Robust and Sustainable Indium Anode Leading to Efficient and Stable Organic Solar Cells

The fast degradation of the charge‐extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long‐term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non‐sustainable indium to construct efficient and stable OSCs and scale‐up modu...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 39; p. e2303729
Main Authors Xiang, Jiale, Liu, Zhi‐Xi, Chen, Hongzheng, Li, Chang‐Zhi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fast degradation of the charge‐extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long‐term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non‐sustainable indium to construct efficient and stable OSCs and scale‐up modules is developed. It is revealed that the recovered indium chloride (InCl 3 ) from indium oxide waste can be applied as an effective hole‐selective interfacial layer for the ITO electrode (noted as InCl 3 –ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl 3 –ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm 2 ), respectively. More importantly, the InCl 3 –ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T 80 lifetime of ≈10 000 h.
AbstractList The fast degradation of the charge-extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long-term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non-sustainable indium to construct efficient and stable OSCs and scale-up modules is developed. It is revealed that the recovered indium chloride (InCl ) from indium oxide waste can be applied as an effective hole-selective interfacial layer for the ITO electrode (noted as InCl -ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl -ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm ), respectively. More importantly, the InCl -ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T lifetime of ≈10 000 h.
The fast degradation of the charge‐extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long‐term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non‐sustainable indium to construct efficient and stable OSCs and scale‐up modules is developed. It is revealed that the recovered indium chloride (InCl 3 ) from indium oxide waste can be applied as an effective hole‐selective interfacial layer for the ITO electrode (noted as InCl 3 –ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl 3 –ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm 2 ), respectively. More importantly, the InCl 3 –ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T 80 lifetime of ≈10 000 h.
The fast degradation of the charge-extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long-term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non-sustainable indium to construct efficient and stable OSCs and scale-up modules is developed. It is revealed that the recovered indium chloride (InCl3 ) from indium oxide waste can be applied as an effective hole-selective interfacial layer for the ITO electrode (noted as InCl3 -ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl3 -ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm2 ), respectively. More importantly, the InCl3 -ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T80 lifetime of ≈10 000 h.The fast degradation of the charge-extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long-term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non-sustainable indium to construct efficient and stable OSCs and scale-up modules is developed. It is revealed that the recovered indium chloride (InCl3 ) from indium oxide waste can be applied as an effective hole-selective interfacial layer for the ITO electrode (noted as InCl3 -ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl3 -ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm2 ), respectively. More importantly, the InCl3 -ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T80 lifetime of ≈10 000 h.
The fast degradation of the charge‐extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long‐term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non‐sustainable indium to construct efficient and stable OSCs and scale‐up modules is developed. It is revealed that the recovered indium chloride (InCl3) from indium oxide waste can be applied as an effective hole‐selective interfacial layer for the ITO electrode (noted as InCl3–ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl3–ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm2), respectively. More importantly, the InCl3–ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T80 lifetime of ≈10 000 h.
Author Xiang, Jiale
Chen, Hongzheng
Li, Chang‐Zhi
Liu, Zhi‐Xi
Author_xml – sequence: 1
  givenname: Jiale
  surname: Xiang
  fullname: Xiang, Jiale
  organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
– sequence: 2
  givenname: Zhi‐Xi
  orcidid: 0000-0002-6742-2465
  surname: Liu
  fullname: Liu, Zhi‐Xi
  organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
– sequence: 3
  givenname: Hongzheng
  surname: Chen
  fullname: Chen, Hongzheng
  organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
– sequence: 4
  givenname: Chang‐Zhi
  orcidid: 0000-0003-1968-2032
  surname: Li
  fullname: Li, Chang‐Zhi
  organization: State Key Laboratory of Silicon and Advanced Semiconductor Materials Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37452690$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LHTEUxUNR6tN222UJdNPNvOY7k6U8bCs8EKriMtxJMhKZSWwys_C_b6zPLoSu7ln8zuFwzyk6SjkFhD5RsqWEsG_gZ9gywjjhmpl3aEMlo50gRh6hDTFcdkaJ_gSd1vpACDGKqPfohGshmTJkg-5-5WGtC4bk8XUTEBMMU8CXycd1xucp-4D3AXxM93jJ-GIco4shHRzLX_iq3EOKDl_nCQrehWmqH9DxCFMNHw_3DN1-v7jZ_ez2Vz8ud-f7znHGl64fAvREM08GKvTAndeMaAeCEyebhpFT6JXUsndcjIp6OQYthBoGrj3r-Rn6-pL7WPLvNdTFzrG61gBSyGu1DemZMIaKhn55gz7ktaTWrlHKtMdJoRr1-UCtwxy8fSxxhvJkX1_WAPECuJJrLWG0Li6wxJyWAnGylNjnZezzMvbfMs22fWN7Tf6P4Q9gWI2w
CitedBy_id crossref_primary_10_1021_acsami_4c12238
crossref_primary_10_1021_acsami_4c14315
crossref_primary_10_1007_s11426_024_2272_3
crossref_primary_10_1039_D4EE03394A
crossref_primary_10_1002_anie_202416866
crossref_primary_10_1002_ange_202416866
crossref_primary_10_1002_smll_202410917
crossref_primary_10_1016_j_xcrp_2024_101883
crossref_primary_10_1039_D4TC02217C
crossref_primary_10_1002_adma_202420308
Cites_doi 10.1002/adma.202208997
10.1039/D2EE03246E
10.1002/adma.202212236
10.1021/acs.jpclett.9b03184
10.1038/s41560-021-00820-x
10.1016/j.cej.2022.139312
10.2320/matertrans.M2011106
10.1007/s10118-022-2750-0
10.1021/acsapm.0c00791
10.1002/adma.202110569
10.1016/j.synthmet.2012.10.021
10.1039/c2gc36241d
10.1038/s41560-022-00997-9
10.1038/am.2013.33
10.1002/advs.201903259
10.1002/aenm.201900887
10.1039/D0EE02503H
10.1002/adma.201908205
10.1016/j.jechem.2022.03.030
10.1002/aenm.202103892
10.1063/1.1469220
10.1016/j.joule.2019.01.004
10.1016/j.cclet.2022.06.015
10.1038/s41467-021-23389-1
10.1002/adfm.202205398
10.1021/jacs.0c07439
10.1038/s41586-019-1544-1
10.1126/science.1202992
10.1002/adma.202102420
10.1002/admt.202101487
10.1021/acsenergylett.0c01554
10.1002/inf2.12370
10.1039/D2EE03966D
10.1016/j.resconrec.2015.07.015
10.1002/adfm.202106846
10.1002/aenm.202200361
10.1002/adfm.202107827
10.1002/adma.202300400
10.1038/s41566-018-0104-9
10.1038/s41563-022-01244-y
10.1093/nsr/nwz200
10.1007/s12274‐023‐5425‐9
10.1002/aenm.202201076
10.1038/s41560-020-00732-2
10.1016/j.orgel.2008.10.008
10.1016/j.resenv.2021.100018
10.1039/C4EE03824J
10.1021/am3011324
10.1063/1.4946774
10.1002/inf2.12276
10.1039/D2EE00977C
10.1039/C8QO00788H
10.1002/anie.202214931
10.1038/s41560-022-01155-x
10.1016/j.joule.2021.09.001
10.1016/j.joule.2021.03.014
ContentType Journal Article
Copyright 2023 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202303729
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
ExternalDocumentID 37452690
10_1002_adma_202303729
Genre Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2019YFA0705900
– fundername: Postdoctoral Science Foundation Funded Project of Zhejiang Province
  grantid: zj2022019
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 226-2023-00113
– fundername: National Natural Science Foundation of China
  grantid: 22125901
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M722725
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
AEUQT
AFPWT
NPM
RWI
RWM
WRC
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c323t-8bea8072d0b147b3cd7207ca430c5d72af31a865758c34f61d5fe7446bb37d283
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 05:08:04 EDT 2025
Mon Jul 14 07:40:33 EDT 2025
Wed Feb 19 02:23:01 EST 2025
Tue Jul 01 02:33:38 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Keywords organic solar cells
anode interfacial layers
high stability
indium recovery
modules
Language English
License 2023 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-8bea8072d0b147b3cd7207ca430c5d72af31a865758c34f61d5fe7446bb37d283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6742-2465
0000-0003-1968-2032
PMID 37452690
PQID 2869152546
PQPubID 2045203
ParticipantIDs proquest_miscellaneous_2838249914
proquest_journals_2869152546
pubmed_primary_37452690
crossref_citationtrail_10_1002_adma_202303729
crossref_primary_10_1002_adma_202303729
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_3_1
  doi: 10.1002/adma.202208997
– ident: e_1_2_8_10_1
  doi: 10.1039/D2EE03246E
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.202212236
– ident: e_1_2_8_42_1
  doi: 10.1021/acs.jpclett.9b03184
– ident: e_1_2_8_51_1
  doi: 10.1038/s41560-021-00820-x
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cej.2022.139312
– ident: e_1_2_8_12_1
  doi: 10.2320/matertrans.M2011106
– ident: e_1_2_8_25_1
  doi: 10.1007/s10118-022-2750-0
– ident: e_1_2_8_45_1
  doi: 10.1021/acsapm.0c00791
– ident: e_1_2_8_55_1
  doi: 10.1002/adma.202110569
– ident: e_1_2_8_34_1
  doi: 10.1016/j.synthmet.2012.10.021
– ident: e_1_2_8_13_1
  doi: 10.1039/c2gc36241d
– ident: e_1_2_8_21_1
  doi: 10.1038/s41560-022-00997-9
– ident: e_1_2_8_41_1
  doi: 10.1038/am.2013.33
– ident: e_1_2_8_5_1
  doi: 10.1002/advs.201903259
– ident: e_1_2_8_17_1
  doi: 10.1002/aenm.201900887
– ident: e_1_2_8_6_1
  doi: 10.1039/D0EE02503H
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.201908205
– ident: e_1_2_8_52_1
  doi: 10.1016/j.jechem.2022.03.030
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.202103892
– ident: e_1_2_8_20_1
  doi: 10.1063/1.1469220
– ident: e_1_2_8_36_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_8_44_1
  doi: 10.1016/j.cclet.2022.06.015
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-021-23389-1
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.202205398
– ident: e_1_2_8_43_1
  doi: 10.1021/jacs.0c07439
– ident: e_1_2_8_53_1
  doi: 10.1038/s41586-019-1544-1
– ident: e_1_2_8_33_1
  doi: 10.1126/science.1202992
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.202102420
– ident: e_1_2_8_31_1
  doi: 10.1002/admt.202101487
– ident: e_1_2_8_37_1
  doi: 10.1021/acsenergylett.0c01554
– ident: e_1_2_8_15_1
  doi: 10.1002/inf2.12370
– ident: e_1_2_8_56_1
  doi: 10.1039/D2EE03966D
– ident: e_1_2_8_29_1
  doi: 10.1016/j.resconrec.2015.07.015
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.202106846
– ident: e_1_2_8_32_1
  doi: 10.1002/aenm.202200361
– ident: e_1_2_8_46_1
  doi: 10.1002/adfm.202107827
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.202300400
– ident: e_1_2_8_26_1
  doi: 10.1038/s41566-018-0104-9
– ident: e_1_2_8_1_1
  doi: 10.1038/s41563-022-01244-y
– ident: e_1_2_8_47_1
  doi: 10.1093/nsr/nwz200
– ident: e_1_2_8_54_1
  doi: 10.1007/s12274‐023‐5425‐9
– ident: e_1_2_8_50_1
  doi: 10.1002/aenm.202201076
– ident: e_1_2_8_8_1
  doi: 10.1038/s41560-020-00732-2
– ident: e_1_2_8_22_1
  doi: 10.1016/j.orgel.2008.10.008
– ident: e_1_2_8_11_1
  doi: 10.1016/j.resenv.2021.100018
– ident: e_1_2_8_40_1
  doi: 10.1039/C4EE03824J
– ident: e_1_2_8_35_1
  doi: 10.1021/am3011324
– ident: e_1_2_8_30_1
  doi: 10.1063/1.4946774
– ident: e_1_2_8_19_1
  doi: 10.1002/inf2.12276
– ident: e_1_2_8_39_1
  doi: 10.1039/D2EE00977C
– ident: e_1_2_8_38_1
  doi: 10.1039/C8QO00788H
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.202214931
– ident: e_1_2_8_7_1
  doi: 10.1038/s41560-022-01155-x
– ident: e_1_2_8_23_1
  doi: 10.1016/j.joule.2021.09.001
– ident: e_1_2_8_9_1
  doi: 10.1016/j.joule.2021.03.014
SSID ssj0009606
Score 2.5062068
Snippet The fast degradation of the charge‐extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long‐term stability for organic...
The fast degradation of the charge-extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long-term stability for organic...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage e2303729
SubjectTerms Anodes
Energy conversion efficiency
Energy levels
Indium oxides
Indium tin oxides
Materials science
Modules
Photovoltaic cells
Solar cells
Thermal stability
Title Robust and Sustainable Indium Anode Leading to Efficient and Stable Organic Solar Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/37452690
https://www.proquest.com/docview/2869152546
https://www.proquest.com/docview/2838249914
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZ97I9jH0vXTc0GOyhuHMk2VYeS0nJStZBm9A8zUiynBqCPRb7pX99Tx92HEih24sRyslxdL-c76TT7xD6msFrIVeR2TPkImCZYIFgEKwoyRPBlYqYLefz8zKeLtjFMloOBr97WUtNLU_U3d5zJf-jVegDvZpTsv-g2e6m0AFt0C9cQcNwfZSOryrZbFyK-HXvINSPMivMuntZZea8js2SNz7mxNJFtEnl4GYaYXcYUx1fmxj3-Eyv15u-w3ra5giAZ-t-kvFJb3RR3mpTiLlbR1gWfuX5AoQ6tMyKxm5_3BbBstimEjhbN63K1R20V1tpnwFQrgIY0l-RILRLueqMKDFxqSueeaL39HnL64hKPMIcp5G3oxoiI7OhuNfIO9JYkVneqJ7gLpv25a_0fDGbpfPJcv4EPSUQRtiQ-2pLL2aiN8un65-tJfUMyffdu-86LQ9EItYjmb9EL3wogU8dLl6hgS5fo-c9gsk36MYhBIO-cQ8h2CEEW4RgjxBcV7hDiBthEYI9QrBFCLYIeYsW55P52TTwpTQCRQmtAy614GFCslCOWCKpyhISJkowGqoI2iKnI8HNJhxXlOXxKItynTAWS0mTDFzQd-igrEr9AWEuI81CKUlOcpboWI4zJlSUE6JERGI6REE7V6nyPPOm3Mk6dQzZJDVzm3ZzO0TfOvk_jmHlQcmjdupT_y_cpITHY1PDi8VD9KX7GGyk2fgSpa4aI0M5gdB-xIbovVNZ91U0YfDU4_DwEaM_omdbvB-hg_pvoz-BT1rLzxZY9_ihiS4
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+Sustainable+Indium+Anode+Leading+to+Efficient+and+Stable+Organic+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xiang%2C+Jiale&rft.au=Liu%2C+Zhi-Xi&rft.au=Chen%2C+Hongzheng&rft.au=Li%2C+Chang-Zhi&rft.date=2023-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=39&rft.spage=e2303729&rft_id=info:doi/10.1002%2Fadma.202303729&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon