Modeling, Nonlinear Dynamics, and Identification of a Piezoelectrically Actuated Microcantilever Sensor

Nanomechanical cantilever sensors (NMCSs) have recently emerged as an effective means for label-free chemical and biological species detection. They operate through the adsorption of species on the functionalized surface of mechanical cantilevers. Through this functionalization, molecular recognitio...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 13; no. 1; pp. 58 - 65
Main Authors Mahmoodi, S.N., Jalili, N., Daqaq, M.F.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanomechanical cantilever sensors (NMCSs) have recently emerged as an effective means for label-free chemical and biological species detection. They operate through the adsorption of species on the functionalized surface of mechanical cantilevers. Through this functionalization, molecular recognition is directly transduced into a micromechanical response. In order to effectively utilize these sensors in practice and correctly relate the micromechanical response to the associated adsorbed species, the chief technical issues related to modeling must be resolved. Along these lines, this paper presents a general nonlinear-comprehensive modeling framework for piezoelectrically actuated microcantilevers and validates it experimentally. The proposed model considers both longitudinal and flexural vibrations and their coupling in addition to the ever-present geometric and material nonlinearities. Utilizing Euler-Bernoulli beam theory and employing the inextensibility conditions, the coupled longitudinal-flexural equations of motion are reduced to one nonlinear partial differential equation describing the flexural vibrations of the sensor. Using a Galerkian expansion, the resulting equation is discretized into a set of nonlinear ordinary differential equations. The method of multiple scales is then implemented to analytically construct the nonlinear response of the sensor near the first modal frequency (primary resonance of the first vibration mode). These solutions are compared to experimental results demonstrating that the sensor exhibits a softening-type nonlinear response. Such behavior can be attributed to the presence of quadratic material nonlinearities in the piezoelectric layer. This observation is critical, as it suggests that unlike macrocantilevers where the geometric hardening nonlinearities dominate the response behavior, material nonlinearities dominate the response of microcantilevers yielding a softening-type response. This behavior should be accounted for when designing and employing such sensors for practical applications.
AbstractList Utilizing Euler-Bernoulli beam theory and employing the inextensibility conditions, the coupled longitudinal-flexural equations of motion are reduced to one nonlinear partial differential equation describing the flexural vibrations of the sensor.
Nanomechanical cantilever sensors (NMCSs) have recently emerged as an effective means for label-free chemical and biological species detection. They operate through the adsorption of species on the functionalized surface of mechanical cantilevers. Through this functionalization, molecular recognition is directly transduced into a micromechanical response. In order to effectively utilize these sensors in practice and correctly relate the micromechanical response to the associated adsorbed species, the chief technical issues related to modeling must be resolved. Along these lines, this paper presents a general nonlinear-comprehensive modeling framework for piezoelectrically actuated microcantilevers and validates it experimentally. The proposed model considers both longitudinal and flexural vibrations and their coupling in addition to the ever-present geometric and material nonlinearities. Utilizing Euler-Bernoulli beam theory and employing the inextensibility conditions, the coupled longitudinal-flexural equations of motion are reduced to one nonlinear partial differential equation describing the flexural vibrations of the sensor. Using a Galerkian expansion, the resulting equation is discretized into a set of nonlinear ordinary differential equations. The method of multiple scales is then implemented to analytically construct the nonlinear response of the sensor near the first modal frequency (primary resonance of the first vibration mode). These solutions are compared to experimental results demonstrating that the sensor exhibits a softening-type nonlinear response. Such behavior can be attributed to the presence of quadratic material nonlinearities in the piezoelectric layer. This observation is critical, as it suggests that unlike macrocantilevers where the geometric hardening nonlinearities dominate the response behavior, material nonlinearities dominate the response of microcantilevers yielding a softening-type response. This behavior should be accounted for wh-.
Nanomechanical cantilever sensors (NMCSs) have recently emerged as an effective means for label-free chemical and biological species detection. They operate through the adsorption of species on the functionalized surface of mechanical cantilevers. Through this functionalization, molecular recognition is directly transduced into a micromechanical response. In order to effectively utilize these sensors in practice and correctly relate the micromechanical response to the associated adsorbed species, the chief technical issues related to modeling must be resolved. Along these lines, this paper presents a general nonlinear-comprehensive modeling framework for piezoelectrically actuated microcantilevers and validates it experimentally. The proposed model considers both longitudinal and flexural vibrations and their coupling in addition to the ever-present geometric and material nonlinearities. Utilizing Euler-Bernoulli beam theory and employing the inextensibility conditions, the coupled longitudinal-flexural equations of motion are reduced to one nonlinear partial differential equation describing the flexural vibrations of the sensor. Using a Galerkian expansion, the resulting equation is discretized into a set of nonlinear ordinary differential equations. The method of multiple scales is then implemented to analytically construct the nonlinear response of the sensor near the first modal frequency (primary resonance of the first vibration mode). These solutions are compared to experimental results demonstrating that the sensor exhibits a softening-type nonlinear response. Such behavior can be attributed to the presence of quadratic material nonlinearities in the piezoelectric layer. This observation is critical, as it suggests that unlike macrocantilevers where the geometric hardening nonlinearities dominate the response behavior, material nonlinearities dominate the response of microcantilevers yielding a softening-type response. This behavior should be accounted for when designing and employing such sensors for practical applications.
Author Mahmoodi, S.N.
Jalili, N.
Daqaq, M.F.
Author_xml – sequence: 1
  givenname: S.N.
  surname: Mahmoodi
  fullname: Mahmoodi, S.N.
  organization: Clemson Univ., Clemson
– sequence: 2
  givenname: N.
  surname: Jalili
  fullname: Jalili, N.
  organization: Clemson Univ., Clemson
– sequence: 3
  givenname: M.F.
  surname: Daqaq
  fullname: Daqaq, M.F.
  organization: Clemson Univ., Clemson
BookMark eNp9kE1rVDEUhoO0YD_8AeImuHDVO-br5ibLMlZb6LSCFdyFTHJuSckkNckI46837YiLLlydl8P75OM5RgcpJ0DoLSULSon-eLe6WF4uGCFqoemoGH-FjqgWdCBU_DjomSg-CMHH1-i41gdCiKCEHqH7VfYQQ7o_wzc59QC24E-7ZDfB1TNsk8dXHlILc3C2hZxwnrHFXwP8zhDBtdL3Me7wuWtb28DjVXAlO9uRCL-g4G-Qai6n6HC2scKbv_MEff98cbe8HK5vv1wtz68Hxxlvg6RMT4zzyTNvtZbS69mLtaJEWqf4xEGCH0FMUsKkHaWKwOjJyOlac7K2_AR92J_7WPLPLdRmNqE6iNEmyNtquBBac6V78f2L4kPeltTfZpRkbFRSyl6i-1L_Uq0FZvNYwsaWnaHEPHk3z97Nk3ez996Z6QXjQntW14oN8b_kuz0ZAODfTUKMXLOJ_wFlR5Jj
CODEN IATEFW
CitedBy_id crossref_primary_10_1016_j_sna_2023_114344
crossref_primary_10_3390_s23031093
crossref_primary_10_1109_TMECH_2008_2005902
crossref_primary_10_3390_vibration7020025
crossref_primary_10_7227_IJMEE_0012
crossref_primary_10_1016_j_sna_2012_01_006
crossref_primary_10_1109_TMECH_2012_2185707
crossref_primary_10_1016_j_ymssp_2018_06_063
crossref_primary_10_1088_1402_4896_ac129a
crossref_primary_10_1109_TMECH_2009_2005491
crossref_primary_10_1109_TMECH_2011_2111458
crossref_primary_10_3390_electronics13224525
crossref_primary_10_1007_s11071_019_04959_x
crossref_primary_10_1115_1_4001333
crossref_primary_10_1109_TMECH_2009_2012851
crossref_primary_10_1016_j_jsv_2024_118747
crossref_primary_10_1557_PROC_1218_Z07_09
crossref_primary_10_1016_j_sna_2025_116369
crossref_primary_10_1016_j_apm_2024_08_003
crossref_primary_10_1007_s11071_014_1780_8
crossref_primary_10_1016_j_ymssp_2021_107846
crossref_primary_10_1109_TMECH_2009_2023986
crossref_primary_10_1080_15376494_2024_2413183
crossref_primary_10_1177_1077546313476725
crossref_primary_10_1007_s00419_020_01818_9
crossref_primary_10_1088_1361_665X_ad9eff
crossref_primary_10_3390_s100606149
crossref_primary_10_1016_j_ijnonlinmec_2020_103656
crossref_primary_10_1109_TMECH_2016_2530619
crossref_primary_10_1016_j_cnsns_2016_09_012
crossref_primary_10_1016_j_ijengsci_2023_104007
crossref_primary_10_3390_mi13060863
crossref_primary_10_1088_0964_1726_20_10_102001
crossref_primary_10_3390_act10080172
crossref_primary_10_3390_s22207889
crossref_primary_10_1007_s11071_014_1706_5
crossref_primary_10_1088_0964_1726_23_8_085002
crossref_primary_10_1016_j_ijmecsci_2022_107195
crossref_primary_10_1007_s11071_014_1770_x
crossref_primary_10_1007_s11071_019_05175_3
crossref_primary_10_1080_15376494_2019_1590885
crossref_primary_10_1063_1_3530449
crossref_primary_10_1007_s10999_016_9353_2
crossref_primary_10_1016_j_jsv_2012_01_023
crossref_primary_10_3390_s20216130
crossref_primary_10_1016_j_cnsns_2014_10_011
crossref_primary_10_1021_acsaelm_3c00735
crossref_primary_10_1016_j_compstruct_2017_10_062
crossref_primary_10_1109_JMEMS_2011_2182502
crossref_primary_10_1016_j_jsv_2020_115614
crossref_primary_10_1016_j_jsv_2016_11_029
crossref_primary_10_1109_JSEN_2009_2021192
crossref_primary_10_7567_JJAP_54_10ND01
crossref_primary_10_1016_j_ultras_2011_05_017
crossref_primary_10_1063_1_3486519
crossref_primary_10_1177_1045389X231179287
crossref_primary_10_1063_1_4866369
crossref_primary_10_1016_j_jsv_2021_116151
crossref_primary_10_1016_j_sna_2015_05_016
crossref_primary_10_1108_SR_12_2012_738
crossref_primary_10_1007_s40430_021_03316_7
crossref_primary_10_1088_0964_1726_20_7_075022
crossref_primary_10_3390_s19143203
crossref_primary_10_1088_1361_665X_ab9add
crossref_primary_10_1063_1_4865793
crossref_primary_10_1088_0960_1317_21_8_085023
crossref_primary_10_1088_0964_1726_19_6_065015
crossref_primary_10_1063_1_5040825
crossref_primary_10_1016_j_ymssp_2024_111347
crossref_primary_10_1016_j_sna_2008_12_013
crossref_primary_10_1109_TMECH_2009_2019956
crossref_primary_10_1115_1_3089565
crossref_primary_10_1016_j_jsv_2020_115365
crossref_primary_10_1007_s11071_011_0064_9
Cites_doi 10.1177/1045389X05056859
10.1177/1045389X06056407
10.1109/58.764850
10.1177/1045389X06057533
10.1115/IMECE2006-15193
10.1109/ULTSYM.1998.762220
10.1002/(SICI)1096-9918(199905/06)27:5/6<578::AID-SIA527>3.0.CO;2-5
10.1115/1.1767854
10.1109/JMEMS.2003.820286
10.1631/jzus.2005.A0962
10.1023/A:1008218009139
10.1016/j.jsv.2005.11.010
10.1016/j.conengprac.2003.09.003
10.1006/jsvi.2001.4104
10.1016/j.ijnonlinmec.2007.01.019
10.1109/58.852066
10.1016/0041-624X(95)00077-G
10.1080/03601217808907349
10.1109/NANOEL.2006.1609771
10.1016/j.ultras.2006.05.056
10.1051/jp3:1997183
10.1115/1.2948379
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
DOI 10.1109/TMECH.2008.915823
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-014X
EndPage 65
ExternalDocumentID 2322682921
10_1109_TMECH_2008_915823
4453927
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACKIV
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
ID FETCH-LOGICAL-c323t-612972337d2da9966d9fd4b8106ac8373e6ed5e4766e79c1180e5d0531b930ba3
IEDL.DBID RIE
ISSN 1083-4435
IngestDate Fri Jul 11 01:11:23 EDT 2025
Mon Jun 30 05:43:06 EDT 2025
Tue Jul 01 04:23:05 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Tue Aug 26 16:47:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c323t-612972337d2da9966d9fd4b8106ac8373e6ed5e4766e79c1180e5d0531b930ba3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 862258666
PQPubID 85420
PageCount 8
ParticipantIDs proquest_miscellaneous_34499389
crossref_citationtrail_10_1109_TMECH_2008_915823
proquest_journals_862258666
ieee_primary_4453927
crossref_primary_10_1109_TMECH_2008_915823
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-Feb.
2008-02-00
20080201
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-Feb.
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ASME transactions on mechatronics
PublicationTitleAbbrev TMECH
PublicationYear 2008
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
meirovitch (ref23) 1997
ref26
ref25
ref20
ref22
ref21
ref8
ref7
nayfeh (ref24) 1973
ref4
parent (ref9) 2005; 128
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1177/1045389X05056859
– ident: ref14
  doi: 10.1177/1045389X06056407
– ident: ref15
  doi: 10.1109/58.764850
– ident: ref4
  doi: 10.1177/1045389X06057533
– ident: ref17
  doi: 10.1115/IMECE2006-15193
– ident: ref8
  doi: 10.1109/ULTSYM.1998.762220
– volume: 128
  start-page: 201
  year: 2005
  ident: ref9
  article-title: interest of using piezoelectric single crystals with high electromechanical coupling factor in coriolis vibrating gyros
  publication-title: J de Phys IV
– ident: ref7
  doi: 10.1002/(SICI)1096-9918(199905/06)27:5/6<578::AID-SIA527>3.0.CO;2-5
– ident: ref21
  doi: 10.1115/1.1767854
– ident: ref12
  doi: 10.1109/JMEMS.2003.820286
– ident: ref13
  doi: 10.1631/jzus.2005.A0962
– ident: ref25
  doi: 10.1023/A:1008218009139
– ident: ref5
  doi: 10.1016/j.jsv.2005.11.010
– year: 1973
  ident: ref24
  publication-title: Perturbation Methods
– ident: ref22
  doi: 10.1016/j.conengprac.2003.09.003
– ident: ref26
  doi: 10.1006/jsvi.2001.4104
– ident: ref16
  doi: 10.1016/j.ijnonlinmec.2007.01.019
– year: 1997
  ident: ref23
  publication-title: Analytical Methods in Vibrations
– ident: ref11
  doi: 10.1109/58.852066
– ident: ref1
  doi: 10.1016/0041-624X(95)00077-G
– ident: ref20
  doi: 10.1080/03601217808907349
– ident: ref6
  doi: 10.1109/NANOEL.2006.1609771
– ident: ref19
  doi: 10.1080/03601217808907349
– ident: ref2
  doi: 10.1016/j.ultras.2006.05.056
– ident: ref10
  doi: 10.1051/jp3:1997183
– ident: ref18
  doi: 10.1115/1.2948379
SSID ssj0004101
Score 2.2194285
Snippet Nanomechanical cantilever sensors (NMCSs) have recently emerged as an effective means for label-free chemical and biological species detection. They operate...
Utilizing Euler-Bernoulli beam theory and employing the inextensibility conditions, the coupled longitudinal-flexural equations of motion are reduced to one...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 58
SubjectTerms Biological system modeling
Biosensors
Chemical and biological sensors
Differential equations
Electromechanical coupling
Mathematical models
Mechanical sensors
Micromechanical devices
Nonlinear equations
nonlinear flexural vibration
Ordinary differential equations
Partial differential equations
piezoelectrically actuated microcantilevers
Sensor phenomena and characterization
Sensors
Studies
Vibrations
Title Modeling, Nonlinear Dynamics, and Identification of a Piezoelectrically Actuated Microcantilever Sensor
URI https://ieeexplore.ieee.org/document/4453927
https://www.proquest.com/docview/862258666
https://www.proquest.com/docview/34499389
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC7Uk3tY18eyo6vm4Emmx-5O-nUUHwzCiKCCtyadVESUbpnHYf31W9XpGXVXxFtDJyHwpZL6kqr6AA60y4tEVlmgHNpA6dgE2roosGFmkBaAcyHnDo8u0-GturhL7pagv8iFQcQ2-AwH_Nm-5dvGzPiq7EiphI7zbBmWibj5XK3XHMiolTqOyKUIFPkA3QtmFBZHN6Ozk6EPmyyiJI_luzOoFVX5byduj5fzNRjNJ-ajSh4Hs2k1MC__1Gz86sx_wPfOzxTHfmGswxLWG_DtTfXBTbhnHTTORu-LS18wQ4_FqVeon_SFrq3wabyuu9cTjRNaXD3gS-PVcxjgpz_imJNQyHMVI47uY6xoqyETEdfEkZvxFtyen92cDINOdyEwMpZTYpMxa5HJzMZWMx-yhbOqyok9akOEVmKKNkGVpSlmheEicphYtuaqkGGl5U9YqZsaf4HQWW6rtLBRHFpikmmOVicGMxpXOqvzHoRzJErTFSVnbYynsiUnYVG24HmxTA9eDw4XXZ59RY7PGm8yGIuGHQ492JnDXXY2OymJ28VJTnSuB_uLv2Rs_IKia2xmk1IqIojk4m1_POwOrPpwEo52-Q0r0_EMd8lnmVZ77WL9C2sH6eY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOFCgVS1vqA1xQs038yOPQQ9WHtrS7QmIr9RYce4IqSoI2u0Lb38Jf4b8xjrPLU9wqcYsUx1IyX8bz2TPzAbzUZZopUSSBLNEGUnMTaFtGgQ0TgwSAsgxd7fBwFA8u5JtLdbkCX5e1MIjYJp9h3122Z_m2NjO3VbYnpaLlPOlSKM9w_oUIWrN_ekTWfMX5yfH4cBB0GgKBEVxMiRlxp6slEsutdrG9zUori5SYkDZEzgTGaBXKJI4xyYxriIbKOmQWmQgLLWjeO3CX4gzFfXXYj6rLqBVXjiiICSRFHd2ZaRRme-Ph8eHAJ2pmkUq5-GXVa2Vc_vD97YJ2sgbfFp_C57F87M-mRd_c_NYl8n_9Vo_gYRdJswMP_cewgtUTePBTf8V1-OCU3ly9_S4b-ZYgesKO5pX-dGWaXaYry3yhctntXLK6ZJq9vcKb2usDOQhfz9mBK7Oh2JwNXf6iQyM5U3IC7B1WTT15Che38qYbsFrVFT4DppPUFnFmIx5a4spxilYrgwnNK0qr0x6EC8vnpmu77tQ_rvOWfoVZ3oLFy4F6sPTg9fKRz77nyL8GrzvjLwd2du_B5gJeeeeVmpzYK1cpEdYe7CzvkjtxZ0S6wnrW5EISBaYg9vnfp92Be4Px8Dw_Px2dbcJ9nzzjcnu2YHU6meE2RWjT4kX7ozB4f9to-w5pKkUE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling%2C+Nonlinear+Dynamics%2C+and+Identification+of+a+Piezoelectrically+Actuated+Microcantilever+Sensor&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Mahmoodi%2C+S.N&rft.au=Jalili%2C+N&rft.au=Daqaq%2C+M.F&rft.date=2008-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1083-4435&rft.eissn=1941-014X&rft.volume=13&rft.issue=1&rft.spage=58&rft_id=info:doi/10.1109%2FTMECH.2008.915823&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2322682921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon