Three Strategies in Engineering Nanomedicines for Tumor Microenvironment‐Enabled Phototherapy

Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H 2 O 2 , GSH, and proteases. To overcome the short...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 37; p. e2300078
Main Authors He, Shiliang, Jia, Xiao, Feng, Sai, Hu, Junqing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H 2 O 2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME‐induced nanoparticle disassembly or surface modification. The second strategy involves near‐infrared absorption increase‐induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.
AbstractList Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2 O2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2 O2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.
Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2O2, GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME‐induced nanoparticle disassembly or surface modification. The second strategy involves near‐infrared absorption increase‐induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.
Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H O , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.
Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H 2 O 2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME‐induced nanoparticle disassembly or surface modification. The second strategy involves near‐infrared absorption increase‐induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.
Author Hu, Junqing
Jia, Xiao
He, Shiliang
Feng, Sai
Author_xml – sequence: 1
  givenname: Shiliang
  orcidid: 0000-0003-2616-5877
  surname: He
  fullname: He, Shiliang
  organization: College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China
– sequence: 2
  givenname: Xiao
  surname: Jia
  fullname: Jia, Xiao
  organization: Jiangxi Key Laboratory of Bioprocess Engineering and Co‐Innovation Center for In‐Vitro Diagnostic Reagents and Devices of Jiangxi Province College of Life Sciences Jiangxi Science and Technology Normal University Nanchang 330013 China
– sequence: 3
  givenname: Sai
  surname: Feng
  fullname: Feng, Sai
  organization: Jiangxi Key Laboratory of Bioprocess Engineering and Co‐Innovation Center for In‐Vitro Diagnostic Reagents and Devices of Jiangxi Province College of Life Sciences Jiangxi Science and Technology Normal University Nanchang 330013 China
– sequence: 4
  givenname: Junqing
  surname: Hu
  fullname: Hu, Junqing
  organization: College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China, Shenzhen Bay Laboratory Shenzhen 518132 China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37226364$$D View this record in MEDLINE/PubMed
BookMark eNp1kb1OwzAUhS0EAlpYGVEkFpaWazs4yYhQ-ZHKj0SZIye5aV0ldrEdpG48As_Ik-CqpUMllusr6zuWzzk9sq-NRkLOKAwpALtybdMMGTAOAEm6R46poHwgUpbtb3cKR6Tn3ByAUxYnh-SIJ4wJLuJjkk9mFjF681Z6nCp0kdLRSE-VRrRKT6NnqU2LlSrDjYtqY6NJ14b5pEprUH8qa3SL2v98fY-0LBqsoteZ8cbP0MrF8oQc1LJxeLo5--T9bjS5fRiMX-4fb2_Gg5Iz7gc0qyhDVmdUSKhEJaEQRZlldYpFiddQ1xWTnAKteIapRKhSUcdJIFIeQ5nwPrlcv7uw5qND5_NWuRKbRmo0nctZSjOWJHGw3ScXO-jcdFaH3wVKxJBkgrFAnW-orgj-84VVrbTL_C-6AAzXQMjBOYv1FqGQr7rJV93k226CIN4RlMpLr4wO4avmP9kvfNCUqw
CitedBy_id crossref_primary_10_1002_smll_202310342
crossref_primary_10_1021_acsanm_4c01125
crossref_primary_10_1039_D4CS00636D
crossref_primary_10_1016_j_jcis_2024_12_239
crossref_primary_10_1002_advs_202410427
crossref_primary_10_3389_fimmu_2024_1327281
crossref_primary_10_1016_j_ccr_2024_216069
crossref_primary_10_1002_advs_202405192
crossref_primary_10_1016_j_jcis_2025_01_111
crossref_primary_10_1021_acs_molpharmaceut_4c00334
crossref_primary_10_1039_D4QM01014K
crossref_primary_10_1016_j_jcis_2024_12_063
crossref_primary_10_1021_acsami_3c13867
crossref_primary_10_1021_acsmacrolett_4c00306
crossref_primary_10_1039_D3TB02576D
crossref_primary_10_1002_asia_202301036
crossref_primary_10_1002_INMD_20240053
Cites_doi 10.1002/adfm.202102160
10.1021/acsnano.6b05070
10.1038/s41467-019-11269-8
10.1021/acsami.6b14446
10.3390/ijms23094493
10.1016/j.nantod.2021.101174
10.1002/adfm.202105837
10.1002/adfm.202003891
10.1002/adhm.202202085
10.1002/adfm.201604053
10.1002/adma.202109920
10.1021/acsami.0c12580
10.1146/annurev-pathol-042020-042741
10.3390/molecules28031447
10.1016/j.ccr.2019.05.016
10.1021/acsnano.8b06478
10.1186/s12935-022-02599-7
10.1021/acsnano.0c03080
10.1021/jacs.2c13222
10.1021/jacs.7b08900
10.1039/D1NR03246A
10.1016/j.trsl.2020.11.012
10.1002/adma.202108908
10.1021/acsami.2c18371
10.1016/j.clbc.2017.11.022
10.1016/j.pdpdt.2018.07.007
10.1039/D0NR09135A
10.1002/smll.201903473
10.1002/adma.202208555
10.3390/nano12091475
10.1016/j.biomaterials.2020.120454
10.3390/medicina56010015
10.1093/nsr/nwx062
10.1038/s41568-018-0037-0
10.1021/acsnano.1c03072
10.1039/C6CS00592F
10.1038/s41389-017-0011-9
10.1021/acs.chemrev.7b00258
10.1002/smtd.202201404
10.1016/j.biomaterials.2017.12.021
10.1016/j.nantod.2021.101162
10.1038/s41467-021-24961-5
10.1039/D1CS01070K
10.1039/C8CC05136D
10.3390/cancers14153570
10.1021/acs.analchem.1c01713
10.1002/adma.202109609
10.1016/j.nantod.2021.101083
10.1021/acsnano.6b00870
10.1002/anie.201610682
10.3390/cancers14215414
10.1039/D0CS01370F
10.1038/nrc.2016.108
10.1021/acsami.2c16667
10.3389/fbioe.2021.689245
10.1002/advs.202103836
10.1021/acs.chemmater.1c03169
10.1039/C8CS00234G
10.1002/smtd.202101437
10.1002/adma.201602193
10.1021/acs.nanolett.6b02365
10.3390/cancers11101460
10.1016/j.nantod.2020.101046
10.1002/smll.202205694
10.1002/adma.201606086
10.1039/D0CS00215A
10.1002/adfm.202001566
10.7150/jca.17648
10.1021/acs.accounts.7b00294
10.1002/smll.201902926
10.1002/anie.202009263
10.1002/adhm.202102073
10.3892/ol.2021.12930
10.3390/ijms24032606
10.1039/D2CC02759C
10.1021/acs.langmuir.1c03331
10.1002/adma.202203309
10.1021/acs.nanolett.9b01458
10.1016/j.colsurfb.2021.112164
10.1093/carcin/bgz174
10.1038/ncomms14998
10.1002/anie.202106750
10.1002/adfm.201909745
10.1002/adma.201904337
10.1039/D1CS00307K
10.3892/or.2020.7632
10.1016/j.snb.2022.132311
10.1016/j.jconrel.2021.09.005
10.1039/C8CS00618K
10.1002/adma.201706090
10.1002/adfm.202008362
10.1021/acs.analchem.1c02625
10.1039/D1NR03260G
10.3390/ijms21218363
10.1021/acsnano.8b00932
10.1126/sciadv.abe3588
10.1002/smll.201800678
10.1039/C9TB02268F
10.1002/advs.202104793
10.1021/acs.nanolett.0c02272
10.1038/s41565-021-00898-0
10.1111/jop.12936
10.1002/smll.202003000
10.1021/acsnano.6b06796
10.1080/10715762.2022.2133704
10.1039/C9CS00725C
10.1002/adma.202003458
10.1002/adfm.202209748
10.1016/j.cej.2020.124253
10.1016/j.nantod.2018.06.008
10.1146/annurev-physiol-021119-034627
10.1016/j.pdpdt.2018.02.021
10.1038/s41551-017-0057
10.1002/anie.201810082
10.3389/fimmu.2022.882718
10.1016/j.biomaterials.2021.120945
10.1038/s41467-019-14199-7
10.1021/acsami.0c08659
10.3390/molecules27113389
10.1038/s41578-020-00269-6
10.1002/advs.202104182
10.7150/thno.26607
10.1039/D0NR08831E
10.1021/acs.nanolett.8b02767
10.3389/fphys.2022.989793
10.2174/1389450120666181123122406
10.1002/adma.201808325
10.1002/smll.201703400
10.3389/fimmu.2022.883683
10.1016/j.chempr.2022.03.009
10.1186/s12943-022-01668-9
10.1002/adma.202008540
10.1088/1748-605X/abfff1
10.1038/s42003-020-1070-6
10.1016/j.actbio.2021.01.015
10.1038/natrevmats.2017.24
10.1002/anie.201805138
10.1002/anie.202003895
10.1039/C7CS00891K
10.1002/anie.201804882
10.1002/adma.201701460
10.1016/j.biomaterials.2020.120636
10.1002/smll.201803791
10.1002/smll.202103569
10.1002/smtd.202201457
10.1038/s41551-020-0527-8
10.3389/fbioe.2022.836468
10.1016/j.jconrel.2016.11.015
10.1021/acs.analchem.7b04197
10.1016/j.biomaterials.2017.11.015
10.3390/ijms232213735
10.1002/adfm.201600722
10.1186/s12967-022-03851-4
10.1016/j.pharmthera.2022.108303
10.1016/j.cej.2020.127747
10.1002/adma.202208553
10.1002/adfm.202100227
10.1002/adma.201601902
10.1002/smll.202206211
10.3390/cancers14143321
10.1016/j.nantod.2020.100851
10.1039/D0NR08757B
10.1002/adfm.201900004
10.1002/smtd.202001212
10.1021/acsnano.8b07045
10.1016/j.ijpharm.2019.118841
10.1021/acs.nanolett.1c00488
10.1016/j.bios.2022.114041
10.3847/1538-4357/ab5f08
10.1038/s41571-021-00539-4
10.1038/s41578-021-00328-6
10.1073/pnas.1619302114
10.1021/jacs.6b11382
10.1021/acs.nanolett.2c00899
10.1038/natrevmats.2017.14
10.1002/adtp.202200020
10.1002/adma.202200062
10.1016/j.apsb.2020.10.020
10.1039/D2SC00459C
10.1021/acsami.1c17642
10.1016/j.biomaterials.2020.120357
10.1039/C9NR09235H
10.1016/j.cej.2021.128880
10.1016/j.biomaterials.2017.12.003
10.1073/pnas.1700340114
10.1002/anie.201803321
10.1002/adfm.202009314
10.1073/pnas.1701976114
10.1007/s10555-019-09796-3
10.1038/s41578-021-00315-x
10.1016/j.biomaterials.2017.06.031
10.1002/advs.201901724
10.1016/j.apsb.2022.11.001
10.1016/j.biomaterials.2021.120807
10.1016/j.jconrel.2022.07.018
10.1002/advs.201600356
10.1016/j.cej.2021.129535
10.4103/ccd.ccd_510_20
10.1038/ncomms12499
10.1016/j.biomaterials.2020.120227
10.1002/adma.201802896
ContentType Journal Article
Copyright 2023 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202300078
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
ExternalDocumentID 37226364
10_1002_smll_202300078
Genre Journal Article
Review
GrantInformation_xml – fundername: Shenzhen Bay Laboratory Open Fund
  grantid: SZBL2020090501002
– fundername: Common University Innovation Team Project of Guangdong
  grantid: 2021KCXTD041
– fundername: National Natural Science Foundation of China
  grantid: 51972055
– fundername: Shenzhen Pengcheng Scholar Program
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAYXX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CITATION
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c323t-19d12e2f916a0d6da0b6bc99f8ebce50ffd2a3101d39e8ae0d86f47c998340c73
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 18:52:37 EDT 2025
Fri Jul 25 12:06:37 EDT 2025
Fri May 09 07:52:58 EDT 2025
Tue Jul 01 02:54:34 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords theranostics
tumor microenvironments
photothermal therapies
photodynamic therapies
phototherapies
Language English
License 2023 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-19d12e2f916a0d6da0b6bc99f8ebce50ffd2a3101d39e8ae0d86f47c998340c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2616-5877
PMID 37226364
PQID 2864079622
PQPubID 1046358
ParticipantIDs proquest_miscellaneous_2819277426
proquest_journals_2864079622
pubmed_primary_37226364
crossref_primary_10_1002_smll_202300078
crossref_citationtrail_10_1002_smll_202300078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_29_1
e_1_2_11_125_2
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_102_1
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_89_2
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_89_1
e_1_2_11_43_1
e_1_2_11_113_3
e_1_2_11_17_1
e_1_2_11_113_2
e_1_2_11_136_1
e_1_2_11_113_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_28_2
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_28_1
e_1_2_11_5_1
Gao Y. (e_1_2_11_44_2) 2022; 2022
e_1_2_11_141_1
e_1_2_11_80_1
e_1_2_11_88_3
e_1_2_11_88_1
e_1_2_11_88_2
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_39_3
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_39_1
e_1_2_11_39_2
e_1_2_11_72_1
e_1_2_11_57_1
e_1_2_11_34_3
e_1_2_11_34_2
e_1_2_11_72_2
e_1_2_11_11_2
e_1_2_11_34_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_104_1
e_1_2_11_127_1
e_1_2_11_2_2
e_1_2_11_2_1
e_1_2_11_142_1
e_1_2_11_83_1
e_1_2_11_60_2
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_2
e_1_2_11_68_1
e_1_2_11_83_2
e_1_2_11_22_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_34_4
e_1_2_11_19_1
e_1_2_11_130_1
Yang Z. (e_1_2_11_54_1) 2022; 2022
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_117_2
e_1_2_11_33_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_105_2
e_1_2_11_3_1
e_1_2_11_143_1
e_1_2_11_143_2
e_1_2_11_120_1
e_1_2_11_82_1
Yu W. (e_1_2_11_58_1) 2022; 2022
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_105_3
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_2
e_1_2_11_116_1
e_1_2_11_131_1
Sun J. (e_1_2_11_99_1) 2020; 127
e_1_2_11_36_1
e_1_2_11_13_2
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_118_2
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_118_3
e_1_2_11_25_3
e_1_2_11_25_2
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_144_1
e_1_2_11_47_1
e_1_2_11_24_2
e_1_2_11_62_2
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_85_1
e_1_2_11_117_1
e_1_2_11_36_2
e_1_2_11_59_1
e_1_2_11_59_2
e_1_2_11_132_1
e_1_2_11_132_2
e_1_2_11_50_1
e_1_2_11_35_2
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_96_1
e_1_2_11_119_2
e_1_2_11_24_6
e_1_2_11_24_5
e_1_2_11_24_4
e_1_2_11_24_3
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_24_9
e_1_2_11_1_1
e_1_2_11_24_8
e_1_2_11_24_7
e_1_2_11_122_2
e_1_2_11_61_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_107_1
e_1_2_11_9_2
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_84_1
e_1_2_11_110_2
e_1_2_11_110_1
e_1_2_11_133_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_99_2
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_146_2
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_100_2
e_1_2_11_123_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_64_1
e_1_2_11_111_5
e_1_2_11_111_4
e_1_2_11_134_3
e_1_2_11_15_1
e_1_2_11_134_4
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_134_2
e_1_2_11_111_3
e_1_2_11_111_2
e_1_2_11_90_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_52_2
e_1_2_11_52_3
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_112_1
References_xml – ident: e_1_2_11_20_1
  doi: 10.1002/adfm.202102160
– ident: e_1_2_11_93_1
  doi: 10.1021/acsnano.6b05070
– ident: e_1_2_11_113_1
  doi: 10.1038/s41467-019-11269-8
– ident: e_1_2_11_83_2
  doi: 10.1021/acsami.6b14446
– ident: e_1_2_11_62_2
  doi: 10.3390/ijms23094493
– ident: e_1_2_11_120_1
  doi: 10.1016/j.nantod.2021.101174
– ident: e_1_2_11_39_1
  doi: 10.1002/adfm.202105837
– ident: e_1_2_11_3_1
  doi: 10.1002/adfm.202003891
– ident: e_1_2_11_23_1
  doi: 10.1002/adhm.202202085
– ident: e_1_2_11_91_1
  doi: 10.1002/adfm.201604053
– ident: e_1_2_11_40_1
  doi: 10.1002/adma.202109920
– ident: e_1_2_11_138_1
  doi: 10.1021/acsami.0c12580
– ident: e_1_2_11_110_1
  doi: 10.1146/annurev-pathol-042020-042741
– ident: e_1_2_11_79_1
  doi: 10.3390/molecules28031447
– ident: e_1_2_11_4_1
  doi: 10.1016/j.ccr.2019.05.016
– ident: e_1_2_11_24_3
  doi: 10.1021/acsnano.8b06478
– ident: e_1_2_11_55_1
  doi: 10.1186/s12935-022-02599-7
– ident: e_1_2_11_14_1
  doi: 10.1021/acsnano.0c03080
– ident: e_1_2_11_94_1
  doi: 10.1021/jacs.2c13222
– ident: e_1_2_11_83_1
  doi: 10.1021/jacs.7b08900
– ident: e_1_2_11_41_1
  doi: 10.1039/D1NR03246A
– ident: e_1_2_11_99_2
  doi: 10.1016/j.trsl.2020.11.012
– ident: e_1_2_11_109_1
  doi: 10.1002/adma.202108908
– ident: e_1_2_11_115_1
  doi: 10.1021/acsami.2c18371
– volume: 2022
  year: 2022
  ident: e_1_2_11_44_2
  publication-title: J. Immunol. Res.
– ident: e_1_2_11_100_2
  doi: 10.1016/j.clbc.2017.11.022
– ident: e_1_2_11_118_2
  doi: 10.1016/j.pdpdt.2018.07.007
– ident: e_1_2_11_35_2
  doi: 10.1039/D0NR09135A
– ident: e_1_2_11_34_3
  doi: 10.1002/smll.201903473
– ident: e_1_2_11_117_2
  doi: 10.1002/adma.202208555
– ident: e_1_2_11_104_1
  doi: 10.3390/nano12091475
– ident: e_1_2_11_15_1
  doi: 10.1016/j.biomaterials.2020.120454
– ident: e_1_2_11_43_1
  doi: 10.3390/medicina56010015
– ident: e_1_2_11_47_1
  doi: 10.1093/nsr/nwx062
– ident: e_1_2_11_88_3
  doi: 10.1038/s41568-018-0037-0
– ident: e_1_2_11_72_2
  doi: 10.1021/acsnano.1c03072
– ident: e_1_2_11_11_1
  doi: 10.1039/C6CS00592F
– ident: e_1_2_11_48_1
  doi: 10.1038/s41389-017-0011-9
– ident: e_1_2_11_1_1
  doi: 10.1021/acs.chemrev.7b00258
– ident: e_1_2_11_111_3
  doi: 10.1002/smtd.202201404
– ident: e_1_2_11_147_1
  doi: 10.1016/j.biomaterials.2017.12.021
– ident: e_1_2_11_6_1
  doi: 10.1016/j.nantod.2021.101162
– ident: e_1_2_11_136_1
  doi: 10.1038/s41467-021-24961-5
– ident: e_1_2_11_143_2
  doi: 10.1039/D1CS01070K
– ident: e_1_2_11_92_1
  doi: 10.1039/C8CC05136D
– ident: e_1_2_11_56_1
  doi: 10.3390/cancers14153570
– ident: e_1_2_11_37_1
  doi: 10.1021/acs.analchem.1c01713
– volume: 2022
  year: 2022
  ident: e_1_2_11_58_1
  publication-title: Oxid. Med. Cell. Longevity
– ident: e_1_2_11_69_1
  doi: 10.1002/adma.202109609
– ident: e_1_2_11_24_1
  doi: 10.1016/j.nantod.2021.101083
– ident: e_1_2_11_70_1
  doi: 10.1021/acsnano.6b00870
– ident: e_1_2_11_88_1
  doi: 10.1002/anie.201610682
– ident: e_1_2_11_61_1
  doi: 10.3390/cancers14215414
– ident: e_1_2_11_19_1
  doi: 10.1039/D0CS01370F
– ident: e_1_2_11_128_1
  doi: 10.1038/nrc.2016.108
– ident: e_1_2_11_24_9
  doi: 10.1021/acsami.2c16667
– ident: e_1_2_11_111_5
  doi: 10.3389/fbioe.2021.689245
– ident: e_1_2_11_65_1
  doi: 10.1002/advs.202103836
– ident: e_1_2_11_125_1
  doi: 10.1021/acs.chemmater.1c03169
– ident: e_1_2_11_140_1
  doi: 10.1039/C8CS00234G
– ident: e_1_2_11_63_1
  doi: 10.1002/smtd.202101437
– ident: e_1_2_11_145_1
  doi: 10.1002/adma.201602193
– ident: e_1_2_11_103_1
  doi: 10.1021/acs.nanolett.6b02365
– ident: e_1_2_11_46_1
  doi: 10.3390/cancers11101460
– ident: e_1_2_11_146_2
  doi: 10.1016/j.nantod.2020.101046
– ident: e_1_2_11_117_1
  doi: 10.1002/smll.202205694
– ident: e_1_2_11_72_1
  doi: 10.1002/adma.201606086
– ident: e_1_2_11_2_1
  doi: 10.1039/D0CS00215A
– ident: e_1_2_11_36_1
  doi: 10.1002/adfm.202001566
– ident: e_1_2_11_105_1
  doi: 10.7150/jca.17648
– ident: e_1_2_11_85_1
  doi: 10.1021/acs.accounts.7b00294
– ident: e_1_2_11_28_2
  doi: 10.1002/smll.201902926
– ident: e_1_2_11_35_1
  doi: 10.1002/anie.202009263
– ident: e_1_2_11_31_1
  doi: 10.1002/adhm.202102073
– ident: e_1_2_11_60_2
  doi: 10.3892/ol.2021.12930
– ident: e_1_2_11_89_2
  doi: 10.3390/ijms24032606
– ident: e_1_2_11_64_1
  doi: 10.1039/D2CC02759C
– ident: e_1_2_11_16_1
  doi: 10.1021/acs.langmuir.1c03331
– ident: e_1_2_11_119_2
  doi: 10.1002/adma.202203309
– ident: e_1_2_11_9_1
  doi: 10.1021/acs.nanolett.9b01458
– ident: e_1_2_11_24_4
  doi: 10.1016/j.colsurfb.2021.112164
– ident: e_1_2_11_60_1
  doi: 10.1093/carcin/bgz174
– ident: e_1_2_11_121_1
  doi: 10.1038/ncomms14998
– ident: e_1_2_11_24_2
  doi: 10.1002/anie.202106750
– ident: e_1_2_11_113_3
  doi: 10.1002/adfm.201909745
– ident: e_1_2_11_10_1
  doi: 10.1002/adma.201904337
– ident: e_1_2_11_96_1
  doi: 10.1039/D1CS00307K
– ident: e_1_2_11_59_2
  doi: 10.3892/or.2020.7632
– ident: e_1_2_11_38_1
  doi: 10.1016/j.snb.2022.132311
– ident: e_1_2_11_24_6
  doi: 10.1016/j.jconrel.2021.09.005
– ident: e_1_2_11_2_2
  doi: 10.1039/C8CS00618K
– ident: e_1_2_11_107_1
  doi: 10.1002/adma.201706090
– ident: e_1_2_11_139_1
  doi: 10.1002/adfm.202008362
– ident: e_1_2_11_39_3
  doi: 10.1021/acs.analchem.1c02625
– ident: e_1_2_11_126_1
  doi: 10.1039/D1NR03260G
– ident: e_1_2_11_44_1
  doi: 10.3390/ijms21218363
– ident: e_1_2_11_141_1
  doi: 10.1021/acsnano.8b00932
– ident: e_1_2_11_13_2
  doi: 10.1126/sciadv.abe3588
– ident: e_1_2_11_21_1
  doi: 10.1002/smll.201800678
– ident: e_1_2_11_25_3
  doi: 10.1039/C9TB02268F
– ident: e_1_2_11_112_1
  doi: 10.1002/advs.202104793
– ident: e_1_2_11_22_1
  doi: 10.1021/acs.nanolett.0c02272
– ident: e_1_2_11_101_1
  doi: 10.1038/s41565-021-00898-0
– ident: e_1_2_11_59_1
  doi: 10.1111/jop.12936
– ident: e_1_2_11_95_1
  doi: 10.1002/smll.202003000
– ident: e_1_2_11_67_1
  doi: 10.1021/acsnano.6b06796
– ident: e_1_2_11_51_1
  doi: 10.1080/10715762.2022.2133704
– volume: 2022
  year: 2022
  ident: e_1_2_11_54_1
  publication-title: Oxid. Med. Cell. Longevity
– ident: e_1_2_11_146_1
  doi: 10.1039/C9CS00725C
– ident: e_1_2_11_113_2
  doi: 10.1002/adma.202003458
– ident: e_1_2_11_17_1
  doi: 10.1002/adfm.202209748
– ident: e_1_2_11_26_1
  doi: 10.1016/j.cej.2020.124253
– ident: e_1_2_11_12_1
  doi: 10.1016/j.nantod.2018.06.008
– ident: e_1_2_11_74_1
  doi: 10.1146/annurev-physiol-021119-034627
– ident: e_1_2_11_118_3
  doi: 10.1016/j.pdpdt.2018.02.021
– ident: e_1_2_11_77_1
  doi: 10.1038/s41551-017-0057
– ident: e_1_2_11_34_1
  doi: 10.1002/anie.201810082
– ident: e_1_2_11_52_1
  doi: 10.3389/fimmu.2022.882718
– ident: e_1_2_11_7_1
  doi: 10.1016/j.biomaterials.2021.120945
– ident: e_1_2_11_39_2
  doi: 10.1038/s41467-019-14199-7
– ident: e_1_2_11_34_4
  doi: 10.1021/acsami.0c08659
– ident: e_1_2_11_98_1
  doi: 10.3390/molecules27113389
– ident: e_1_2_11_133_1
  doi: 10.1038/s41578-020-00269-6
– ident: e_1_2_11_116_1
  doi: 10.1002/advs.202104182
– ident: e_1_2_11_29_1
  doi: 10.7150/thno.26607
– ident: e_1_2_11_137_1
  doi: 10.1039/D0NR08831E
– ident: e_1_2_11_34_2
  doi: 10.1021/acs.nanolett.8b02767
– ident: e_1_2_11_52_2
  doi: 10.3389/fphys.2022.989793
– ident: e_1_2_11_78_1
  doi: 10.2174/1389450120666181123122406
– ident: e_1_2_11_87_1
  doi: 10.1002/adma.201808325
– ident: e_1_2_11_81_1
  doi: 10.1002/smll.201703400
– ident: e_1_2_11_62_1
  doi: 10.3389/fimmu.2022.883683
– ident: e_1_2_11_88_2
  doi: 10.1016/j.chempr.2022.03.009
– ident: e_1_2_11_52_3
  doi: 10.1186/s12943-022-01668-9
– ident: e_1_2_11_71_1
  doi: 10.1002/adma.202008540
– ident: e_1_2_11_142_1
  doi: 10.1088/1748-605X/abfff1
– ident: e_1_2_11_132_1
  doi: 10.1038/s42003-020-1070-6
– ident: e_1_2_11_24_7
  doi: 10.1016/j.actbio.2021.01.015
– ident: e_1_2_11_5_1
  doi: 10.1038/natrevmats.2017.24
– ident: e_1_2_11_9_2
  doi: 10.1002/anie.201805138
– ident: e_1_2_11_18_1
  doi: 10.1002/anie.202003895
– ident: e_1_2_11_90_1
  doi: 10.1039/C7CS00891K
– ident: e_1_2_11_114_1
  doi: 10.1002/anie.201804882
– ident: e_1_2_11_134_3
  doi: 10.1002/adma.201701460
– ident: e_1_2_11_75_1
  doi: 10.1016/j.biomaterials.2020.120636
– ident: e_1_2_11_105_2
  doi: 10.1002/smll.201803791
– ident: e_1_2_11_108_1
  doi: 10.1002/smll.202103569
– ident: e_1_2_11_111_2
  doi: 10.1002/smtd.202201457
– ident: e_1_2_11_106_1
  doi: 10.1038/s41551-020-0527-8
– volume: 127
  year: 2020
  ident: e_1_2_11_99_1
  publication-title: Anal. Chem.
– ident: e_1_2_11_24_5
  doi: 10.3389/fbioe.2022.836468
– ident: e_1_2_11_66_1
  doi: 10.1016/j.jconrel.2016.11.015
– ident: e_1_2_11_33_1
  doi: 10.1021/acs.analchem.7b04197
– ident: e_1_2_11_122_1
  doi: 10.1016/j.biomaterials.2017.11.015
– ident: e_1_2_11_68_2
  doi: 10.3390/ijms232213735
– ident: e_1_2_11_131_1
  doi: 10.1002/adfm.201600722
– ident: e_1_2_11_89_1
  doi: 10.1186/s12967-022-03851-4
– ident: e_1_2_11_50_1
  doi: 10.1016/j.pharmthera.2022.108303
– ident: e_1_2_11_13_1
  doi: 10.1016/j.cej.2020.127747
– ident: e_1_2_11_119_1
  doi: 10.1002/adma.202208553
– ident: e_1_2_11_73_1
  doi: 10.1002/adfm.202100227
– ident: e_1_2_11_122_2
  doi: 10.1002/adma.201601902
– ident: e_1_2_11_11_2
  doi: 10.1002/smll.202206211
– ident: e_1_2_11_57_1
  doi: 10.3390/cancers14143321
– ident: e_1_2_11_8_1
  doi: 10.1016/j.nantod.2020.100851
– ident: e_1_2_11_127_1
  doi: 10.1039/D0NR08757B
– ident: e_1_2_11_82_1
  doi: 10.1002/adfm.201900004
– ident: e_1_2_11_105_3
  doi: 10.1002/smtd.202001212
– ident: e_1_2_11_25_2
  doi: 10.1021/acsnano.8b07045
– ident: e_1_2_11_76_1
  doi: 10.1016/j.ijpharm.2019.118841
– ident: e_1_2_11_25_1
  doi: 10.1021/acs.nanolett.1c00488
– ident: e_1_2_11_100_1
  doi: 10.1016/j.bios.2022.114041
– ident: e_1_2_11_53_1
  doi: 10.3847/1538-4357/ab5f08
– ident: e_1_2_11_49_1
  doi: 10.1038/s41571-021-00539-4
– ident: e_1_2_11_86_1
  doi: 10.1038/s41578-021-00328-6
– ident: e_1_2_11_143_1
  doi: 10.1073/pnas.1619302114
– ident: e_1_2_11_144_1
  doi: 10.1021/jacs.6b11382
– ident: e_1_2_11_116_2
  doi: 10.1021/acs.nanolett.2c00899
– ident: e_1_2_11_134_4
  doi: 10.1038/natrevmats.2017.14
– ident: e_1_2_11_111_1
  doi: 10.1002/adtp.202200020
– ident: e_1_2_11_28_1
  doi: 10.1002/adma.202200062
– ident: e_1_2_11_110_2
  doi: 10.1016/j.apsb.2020.10.020
– ident: e_1_2_11_135_1
  doi: 10.1039/D2SC00459C
– ident: e_1_2_11_27_1
  doi: 10.1021/acsami.1c17642
– ident: e_1_2_11_84_1
  doi: 10.1016/j.biomaterials.2020.120357
– ident: e_1_2_11_36_2
  doi: 10.1039/C9NR09235H
– ident: e_1_2_11_80_1
  doi: 10.1016/j.cej.2021.128880
– ident: e_1_2_11_24_8
  doi: 10.1016/j.biomaterials.2017.12.003
– ident: e_1_2_11_102_1
  doi: 10.1073/pnas.1700340114
– ident: e_1_2_11_32_1
  doi: 10.1002/anie.201803321
– ident: e_1_2_11_124_1
  doi: 10.1002/adfm.202009314
– ident: e_1_2_11_30_1
  doi: 10.1073/pnas.1701976114
– ident: e_1_2_11_45_1
  doi: 10.1007/s10555-019-09796-3
– ident: e_1_2_11_134_1
  doi: 10.1038/s41578-021-00315-x
– ident: e_1_2_11_130_1
  doi: 10.1016/j.biomaterials.2017.06.031
– ident: e_1_2_11_97_1
  doi: 10.1002/advs.201901724
– ident: e_1_2_11_111_4
  doi: 10.1016/j.apsb.2022.11.001
– ident: e_1_2_11_125_2
  doi: 10.1016/j.biomaterials.2021.120807
– ident: e_1_2_11_68_1
  doi: 10.1016/j.jconrel.2022.07.018
– ident: e_1_2_11_123_1
  doi: 10.1002/advs.201600356
– ident: e_1_2_11_42_1
  doi: 10.1016/j.cej.2021.129535
– ident: e_1_2_11_118_1
  doi: 10.4103/ccd.ccd_510_20
– ident: e_1_2_11_129_1
  doi: 10.1038/ncomms12499
– ident: e_1_2_11_132_2
  doi: 10.1016/j.biomaterials.2020.120227
– ident: e_1_2_11_134_2
  doi: 10.1002/adma.201802896
SSID ssj0031247
Score 2.5138195
SecondaryResourceType review_article
Snippet Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage e2300078
SubjectTerms Hydrogen peroxide
Hypoxia
Infrared absorption
Nanoparticles
Nanotechnology
Near infrared radiation
Side effects
Tumors
Title Three Strategies in Engineering Nanomedicines for Tumor Microenvironment‐Enabled Phototherapy
URI https://www.ncbi.nlm.nih.gov/pubmed/37226364
https://www.proquest.com/docview/2864079622
https://www.proquest.com/docview/2819277426
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuMAB8U3HQEZC4lAFXNtz4iNCHdU0BoJU9BYlsbNFWhNo08M4ceTI38hfwrOdpC4wNLhElWO5kd_Pz-_D72eEnmYyjaTOacAl4QHnnIEeTMMgi4hQnOQhLSzb57GYzvjhfH8-GHzzTi2tm-x5_uWPdSX_I1VoA7maKtl_kGw_KDTAb5AvPEHC8LykjJfaHAXs6B5M8MIjGDSqs-6S55Z3YRSvF_B8Y07heSVu_YmHia2kUqN3p3XTlmZtpX0_LEwmG4zSj7qsTnVp7tcYKUuzuDwxQZOVu6fxtdH31bkXZpi6ULcJ36TtZgmt8zKtR4dlvzXA7LrodVpu8OaKR6rP3Sbbxigo6w9hXVYTehoY7IvAkKS5Dcpva7-5U9vSg6cjjvltO3D0sqvFmUkygbNlDKLNxtcl-4_fJgezo6MknszjK-gqBYfDOufveyIyBlaQvaan-7iO_pPQF9ujb5s3F_gs1naJb6IbrdOBXzoE3UIDXd1G1z2k3EGJxRLeYAmXFfZ64C0sYcAStljCv2Lpx9fvLYqwj6K7aHYwiV9Ng_byjSBnlDXBWKox1bQA9yElSqiUZCLLpSwineV6nxSFoin4BmPFpI5STVQkCh5Cj4iZNc7uoZ2qrvQDhEWkmGAwDpWKj3kYEUZDkTPFiqgQBRmioJuzJG-Z6c0FKWeJ49SmiZnjpJ_jIXrW9__kOFku7LnXiSBp1-0qoZFJXktB6RA96V-DVjWpsrTS9dr0Ac8HPCMqhui-E13_VywEl4UJvvv3wR-ia5ulsId2muVaPwIDtskeW2z9BKfvndA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+Strategies+in+Engineering+Nanomedicines+for+Tumor+Microenvironment%E2%80%90Enabled+Phototherapy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=He%2C+Shiliang&rft.au=Xiao+Jia&rft.au=Feng%2C+Sai&rft.au=Hu%2C+Junqing&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=37&rft_id=info:doi/10.1002%2Fsmll.202300078&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon