Modeling, Nonlinear Dynamics, and Identification of a Piezoelectrically Actuated Microcantilever Sensor
Nanomechanical cantilever sensors (NMCSs) have recently emerged as an effective means for label-free chemical and biological species detection. They operate through the adsorption of species on the functionalized surface of mechanical cantilevers. Through this functionalization, molecular recognitio...
Saved in:
Published in | IEEE/ASME transactions on mechatronics Vol. 13; no. 1; pp. 58 - 65 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanomechanical cantilever sensors (NMCSs) have recently emerged as an effective means for label-free chemical and biological species detection. They operate through the adsorption of species on the functionalized surface of mechanical cantilevers. Through this functionalization, molecular recognition is directly transduced into a micromechanical response. In order to effectively utilize these sensors in practice and correctly relate the micromechanical response to the associated adsorbed species, the chief technical issues related to modeling must be resolved. Along these lines, this paper presents a general nonlinear-comprehensive modeling framework for piezoelectrically actuated microcantilevers and validates it experimentally. The proposed model considers both longitudinal and flexural vibrations and their coupling in addition to the ever-present geometric and material nonlinearities. Utilizing Euler-Bernoulli beam theory and employing the inextensibility conditions, the coupled longitudinal-flexural equations of motion are reduced to one nonlinear partial differential equation describing the flexural vibrations of the sensor. Using a Galerkian expansion, the resulting equation is discretized into a set of nonlinear ordinary differential equations. The method of multiple scales is then implemented to analytically construct the nonlinear response of the sensor near the first modal frequency (primary resonance of the first vibration mode). These solutions are compared to experimental results demonstrating that the sensor exhibits a softening-type nonlinear response. Such behavior can be attributed to the presence of quadratic material nonlinearities in the piezoelectric layer. This observation is critical, as it suggests that unlike macrocantilevers where the geometric hardening nonlinearities dominate the response behavior, material nonlinearities dominate the response of microcantilevers yielding a softening-type response. This behavior should be accounted for when designing and employing such sensors for practical applications. |
---|---|
AbstractList | Utilizing Euler-Bernoulli beam theory and employing the inextensibility conditions, the coupled longitudinal-flexural equations of motion are reduced to one nonlinear partial differential equation describing the flexural vibrations of the sensor. Nanomechanical cantilever sensors (NMCSs) have recently emerged as an effective means for label-free chemical and biological species detection. They operate through the adsorption of species on the functionalized surface of mechanical cantilevers. Through this functionalization, molecular recognition is directly transduced into a micromechanical response. In order to effectively utilize these sensors in practice and correctly relate the micromechanical response to the associated adsorbed species, the chief technical issues related to modeling must be resolved. Along these lines, this paper presents a general nonlinear-comprehensive modeling framework for piezoelectrically actuated microcantilevers and validates it experimentally. The proposed model considers both longitudinal and flexural vibrations and their coupling in addition to the ever-present geometric and material nonlinearities. Utilizing Euler-Bernoulli beam theory and employing the inextensibility conditions, the coupled longitudinal-flexural equations of motion are reduced to one nonlinear partial differential equation describing the flexural vibrations of the sensor. Using a Galerkian expansion, the resulting equation is discretized into a set of nonlinear ordinary differential equations. The method of multiple scales is then implemented to analytically construct the nonlinear response of the sensor near the first modal frequency (primary resonance of the first vibration mode). These solutions are compared to experimental results demonstrating that the sensor exhibits a softening-type nonlinear response. Such behavior can be attributed to the presence of quadratic material nonlinearities in the piezoelectric layer. This observation is critical, as it suggests that unlike macrocantilevers where the geometric hardening nonlinearities dominate the response behavior, material nonlinearities dominate the response of microcantilevers yielding a softening-type response. This behavior should be accounted for wh-. Nanomechanical cantilever sensors (NMCSs) have recently emerged as an effective means for label-free chemical and biological species detection. They operate through the adsorption of species on the functionalized surface of mechanical cantilevers. Through this functionalization, molecular recognition is directly transduced into a micromechanical response. In order to effectively utilize these sensors in practice and correctly relate the micromechanical response to the associated adsorbed species, the chief technical issues related to modeling must be resolved. Along these lines, this paper presents a general nonlinear-comprehensive modeling framework for piezoelectrically actuated microcantilevers and validates it experimentally. The proposed model considers both longitudinal and flexural vibrations and their coupling in addition to the ever-present geometric and material nonlinearities. Utilizing Euler-Bernoulli beam theory and employing the inextensibility conditions, the coupled longitudinal-flexural equations of motion are reduced to one nonlinear partial differential equation describing the flexural vibrations of the sensor. Using a Galerkian expansion, the resulting equation is discretized into a set of nonlinear ordinary differential equations. The method of multiple scales is then implemented to analytically construct the nonlinear response of the sensor near the first modal frequency (primary resonance of the first vibration mode). These solutions are compared to experimental results demonstrating that the sensor exhibits a softening-type nonlinear response. Such behavior can be attributed to the presence of quadratic material nonlinearities in the piezoelectric layer. This observation is critical, as it suggests that unlike macrocantilevers where the geometric hardening nonlinearities dominate the response behavior, material nonlinearities dominate the response of microcantilevers yielding a softening-type response. This behavior should be accounted for when designing and employing such sensors for practical applications. |
Author | Mahmoodi, S.N. Jalili, N. Daqaq, M.F. |
Author_xml | – sequence: 1 givenname: S.N. surname: Mahmoodi fullname: Mahmoodi, S.N. organization: Clemson Univ., Clemson – sequence: 2 givenname: N. surname: Jalili fullname: Jalili, N. organization: Clemson Univ., Clemson – sequence: 3 givenname: M.F. surname: Daqaq fullname: Daqaq, M.F. organization: Clemson Univ., Clemson |
BookMark | eNp9kE1rVDEUhoO0YD_8AeImuHDVO-br5ibLMlZb6LSCFdyFTHJuSckkNckI46837YiLLlydl8P75OM5RgcpJ0DoLSULSon-eLe6WF4uGCFqoemoGH-FjqgWdCBU_DjomSg-CMHH1-i41gdCiKCEHqH7VfYQQ7o_wzc59QC24E-7ZDfB1TNsk8dXHlILc3C2hZxwnrHFXwP8zhDBtdL3Me7wuWtb28DjVXAlO9uRCL-g4G-Qai6n6HC2scKbv_MEff98cbe8HK5vv1wtz68Hxxlvg6RMT4zzyTNvtZbS69mLtaJEWqf4xEGCH0FMUsKkHaWKwOjJyOlac7K2_AR92J_7WPLPLdRmNqE6iNEmyNtquBBac6V78f2L4kPeltTfZpRkbFRSyl6i-1L_Uq0FZvNYwsaWnaHEPHk3z97Nk3ez996Z6QXjQntW14oN8b_kuz0ZAODfTUKMXLOJ_wFlR5Jj |
CODEN | IATEFW |
CitedBy_id | crossref_primary_10_1016_j_sna_2023_114344 crossref_primary_10_3390_s23031093 crossref_primary_10_1109_TMECH_2008_2005902 crossref_primary_10_3390_vibration7020025 crossref_primary_10_7227_IJMEE_0012 crossref_primary_10_1016_j_sna_2012_01_006 crossref_primary_10_1109_TMECH_2012_2185707 crossref_primary_10_1016_j_ymssp_2018_06_063 crossref_primary_10_1088_1402_4896_ac129a crossref_primary_10_1109_TMECH_2009_2005491 crossref_primary_10_1109_TMECH_2011_2111458 crossref_primary_10_3390_electronics13224525 crossref_primary_10_1007_s11071_019_04959_x crossref_primary_10_1115_1_4001333 crossref_primary_10_1109_TMECH_2009_2012851 crossref_primary_10_1016_j_jsv_2024_118747 crossref_primary_10_1557_PROC_1218_Z07_09 crossref_primary_10_1016_j_sna_2025_116369 crossref_primary_10_1016_j_apm_2024_08_003 crossref_primary_10_1007_s11071_014_1780_8 crossref_primary_10_1016_j_ymssp_2021_107846 crossref_primary_10_1109_TMECH_2009_2023986 crossref_primary_10_1080_15376494_2024_2413183 crossref_primary_10_1177_1077546313476725 crossref_primary_10_1007_s00419_020_01818_9 crossref_primary_10_1088_1361_665X_ad9eff crossref_primary_10_3390_s100606149 crossref_primary_10_1016_j_ijnonlinmec_2020_103656 crossref_primary_10_1109_TMECH_2016_2530619 crossref_primary_10_1016_j_cnsns_2016_09_012 crossref_primary_10_1016_j_ijengsci_2023_104007 crossref_primary_10_3390_mi13060863 crossref_primary_10_1088_0964_1726_20_10_102001 crossref_primary_10_3390_act10080172 crossref_primary_10_3390_s22207889 crossref_primary_10_1007_s11071_014_1706_5 crossref_primary_10_1088_0964_1726_23_8_085002 crossref_primary_10_1016_j_ijmecsci_2022_107195 crossref_primary_10_1007_s11071_014_1770_x crossref_primary_10_1007_s11071_019_05175_3 crossref_primary_10_1080_15376494_2019_1590885 crossref_primary_10_1063_1_3530449 crossref_primary_10_1007_s10999_016_9353_2 crossref_primary_10_1016_j_jsv_2012_01_023 crossref_primary_10_3390_s20216130 crossref_primary_10_1016_j_cnsns_2014_10_011 crossref_primary_10_1021_acsaelm_3c00735 crossref_primary_10_1016_j_compstruct_2017_10_062 crossref_primary_10_1109_JMEMS_2011_2182502 crossref_primary_10_1016_j_jsv_2020_115614 crossref_primary_10_1016_j_jsv_2016_11_029 crossref_primary_10_1109_JSEN_2009_2021192 crossref_primary_10_7567_JJAP_54_10ND01 crossref_primary_10_1016_j_ultras_2011_05_017 crossref_primary_10_1063_1_3486519 crossref_primary_10_1177_1045389X231179287 crossref_primary_10_1063_1_4866369 crossref_primary_10_1016_j_jsv_2021_116151 crossref_primary_10_1016_j_sna_2015_05_016 crossref_primary_10_1108_SR_12_2012_738 crossref_primary_10_1007_s40430_021_03316_7 crossref_primary_10_1088_0964_1726_20_7_075022 crossref_primary_10_3390_s19143203 crossref_primary_10_1088_1361_665X_ab9add crossref_primary_10_1063_1_4865793 crossref_primary_10_1088_0960_1317_21_8_085023 crossref_primary_10_1088_0964_1726_19_6_065015 crossref_primary_10_1063_1_5040825 crossref_primary_10_1016_j_ymssp_2024_111347 crossref_primary_10_1016_j_sna_2008_12_013 crossref_primary_10_1109_TMECH_2009_2019956 crossref_primary_10_1115_1_3089565 crossref_primary_10_1016_j_jsv_2020_115365 crossref_primary_10_1007_s11071_011_0064_9 |
Cites_doi | 10.1177/1045389X05056859 10.1177/1045389X06056407 10.1109/58.764850 10.1177/1045389X06057533 10.1115/IMECE2006-15193 10.1109/ULTSYM.1998.762220 10.1002/(SICI)1096-9918(199905/06)27:5/6<578::AID-SIA527>3.0.CO;2-5 10.1115/1.1767854 10.1109/JMEMS.2003.820286 10.1631/jzus.2005.A0962 10.1023/A:1008218009139 10.1016/j.jsv.2005.11.010 10.1016/j.conengprac.2003.09.003 10.1006/jsvi.2001.4104 10.1016/j.ijnonlinmec.2007.01.019 10.1109/58.852066 10.1016/0041-624X(95)00077-G 10.1080/03601217808907349 10.1109/NANOEL.2006.1609771 10.1016/j.ultras.2006.05.056 10.1051/jp3:1997183 10.1115/1.2948379 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
DOI | 10.1109/TMECH.2008.915823 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-014X |
EndPage | 65 |
ExternalDocumentID | 2322682921 10_1109_TMECH_2008_915823 4453927 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACKIV AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 OCL RIA RIE RNS TN5 VH1 AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
ID | FETCH-LOGICAL-c323t-612972337d2da9966d9fd4b8106ac8373e6ed5e4766e79c1180e5d0531b930ba3 |
IEDL.DBID | RIE |
ISSN | 1083-4435 |
IngestDate | Fri Jul 11 01:11:23 EDT 2025 Mon Jun 30 05:43:06 EDT 2025 Tue Jul 01 04:23:05 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Tue Aug 26 16:47:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c323t-612972337d2da9966d9fd4b8106ac8373e6ed5e4766e79c1180e5d0531b930ba3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
PQID | 862258666 |
PQPubID | 85420 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_34499389 crossref_citationtrail_10_1109_TMECH_2008_915823 proquest_journals_862258666 ieee_primary_4453927 crossref_primary_10_1109_TMECH_2008_915823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-Feb. 2008-02-00 20080201 |
PublicationDateYYYYMMDD | 2008-02-01 |
PublicationDate_xml | – month: 02 year: 2008 text: 2008-Feb. |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE/ASME transactions on mechatronics |
PublicationTitleAbbrev | TMECH |
PublicationYear | 2008 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 meirovitch (ref23) 1997 ref26 ref25 ref20 ref22 ref21 ref8 ref7 nayfeh (ref24) 1973 ref4 parent (ref9) 2005; 128 ref3 ref6 ref5 |
References_xml | – ident: ref3 doi: 10.1177/1045389X05056859 – ident: ref14 doi: 10.1177/1045389X06056407 – ident: ref15 doi: 10.1109/58.764850 – ident: ref4 doi: 10.1177/1045389X06057533 – ident: ref17 doi: 10.1115/IMECE2006-15193 – ident: ref8 doi: 10.1109/ULTSYM.1998.762220 – volume: 128 start-page: 201 year: 2005 ident: ref9 article-title: interest of using piezoelectric single crystals with high electromechanical coupling factor in coriolis vibrating gyros publication-title: J de Phys IV – ident: ref7 doi: 10.1002/(SICI)1096-9918(199905/06)27:5/6<578::AID-SIA527>3.0.CO;2-5 – ident: ref21 doi: 10.1115/1.1767854 – ident: ref12 doi: 10.1109/JMEMS.2003.820286 – ident: ref13 doi: 10.1631/jzus.2005.A0962 – ident: ref25 doi: 10.1023/A:1008218009139 – ident: ref5 doi: 10.1016/j.jsv.2005.11.010 – year: 1973 ident: ref24 publication-title: Perturbation Methods – ident: ref22 doi: 10.1016/j.conengprac.2003.09.003 – ident: ref26 doi: 10.1006/jsvi.2001.4104 – ident: ref16 doi: 10.1016/j.ijnonlinmec.2007.01.019 – year: 1997 ident: ref23 publication-title: Analytical Methods in Vibrations – ident: ref11 doi: 10.1109/58.852066 – ident: ref1 doi: 10.1016/0041-624X(95)00077-G – ident: ref20 doi: 10.1080/03601217808907349 – ident: ref6 doi: 10.1109/NANOEL.2006.1609771 – ident: ref19 doi: 10.1080/03601217808907349 – ident: ref2 doi: 10.1016/j.ultras.2006.05.056 – ident: ref10 doi: 10.1051/jp3:1997183 – ident: ref18 doi: 10.1115/1.2948379 |
SSID | ssj0004101 |
Score | 2.2194285 |
Snippet | Nanomechanical cantilever sensors (NMCSs) have recently emerged as an effective means for label-free chemical and biological species detection. They operate... Utilizing Euler-Bernoulli beam theory and employing the inextensibility conditions, the coupled longitudinal-flexural equations of motion are reduced to one... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 58 |
SubjectTerms | Biological system modeling Biosensors Chemical and biological sensors Differential equations Electromechanical coupling Mathematical models Mechanical sensors Micromechanical devices Nonlinear equations nonlinear flexural vibration Ordinary differential equations Partial differential equations piezoelectrically actuated microcantilevers Sensor phenomena and characterization Sensors Studies Vibrations |
Title | Modeling, Nonlinear Dynamics, and Identification of a Piezoelectrically Actuated Microcantilever Sensor |
URI | https://ieeexplore.ieee.org/document/4453927 https://www.proquest.com/docview/862258666 https://www.proquest.com/docview/34499389 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC7Uk3tY18eyo6vm4Emmx-5O-nUUHwzCiKCCtyadVESUbpnHYf31W9XpGXVXxFtDJyHwpZL6kqr6AA60y4tEVlmgHNpA6dgE2roosGFmkBaAcyHnDo8u0-GturhL7pagv8iFQcQ2-AwH_Nm-5dvGzPiq7EiphI7zbBmWibj5XK3XHMiolTqOyKUIFPkA3QtmFBZHN6Ozk6EPmyyiJI_luzOoFVX5byduj5fzNRjNJ-ajSh4Hs2k1MC__1Gz86sx_wPfOzxTHfmGswxLWG_DtTfXBTbhnHTTORu-LS18wQ4_FqVeon_SFrq3wabyuu9cTjRNaXD3gS-PVcxjgpz_imJNQyHMVI47uY6xoqyETEdfEkZvxFtyen92cDINOdyEwMpZTYpMxa5HJzMZWMx-yhbOqyok9akOEVmKKNkGVpSlmheEicphYtuaqkGGl5U9YqZsaf4HQWW6rtLBRHFpikmmOVicGMxpXOqvzHoRzJErTFSVnbYynsiUnYVG24HmxTA9eDw4XXZ59RY7PGm8yGIuGHQ492JnDXXY2OymJ28VJTnSuB_uLv2Rs_IKia2xmk1IqIojk4m1_POwOrPpwEo52-Q0r0_EMd8lnmVZ77WL9C2sH6eY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOFCgVS1vqA1xQs038yOPQQ9WHtrS7QmIr9RYce4IqSoI2u0Lb38Jf4b8xjrPLU9wqcYsUx1IyX8bz2TPzAbzUZZopUSSBLNEGUnMTaFtGgQ0TgwSAsgxd7fBwFA8u5JtLdbkCX5e1MIjYJp9h3122Z_m2NjO3VbYnpaLlPOlSKM9w_oUIWrN_ekTWfMX5yfH4cBB0GgKBEVxMiRlxp6slEsutdrG9zUori5SYkDZEzgTGaBXKJI4xyYxriIbKOmQWmQgLLWjeO3CX4gzFfXXYj6rLqBVXjiiICSRFHd2ZaRRme-Ph8eHAJ2pmkUq5-GXVa2Vc_vD97YJ2sgbfFp_C57F87M-mRd_c_NYl8n_9Vo_gYRdJswMP_cewgtUTePBTf8V1-OCU3ly9_S4b-ZYgesKO5pX-dGWaXaYry3yhctntXLK6ZJq9vcKb2usDOQhfz9mBK7Oh2JwNXf6iQyM5U3IC7B1WTT15Che38qYbsFrVFT4DppPUFnFmIx5a4spxilYrgwnNK0qr0x6EC8vnpmu77tQ_rvOWfoVZ3oLFy4F6sPTg9fKRz77nyL8GrzvjLwd2du_B5gJeeeeVmpzYK1cpEdYe7CzvkjtxZ0S6wnrW5EISBaYg9vnfp92Be4Px8Dw_Px2dbcJ9nzzjcnu2YHU6meE2RWjT4kX7ozB4f9to-w5pKkUE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling%2C+Nonlinear+Dynamics%2C+and+Identification+of+a+Piezoelectrically+Actuated+Microcantilever+Sensor&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Mahmoodi%2C+S.N&rft.au=Jalili%2C+N&rft.au=Daqaq%2C+M.F&rft.date=2008-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1083-4435&rft.eissn=1941-014X&rft.volume=13&rft.issue=1&rft.spage=58&rft_id=info:doi/10.1109%2FTMECH.2008.915823&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2322682921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon |