_2_8_17_1 doi: 10.1002/aenm.201900887 – ident: e_1_2_8_6_1 doi: 10.1039/D0EE02503H – ident: e_1_2_8_49_1 doi: 10.1002/adma.201908205 – ident: e_1_2_8_52_1 doi: 10.1016/j.jechem.2022.03.030 – ident: e_1_2_8_24_1 doi: 10.1002/aenm.202103892 – ident: e_1_2_8_20_1 doi: 10.1063/1.1469220 – ident: e_1_2_8_36_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_8_44_1 doi: 10.1016/j.cclet.2022.06.015 – ident: e_1_2_8_4_1 doi: 10.1038/s41467-021-23389-1 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.202205398 – ident: e_1_2_8_43_1 doi: 10.1021/jacs.0c07439 – ident: e_1_2_8_53_1 doi: 10.1038/s41586-019-1544-1 – ident: e_1_2_8_33_1 doi: 10.1126/science.1202992 – ident: e_1_2_8_2_1 doi: 10.1002/adma.202102420 – ident: e_1_2_8_31_1 doi: 10.1002/admt.202101487 – ident: e_1_2_8_37_1 doi: 10.1021/acsenergylett.0c01554 – ident: e_1_2_8_15_1 doi: 10.1002/inf2.12370 – ident: e_1_2_8_56_1 doi: 10.1039/D2EE03966D – ident: e_1_2_8_29_1 doi: 10.1016/j.resconrec.2015.07.015 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.202106846 – ident: e_1_2_8_32_1 doi: 10.1002/aenm.202200361 – ident: e_1_2_8_46_1 doi: 10.1002/adfm.202107827 – ident: e_1_2_8_48_1 doi: 10.1002/adma.202300400 – ident: e_1_2_8_26_1 doi: 10.1038/s41566-018-0104-9 – ident: e_1_2_8_1_1 doi: 10.1038/s41563-022-01244-y – ident: e_1_2_8_47_1 doi: 10.1093/nsr/nwz200 – ident: e_1_2_8_54_1 doi: 10.1007/s12274‐023‐5425‐9 – ident: e_1_2_8_50_1 doi: 10.1002/aenm.202201076 – ident: e_1_2_8_8_1 doi: 10.1038/s41560-020-00732-2 – ident: e_1_2_8_22_1 doi: 10.1016/j.orgel.2008.10.008 – ident: e_1_2_8_11_1 doi: 10.1016/j.resenv.2021.100018 – ident: e_1_2_8_40_1 doi: 10.1039/C4EE03824J – ident: e_1_2_8_35_1 doi: 10.1021/am3011324 – ident: e_1_2_8_30_1 doi: 10.1063/1.4946774 – ident: e_1_2_8_19_1 doi: 10.1002/inf2.12276 – ident: e_1_2_8_39_1 doi: 10.1039/D2EE00977C – ident: e_1_2_8_38_1 doi: 10.1039/C8QO00788H – ident: e_1_2_8_27_1 doi: 10.1002/anie.202214931 – ident: e_1_2_8_7_1 doi: 10.1038/s41560-022-01155-x – ident: e_1_2_8_23_1 doi: 10.1016/j.joule.2021.09.001 – ident: e_1_2_8_9_1 doi: 10.1016/j.joule.2021.03.014 |
SSID | ssj0009606 |
Score | 2.5062068 |
Snippet | The fast degradation of the charge‐extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long‐term stability for organic... The fast degradation of the charge-extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long-term stability for organic... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | e2303729 |
SubjectTerms | Anodes Energy conversion efficiency Energy levels Indium oxides Indium tin oxides Materials science Modules Photovoltaic cells Solar cells Thermal stability |
Title | Robust and Sustainable Indium Anode Leading to Efficient and Stable Organic Solar Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37452690 https://www.proquest.com/docview/2869152546 https://www.proquest.com/docview/2838249914 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZ97I9jH0vXTc0GOyhuHMk2VYeS0nJStZBm9A8zUiynBqCPRb7pX99Tx92HEih24sRyslxdL-c76TT7xD6msFrIVeR2TPkImCZYIFgEKwoyRPBlYqYLefz8zKeLtjFMloOBr97WUtNLU_U3d5zJf-jVegDvZpTsv-g2e6m0AFt0C9cQcNwfZSOryrZbFyK-HXvINSPMivMuntZZea8js2SNz7mxNJFtEnl4GYaYXcYUx1fmxj3-Eyv15u-w3ra5giAZ-t-kvFJb3RR3mpTiLlbR1gWfuX5AoQ6tMyKxm5_3BbBstimEjhbN63K1R20V1tpnwFQrgIY0l-RILRLueqMKDFxqSueeaL39HnL64hKPMIcp5G3oxoiI7OhuNfIO9JYkVneqJ7gLpv25a_0fDGbpfPJcv4EPSUQRtiQ-2pLL2aiN8un65-tJfUMyffdu-86LQ9EItYjmb9EL3wogU8dLl6hgS5fo-c9gsk36MYhBIO-cQ8h2CEEW4RgjxBcV7hDiBthEYI9QrBFCLYIeYsW55P52TTwpTQCRQmtAy614GFCslCOWCKpyhISJkowGqoI2iKnI8HNJhxXlOXxKItynTAWS0mTDFzQd-igrEr9AWEuI81CKUlOcpboWI4zJlSUE6JERGI6REE7V6nyPPOm3Mk6dQzZJDVzm3ZzO0TfOvk_jmHlQcmjdupT_y_cpITHY1PDi8VD9KX7GGyk2fgSpa4aI0M5gdB-xIbovVNZ91U0YfDU4_DwEaM_omdbvB-hg_pvoz-BT1rLzxZY9_ihiS4 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+Sustainable+Indium+Anode+Leading+to+Efficient+and+Stable+Organic+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xiang%2C+Jiale&rft.au=Liu%2C+Zhi-Xi&rft.au=Chen%2C+Hongzheng&rft.au=Li%2C+Chang-Zhi&rft.date=2023-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=39&rft.spage=e2303729&rft_id=info:doi/10.1002%2Fadma.202303729&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |