Three Strategies in Engineering Nanomedicines for Tumor Microenvironment‐Enabled Phototherapy
Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H 2 O 2 , GSH, and proteases. To overcome the short...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 37; p. e2300078 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H
2
O
2
, GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME‐induced nanoparticle disassembly or surface modification. The second strategy involves near‐infrared absorption increase‐induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed. |
---|---|
AbstractList | Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2 O2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2 O2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed. Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2O2, GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME‐induced nanoparticle disassembly or surface modification. The second strategy involves near‐infrared absorption increase‐induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed. Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H O , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed. Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H 2 O 2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME‐induced nanoparticle disassembly or surface modification. The second strategy involves near‐infrared absorption increase‐induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed. |
Author | Hu, Junqing Jia, Xiao He, Shiliang Feng, Sai |
Author_xml | – sequence: 1 givenname: Shiliang orcidid: 0000-0003-2616-5877 surname: He fullname: He, Shiliang organization: College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China – sequence: 2 givenname: Xiao surname: Jia fullname: Jia, Xiao organization: Jiangxi Key Laboratory of Bioprocess Engineering and Co‐Innovation Center for In‐Vitro Diagnostic Reagents and Devices of Jiangxi Province College of Life Sciences Jiangxi Science and Technology Normal University Nanchang 330013 China – sequence: 3 givenname: Sai surname: Feng fullname: Feng, Sai organization: Jiangxi Key Laboratory of Bioprocess Engineering and Co‐Innovation Center for In‐Vitro Diagnostic Reagents and Devices of Jiangxi Province College of Life Sciences Jiangxi Science and Technology Normal University Nanchang 330013 China – sequence: 4 givenname: Junqing surname: Hu fullname: Hu, Junqing organization: College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China, Shenzhen Bay Laboratory Shenzhen 518132 China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37226364$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1OwzAUhS0EAlpYGVEkFpaWazs4yYhQ-ZHKj0SZIye5aV0ldrEdpG48As_Ik-CqpUMllusr6zuWzzk9sq-NRkLOKAwpALtybdMMGTAOAEm6R46poHwgUpbtb3cKR6Tn3ByAUxYnh-SIJ4wJLuJjkk9mFjF681Z6nCp0kdLRSE-VRrRKT6NnqU2LlSrDjYtqY6NJ14b5pEprUH8qa3SL2v98fY-0LBqsoteZ8cbP0MrF8oQc1LJxeLo5--T9bjS5fRiMX-4fb2_Gg5Iz7gc0qyhDVmdUSKhEJaEQRZlldYpFiddQ1xWTnAKteIapRKhSUcdJIFIeQ5nwPrlcv7uw5qND5_NWuRKbRmo0nctZSjOWJHGw3ScXO-jcdFaH3wVKxJBkgrFAnW-orgj-84VVrbTL_C-6AAzXQMjBOYv1FqGQr7rJV93k226CIN4RlMpLr4wO4avmP9kvfNCUqw |
CitedBy_id | crossref_primary_10_1002_smll_202310342 crossref_primary_10_1021_acsanm_4c01125 crossref_primary_10_1039_D4CS00636D crossref_primary_10_1016_j_jcis_2024_12_239 crossref_primary_10_1002_advs_202410427 crossref_primary_10_3389_fimmu_2024_1327281 crossref_primary_10_1016_j_ccr_2024_216069 crossref_primary_10_1002_advs_202405192 crossref_primary_10_1016_j_jcis_2025_01_111 crossref_primary_10_1021_acs_molpharmaceut_4c00334 crossref_primary_10_1039_D4QM01014K crossref_primary_10_1016_j_jcis_2024_12_063 crossref_primary_10_1021_acsami_3c13867 crossref_primary_10_1021_acsmacrolett_4c00306 crossref_primary_10_1039_D3TB02576D crossref_primary_10_1002_asia_202301036 crossref_primary_10_1002_INMD_20240053 |
Cites_doi | 10.1002/adfm.202102160 10.1021/acsnano.6b05070 10.1038/s41467-019-11269-8 10.1021/acsami.6b14446 10.3390/ijms23094493 10.1016/j.nantod.2021.101174 10.1002/adfm.202105837 10.1002/adfm.202003891 10.1002/adhm.202202085 10.1002/adfm.201604053 10.1002/adma.202109920 10.1021/acsami.0c12580 10.1146/annurev-pathol-042020-042741 10.3390/molecules28031447 10.1016/j.ccr.2019.05.016 10.1021/acsnano.8b06478 10.1186/s12935-022-02599-7 10.1021/acsnano.0c03080 10.1021/jacs.2c13222 10.1021/jacs.7b08900 10.1039/D1NR03246A 10.1016/j.trsl.2020.11.012 10.1002/adma.202108908 10.1021/acsami.2c18371 10.1016/j.clbc.2017.11.022 10.1016/j.pdpdt.2018.07.007 10.1039/D0NR09135A 10.1002/smll.201903473 10.1002/adma.202208555 10.3390/nano12091475 10.1016/j.biomaterials.2020.120454 10.3390/medicina56010015 10.1093/nsr/nwx062 10.1038/s41568-018-0037-0 10.1021/acsnano.1c03072 10.1039/C6CS00592F 10.1038/s41389-017-0011-9 10.1021/acs.chemrev.7b00258 10.1002/smtd.202201404 10.1016/j.biomaterials.2017.12.021 10.1016/j.nantod.2021.101162 10.1038/s41467-021-24961-5 10.1039/D1CS01070K 10.1039/C8CC05136D 10.3390/cancers14153570 10.1021/acs.analchem.1c01713 10.1002/adma.202109609 10.1016/j.nantod.2021.101083 10.1021/acsnano.6b00870 10.1002/anie.201610682 10.3390/cancers14215414 10.1039/D0CS01370F 10.1038/nrc.2016.108 10.1021/acsami.2c16667 10.3389/fbioe.2021.689245 10.1002/advs.202103836 10.1021/acs.chemmater.1c03169 10.1039/C8CS00234G 10.1002/smtd.202101437 10.1002/adma.201602193 10.1021/acs.nanolett.6b02365 10.3390/cancers11101460 10.1016/j.nantod.2020.101046 10.1002/smll.202205694 10.1002/adma.201606086 10.1039/D0CS00215A 10.1002/adfm.202001566 10.7150/jca.17648 10.1021/acs.accounts.7b00294 10.1002/smll.201902926 10.1002/anie.202009263 10.1002/adhm.202102073 10.3892/ol.2021.12930 10.3390/ijms24032606 10.1039/D2CC02759C 10.1021/acs.langmuir.1c03331 10.1002/adma.202203309 10.1021/acs.nanolett.9b01458 10.1016/j.colsurfb.2021.112164 10.1093/carcin/bgz174 10.1038/ncomms14998 10.1002/anie.202106750 10.1002/adfm.201909745 10.1002/adma.201904337 10.1039/D1CS00307K 10.3892/or.2020.7632 10.1016/j.snb.2022.132311 10.1016/j.jconrel.2021.09.005 10.1039/C8CS00618K 10.1002/adma.201706090 10.1002/adfm.202008362 10.1021/acs.analchem.1c02625 10.1039/D1NR03260G 10.3390/ijms21218363 10.1021/acsnano.8b00932 10.1126/sciadv.abe3588 10.1002/smll.201800678 10.1039/C9TB02268F 10.1002/advs.202104793 10.1021/acs.nanolett.0c02272 10.1038/s41565-021-00898-0 10.1111/jop.12936 10.1002/smll.202003000 10.1021/acsnano.6b06796 10.1080/10715762.2022.2133704 10.1039/C9CS00725C 10.1002/adma.202003458 10.1002/adfm.202209748 10.1016/j.cej.2020.124253 10.1016/j.nantod.2018.06.008 10.1146/annurev-physiol-021119-034627 10.1016/j.pdpdt.2018.02.021 10.1038/s41551-017-0057 10.1002/anie.201810082 10.3389/fimmu.2022.882718 10.1016/j.biomaterials.2021.120945 10.1038/s41467-019-14199-7 10.1021/acsami.0c08659 10.3390/molecules27113389 10.1038/s41578-020-00269-6 10.1002/advs.202104182 10.7150/thno.26607 10.1039/D0NR08831E 10.1021/acs.nanolett.8b02767 10.3389/fphys.2022.989793 10.2174/1389450120666181123122406 10.1002/adma.201808325 10.1002/smll.201703400 10.3389/fimmu.2022.883683 10.1016/j.chempr.2022.03.009 10.1186/s12943-022-01668-9 10.1002/adma.202008540 10.1088/1748-605X/abfff1 10.1038/s42003-020-1070-6 10.1016/j.actbio.2021.01.015 10.1038/natrevmats.2017.24 10.1002/anie.201805138 10.1002/anie.202003895 10.1039/C7CS00891K 10.1002/anie.201804882 10.1002/adma.201701460 10.1016/j.biomaterials.2020.120636 10.1002/smll.201803791 10.1002/smll.202103569 10.1002/smtd.202201457 10.1038/s41551-020-0527-8 10.3389/fbioe.2022.836468 10.1016/j.jconrel.2016.11.015 10.1021/acs.analchem.7b04197 10.1016/j.biomaterials.2017.11.015 10.3390/ijms232213735 10.1002/adfm.201600722 10.1186/s12967-022-03851-4 10.1016/j.pharmthera.2022.108303 10.1016/j.cej.2020.127747 10.1002/adma.202208553 10.1002/adfm.202100227 10.1002/adma.201601902 10.1002/smll.202206211 10.3390/cancers14143321 10.1016/j.nantod.2020.100851 10.1039/D0NR08757B 10.1002/adfm.201900004 10.1002/smtd.202001212 10.1021/acsnano.8b07045 10.1016/j.ijpharm.2019.118841 10.1021/acs.nanolett.1c00488 10.1016/j.bios.2022.114041 10.3847/1538-4357/ab5f08 10.1038/s41571-021-00539-4 10.1038/s41578-021-00328-6 10.1073/pnas.1619302114 10.1021/jacs.6b11382 10.1021/acs.nanolett.2c00899 10.1038/natrevmats.2017.14 10.1002/adtp.202200020 10.1002/adma.202200062 10.1016/j.apsb.2020.10.020 10.1039/D2SC00459C 10.1021/acsami.1c17642 10.1016/j.biomaterials.2020.120357 10.1039/C9NR09235H 10.1016/j.cej.2021.128880 10.1016/j.biomaterials.2017.12.003 10.1073/pnas.1700340114 10.1002/anie.201803321 10.1002/adfm.202009314 10.1073/pnas.1701976114 10.1007/s10555-019-09796-3 10.1038/s41578-021-00315-x 10.1016/j.biomaterials.2017.06.031 10.1002/advs.201901724 10.1016/j.apsb.2022.11.001 10.1016/j.biomaterials.2021.120807 10.1016/j.jconrel.2022.07.018 10.1002/advs.201600356 10.1016/j.cej.2021.129535 10.4103/ccd.ccd_510_20 10.1038/ncomms12499 10.1016/j.biomaterials.2020.120227 10.1002/adma.201802896 |
ContentType | Journal Article |
Copyright | 2023 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202300078 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
ExternalDocumentID | 37226364 10_1002_smll_202300078 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Shenzhen Bay Laboratory Open Fund grantid: SZBL2020090501002 – fundername: Common University Innovation Team Project of Guangdong grantid: 2021KCXTD041 – fundername: National Natural Science Foundation of China grantid: 51972055 – fundername: Shenzhen Pengcheng Scholar Program |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAYXX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CITATION CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c323t-19d12e2f916a0d6da0b6bc99f8ebce50ffd2a3101d39e8ae0d86f47c998340c73 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 18:52:37 EDT 2025 Fri Jul 25 12:06:37 EDT 2025 Fri May 09 07:52:58 EDT 2025 Tue Jul 01 02:54:34 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | theranostics tumor microenvironments photothermal therapies photodynamic therapies phototherapies |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c323t-19d12e2f916a0d6da0b6bc99f8ebce50ffd2a3101d39e8ae0d86f47c998340c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2616-5877 |
PMID | 37226364 |
PQID | 2864079622 |
PQPubID | 1046358 |
ParticipantIDs | proquest_miscellaneous_2819277426 proquest_journals_2864079622 pubmed_primary_37226364 crossref_primary_10_1002_smll_202300078 crossref_citationtrail_10_1002_smll_202300078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_29_1 e_1_2_11_125_2 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_102_1 e_1_2_11_140_1 e_1_2_11_81_1 e_1_2_11_89_2 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_89_1 e_1_2_11_43_1 e_1_2_11_113_3 e_1_2_11_17_1 e_1_2_11_113_2 e_1_2_11_136_1 e_1_2_11_113_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_28_2 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_28_1 e_1_2_11_5_1 Gao Y. (e_1_2_11_44_2) 2022; 2022 e_1_2_11_141_1 e_1_2_11_80_1 e_1_2_11_88_3 e_1_2_11_88_1 e_1_2_11_88_2 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_39_3 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_39_1 e_1_2_11_39_2 e_1_2_11_72_1 e_1_2_11_57_1 e_1_2_11_34_3 e_1_2_11_34_2 e_1_2_11_72_2 e_1_2_11_11_2 e_1_2_11_34_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_104_1 e_1_2_11_127_1 e_1_2_11_2_2 e_1_2_11_2_1 e_1_2_11_142_1 e_1_2_11_83_1 e_1_2_11_60_2 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_2 e_1_2_11_68_1 e_1_2_11_83_2 e_1_2_11_22_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_34_4 e_1_2_11_19_1 e_1_2_11_130_1 Yang Z. (e_1_2_11_54_1) 2022; 2022 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_117_2 e_1_2_11_33_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_105_2 e_1_2_11_3_1 e_1_2_11_143_1 e_1_2_11_143_2 e_1_2_11_120_1 e_1_2_11_82_1 Yu W. (e_1_2_11_58_1) 2022; 2022 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_105_3 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_2 e_1_2_11_116_1 e_1_2_11_131_1 Sun J. (e_1_2_11_99_1) 2020; 127 e_1_2_11_36_1 e_1_2_11_13_2 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_118_2 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_118_3 e_1_2_11_25_3 e_1_2_11_25_2 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_144_1 e_1_2_11_47_1 e_1_2_11_24_2 e_1_2_11_62_2 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_85_1 e_1_2_11_117_1 e_1_2_11_36_2 e_1_2_11_59_1 e_1_2_11_59_2 e_1_2_11_132_1 e_1_2_11_132_2 e_1_2_11_50_1 e_1_2_11_35_2 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_96_1 e_1_2_11_119_2 e_1_2_11_24_6 e_1_2_11_24_5 e_1_2_11_24_4 e_1_2_11_24_3 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_24_9 e_1_2_11_1_1 e_1_2_11_24_8 e_1_2_11_24_7 e_1_2_11_122_2 e_1_2_11_61_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_107_1 e_1_2_11_9_2 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_84_1 e_1_2_11_110_2 e_1_2_11_110_1 e_1_2_11_133_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_99_2 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_146_2 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_100_2 e_1_2_11_123_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_64_1 e_1_2_11_111_5 e_1_2_11_111_4 e_1_2_11_134_3 e_1_2_11_15_1 e_1_2_11_134_4 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_134_2 e_1_2_11_111_3 e_1_2_11_111_2 e_1_2_11_90_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_52_2 e_1_2_11_52_3 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_37_1 e_1_2_11_135_1 e_1_2_11_112_1 |
References_xml | – ident: e_1_2_11_20_1 doi: 10.1002/adfm.202102160 – ident: e_1_2_11_93_1 doi: 10.1021/acsnano.6b05070 – ident: e_1_2_11_113_1 doi: 10.1038/s41467-019-11269-8 – ident: e_1_2_11_83_2 doi: 10.1021/acsami.6b14446 – ident: e_1_2_11_62_2 doi: 10.3390/ijms23094493 – ident: e_1_2_11_120_1 doi: 10.1016/j.nantod.2021.101174 – ident: e_1_2_11_39_1 doi: 10.1002/adfm.202105837 – ident: e_1_2_11_3_1 doi: 10.1002/adfm.202003891 – ident: e_1_2_11_23_1 doi: 10.1002/adhm.202202085 – ident: e_1_2_11_91_1 doi: 10.1002/adfm.201604053 – ident: e_1_2_11_40_1 doi: 10.1002/adma.202109920 – ident: e_1_2_11_138_1 doi: 10.1021/acsami.0c12580 – ident: e_1_2_11_110_1 doi: 10.1146/annurev-pathol-042020-042741 – ident: e_1_2_11_79_1 doi: 10.3390/molecules28031447 – ident: e_1_2_11_4_1 doi: 10.1016/j.ccr.2019.05.016 – ident: e_1_2_11_24_3 doi: 10.1021/acsnano.8b06478 – ident: e_1_2_11_55_1 doi: 10.1186/s12935-022-02599-7 – ident: e_1_2_11_14_1 doi: 10.1021/acsnano.0c03080 – ident: e_1_2_11_94_1 doi: 10.1021/jacs.2c13222 – ident: e_1_2_11_83_1 doi: 10.1021/jacs.7b08900 – ident: e_1_2_11_41_1 doi: 10.1039/D1NR03246A – ident: e_1_2_11_99_2 doi: 10.1016/j.trsl.2020.11.012 – ident: e_1_2_11_109_1 doi: 10.1002/adma.202108908 – ident: e_1_2_11_115_1 doi: 10.1021/acsami.2c18371 – volume: 2022 year: 2022 ident: e_1_2_11_44_2 publication-title: J. Immunol. Res. – ident: e_1_2_11_100_2 doi: 10.1016/j.clbc.2017.11.022 – ident: e_1_2_11_118_2 doi: 10.1016/j.pdpdt.2018.07.007 – ident: e_1_2_11_35_2 doi: 10.1039/D0NR09135A – ident: e_1_2_11_34_3 doi: 10.1002/smll.201903473 – ident: e_1_2_11_117_2 doi: 10.1002/adma.202208555 – ident: e_1_2_11_104_1 doi: 10.3390/nano12091475 – ident: e_1_2_11_15_1 doi: 10.1016/j.biomaterials.2020.120454 – ident: e_1_2_11_43_1 doi: 10.3390/medicina56010015 – ident: e_1_2_11_47_1 doi: 10.1093/nsr/nwx062 – ident: e_1_2_11_88_3 doi: 10.1038/s41568-018-0037-0 – ident: e_1_2_11_72_2 doi: 10.1021/acsnano.1c03072 – ident: e_1_2_11_11_1 doi: 10.1039/C6CS00592F – ident: e_1_2_11_48_1 doi: 10.1038/s41389-017-0011-9 – ident: e_1_2_11_1_1 doi: 10.1021/acs.chemrev.7b00258 – ident: e_1_2_11_111_3 doi: 10.1002/smtd.202201404 – ident: e_1_2_11_147_1 doi: 10.1016/j.biomaterials.2017.12.021 – ident: e_1_2_11_6_1 doi: 10.1016/j.nantod.2021.101162 – ident: e_1_2_11_136_1 doi: 10.1038/s41467-021-24961-5 – ident: e_1_2_11_143_2 doi: 10.1039/D1CS01070K – ident: e_1_2_11_92_1 doi: 10.1039/C8CC05136D – ident: e_1_2_11_56_1 doi: 10.3390/cancers14153570 – ident: e_1_2_11_37_1 doi: 10.1021/acs.analchem.1c01713 – volume: 2022 year: 2022 ident: e_1_2_11_58_1 publication-title: Oxid. Med. Cell. Longevity – ident: e_1_2_11_69_1 doi: 10.1002/adma.202109609 – ident: e_1_2_11_24_1 doi: 10.1016/j.nantod.2021.101083 – ident: e_1_2_11_70_1 doi: 10.1021/acsnano.6b00870 – ident: e_1_2_11_88_1 doi: 10.1002/anie.201610682 – ident: e_1_2_11_61_1 doi: 10.3390/cancers14215414 – ident: e_1_2_11_19_1 doi: 10.1039/D0CS01370F – ident: e_1_2_11_128_1 doi: 10.1038/nrc.2016.108 – ident: e_1_2_11_24_9 doi: 10.1021/acsami.2c16667 – ident: e_1_2_11_111_5 doi: 10.3389/fbioe.2021.689245 – ident: e_1_2_11_65_1 doi: 10.1002/advs.202103836 – ident: e_1_2_11_125_1 doi: 10.1021/acs.chemmater.1c03169 – ident: e_1_2_11_140_1 doi: 10.1039/C8CS00234G – ident: e_1_2_11_63_1 doi: 10.1002/smtd.202101437 – ident: e_1_2_11_145_1 doi: 10.1002/adma.201602193 – ident: e_1_2_11_103_1 doi: 10.1021/acs.nanolett.6b02365 – ident: e_1_2_11_46_1 doi: 10.3390/cancers11101460 – ident: e_1_2_11_146_2 doi: 10.1016/j.nantod.2020.101046 – ident: e_1_2_11_117_1 doi: 10.1002/smll.202205694 – ident: e_1_2_11_72_1 doi: 10.1002/adma.201606086 – ident: e_1_2_11_2_1 doi: 10.1039/D0CS00215A – ident: e_1_2_11_36_1 doi: 10.1002/adfm.202001566 – ident: e_1_2_11_105_1 doi: 10.7150/jca.17648 – ident: e_1_2_11_85_1 doi: 10.1021/acs.accounts.7b00294 – ident: e_1_2_11_28_2 doi: 10.1002/smll.201902926 – ident: e_1_2_11_35_1 doi: 10.1002/anie.202009263 – ident: e_1_2_11_31_1 doi: 10.1002/adhm.202102073 – ident: e_1_2_11_60_2 doi: 10.3892/ol.2021.12930 – ident: e_1_2_11_89_2 doi: 10.3390/ijms24032606 – ident: e_1_2_11_64_1 doi: 10.1039/D2CC02759C – ident: e_1_2_11_16_1 doi: 10.1021/acs.langmuir.1c03331 – ident: e_1_2_11_119_2 doi: 10.1002/adma.202203309 – ident: e_1_2_11_9_1 doi: 10.1021/acs.nanolett.9b01458 – ident: e_1_2_11_24_4 doi: 10.1016/j.colsurfb.2021.112164 – ident: e_1_2_11_60_1 doi: 10.1093/carcin/bgz174 – ident: e_1_2_11_121_1 doi: 10.1038/ncomms14998 – ident: e_1_2_11_24_2 doi: 10.1002/anie.202106750 – ident: e_1_2_11_113_3 doi: 10.1002/adfm.201909745 – ident: e_1_2_11_10_1 doi: 10.1002/adma.201904337 – ident: e_1_2_11_96_1 doi: 10.1039/D1CS00307K – ident: e_1_2_11_59_2 doi: 10.3892/or.2020.7632 – ident: e_1_2_11_38_1 doi: 10.1016/j.snb.2022.132311 – ident: e_1_2_11_24_6 doi: 10.1016/j.jconrel.2021.09.005 – ident: e_1_2_11_2_2 doi: 10.1039/C8CS00618K – ident: e_1_2_11_107_1 doi: 10.1002/adma.201706090 – ident: e_1_2_11_139_1 doi: 10.1002/adfm.202008362 – ident: e_1_2_11_39_3 doi: 10.1021/acs.analchem.1c02625 – ident: e_1_2_11_126_1 doi: 10.1039/D1NR03260G – ident: e_1_2_11_44_1 doi: 10.3390/ijms21218363 – ident: e_1_2_11_141_1 doi: 10.1021/acsnano.8b00932 – ident: e_1_2_11_13_2 doi: 10.1126/sciadv.abe3588 – ident: e_1_2_11_21_1 doi: 10.1002/smll.201800678 – ident: e_1_2_11_25_3 doi: 10.1039/C9TB02268F – ident: e_1_2_11_112_1 doi: 10.1002/advs.202104793 – ident: e_1_2_11_22_1 doi: 10.1021/acs.nanolett.0c02272 – ident: e_1_2_11_101_1 doi: 10.1038/s41565-021-00898-0 – ident: e_1_2_11_59_1 doi: 10.1111/jop.12936 – ident: e_1_2_11_95_1 doi: 10.1002/smll.202003000 – ident: e_1_2_11_67_1 doi: 10.1021/acsnano.6b06796 – ident: e_1_2_11_51_1 doi: 10.1080/10715762.2022.2133704 – volume: 2022 year: 2022 ident: e_1_2_11_54_1 publication-title: Oxid. Med. Cell. Longevity – ident: e_1_2_11_146_1 doi: 10.1039/C9CS00725C – ident: e_1_2_11_113_2 doi: 10.1002/adma.202003458 – ident: e_1_2_11_17_1 doi: 10.1002/adfm.202209748 – ident: e_1_2_11_26_1 doi: 10.1016/j.cej.2020.124253 – ident: e_1_2_11_12_1 doi: 10.1016/j.nantod.2018.06.008 – ident: e_1_2_11_74_1 doi: 10.1146/annurev-physiol-021119-034627 – ident: e_1_2_11_118_3 doi: 10.1016/j.pdpdt.2018.02.021 – ident: e_1_2_11_77_1 doi: 10.1038/s41551-017-0057 – ident: e_1_2_11_34_1 doi: 10.1002/anie.201810082 – ident: e_1_2_11_52_1 doi: 10.3389/fimmu.2022.882718 – ident: e_1_2_11_7_1 doi: 10.1016/j.biomaterials.2021.120945 – ident: e_1_2_11_39_2 doi: 10.1038/s41467-019-14199-7 – ident: e_1_2_11_34_4 doi: 10.1021/acsami.0c08659 – ident: e_1_2_11_98_1 doi: 10.3390/molecules27113389 – ident: e_1_2_11_133_1 doi: 10.1038/s41578-020-00269-6 – ident: e_1_2_11_116_1 doi: 10.1002/advs.202104182 – ident: e_1_2_11_29_1 doi: 10.7150/thno.26607 – ident: e_1_2_11_137_1 doi: 10.1039/D0NR08831E – ident: e_1_2_11_34_2 doi: 10.1021/acs.nanolett.8b02767 – ident: e_1_2_11_52_2 doi: 10.3389/fphys.2022.989793 – ident: e_1_2_11_78_1 doi: 10.2174/1389450120666181123122406 – ident: e_1_2_11_87_1 doi: 10.1002/adma.201808325 – ident: e_1_2_11_81_1 doi: 10.1002/smll.201703400 – ident: e_1_2_11_62_1 doi: 10.3389/fimmu.2022.883683 – ident: e_1_2_11_88_2 doi: 10.1016/j.chempr.2022.03.009 – ident: e_1_2_11_52_3 doi: 10.1186/s12943-022-01668-9 – ident: e_1_2_11_71_1 doi: 10.1002/adma.202008540 – ident: e_1_2_11_142_1 doi: 10.1088/1748-605X/abfff1 – ident: e_1_2_11_132_1 doi: 10.1038/s42003-020-1070-6 – ident: e_1_2_11_24_7 doi: 10.1016/j.actbio.2021.01.015 – ident: e_1_2_11_5_1 doi: 10.1038/natrevmats.2017.24 – ident: e_1_2_11_9_2 doi: 10.1002/anie.201805138 – ident: e_1_2_11_18_1 doi: 10.1002/anie.202003895 – ident: e_1_2_11_90_1 doi: 10.1039/C7CS00891K – ident: e_1_2_11_114_1 doi: 10.1002/anie.201804882 – ident: e_1_2_11_134_3 doi: 10.1002/adma.201701460 – ident: e_1_2_11_75_1 doi: 10.1016/j.biomaterials.2020.120636 – ident: e_1_2_11_105_2 doi: 10.1002/smll.201803791 – ident: e_1_2_11_108_1 doi: 10.1002/smll.202103569 – ident: e_1_2_11_111_2 doi: 10.1002/smtd.202201457 – ident: e_1_2_11_106_1 doi: 10.1038/s41551-020-0527-8 – volume: 127 year: 2020 ident: e_1_2_11_99_1 publication-title: Anal. Chem. – ident: e_1_2_11_24_5 doi: 10.3389/fbioe.2022.836468 – ident: e_1_2_11_66_1 doi: 10.1016/j.jconrel.2016.11.015 – ident: e_1_2_11_33_1 doi: 10.1021/acs.analchem.7b04197 – ident: e_1_2_11_122_1 doi: 10.1016/j.biomaterials.2017.11.015 – ident: e_1_2_11_68_2 doi: 10.3390/ijms232213735 – ident: e_1_2_11_131_1 doi: 10.1002/adfm.201600722 – ident: e_1_2_11_89_1 doi: 10.1186/s12967-022-03851-4 – ident: e_1_2_11_50_1 doi: 10.1016/j.pharmthera.2022.108303 – ident: e_1_2_11_13_1 doi: 10.1016/j.cej.2020.127747 – ident: e_1_2_11_119_1 doi: 10.1002/adma.202208553 – ident: e_1_2_11_73_1 doi: 10.1002/adfm.202100227 – ident: e_1_2_11_122_2 doi: 10.1002/adma.201601902 – ident: e_1_2_11_11_2 doi: 10.1002/smll.202206211 – ident: e_1_2_11_57_1 doi: 10.3390/cancers14143321 – ident: e_1_2_11_8_1 doi: 10.1016/j.nantod.2020.100851 – ident: e_1_2_11_127_1 doi: 10.1039/D0NR08757B – ident: e_1_2_11_82_1 doi: 10.1002/adfm.201900004 – ident: e_1_2_11_105_3 doi: 10.1002/smtd.202001212 – ident: e_1_2_11_25_2 doi: 10.1021/acsnano.8b07045 – ident: e_1_2_11_76_1 doi: 10.1016/j.ijpharm.2019.118841 – ident: e_1_2_11_25_1 doi: 10.1021/acs.nanolett.1c00488 – ident: e_1_2_11_100_1 doi: 10.1016/j.bios.2022.114041 – ident: e_1_2_11_53_1 doi: 10.3847/1538-4357/ab5f08 – ident: e_1_2_11_49_1 doi: 10.1038/s41571-021-00539-4 – ident: e_1_2_11_86_1 doi: 10.1038/s41578-021-00328-6 – ident: e_1_2_11_143_1 doi: 10.1073/pnas.1619302114 – ident: e_1_2_11_144_1 doi: 10.1021/jacs.6b11382 – ident: e_1_2_11_116_2 doi: 10.1021/acs.nanolett.2c00899 – ident: e_1_2_11_134_4 doi: 10.1038/natrevmats.2017.14 – ident: e_1_2_11_111_1 doi: 10.1002/adtp.202200020 – ident: e_1_2_11_28_1 doi: 10.1002/adma.202200062 – ident: e_1_2_11_110_2 doi: 10.1016/j.apsb.2020.10.020 – ident: e_1_2_11_135_1 doi: 10.1039/D2SC00459C – ident: e_1_2_11_27_1 doi: 10.1021/acsami.1c17642 – ident: e_1_2_11_84_1 doi: 10.1016/j.biomaterials.2020.120357 – ident: e_1_2_11_36_2 doi: 10.1039/C9NR09235H – ident: e_1_2_11_80_1 doi: 10.1016/j.cej.2021.128880 – ident: e_1_2_11_24_8 doi: 10.1016/j.biomaterials.2017.12.003 – ident: e_1_2_11_102_1 doi: 10.1073/pnas.1700340114 – ident: e_1_2_11_32_1 doi: 10.1002/anie.201803321 – ident: e_1_2_11_124_1 doi: 10.1002/adfm.202009314 – ident: e_1_2_11_30_1 doi: 10.1073/pnas.1701976114 – ident: e_1_2_11_45_1 doi: 10.1007/s10555-019-09796-3 – ident: e_1_2_11_134_1 doi: 10.1038/s41578-021-00315-x – ident: e_1_2_11_130_1 doi: 10.1016/j.biomaterials.2017.06.031 – ident: e_1_2_11_97_1 doi: 10.1002/advs.201901724 – ident: e_1_2_11_111_4 doi: 10.1016/j.apsb.2022.11.001 – ident: e_1_2_11_125_2 doi: 10.1016/j.biomaterials.2021.120807 – ident: e_1_2_11_68_1 doi: 10.1016/j.jconrel.2022.07.018 – ident: e_1_2_11_123_1 doi: 10.1002/advs.201600356 – ident: e_1_2_11_42_1 doi: 10.1016/j.cej.2021.129535 – ident: e_1_2_11_118_1 doi: 10.4103/ccd.ccd_510_20 – ident: e_1_2_11_129_1 doi: 10.1038/ncomms12499 – ident: e_1_2_11_132_2 doi: 10.1016/j.biomaterials.2020.120227 – ident: e_1_2_11_134_2 doi: 10.1002/adma.201802896 |
SSID | ssj0031247 |
Score | 2.5138195 |
SecondaryResourceType | review_article |
Snippet | Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | e2300078 |
SubjectTerms | Hydrogen peroxide Hypoxia Infrared absorption Nanoparticles Nanotechnology Near infrared radiation Side effects Tumors |
Title | Three Strategies in Engineering Nanomedicines for Tumor Microenvironment‐Enabled Phototherapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37226364 https://www.proquest.com/docview/2864079622 https://www.proquest.com/docview/2819277426 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuMAB8U3HQEZC4lAFXNtz4iNCHdU0BoJU9BYlsbNFWhNo08M4ceTI38hfwrOdpC4wNLhElWO5kd_Pz-_D72eEnmYyjaTOacAl4QHnnIEeTMMgi4hQnOQhLSzb57GYzvjhfH8-GHzzTi2tm-x5_uWPdSX_I1VoA7maKtl_kGw_KDTAb5AvPEHC8LykjJfaHAXs6B5M8MIjGDSqs-6S55Z3YRSvF_B8Y07heSVu_YmHia2kUqN3p3XTlmZtpX0_LEwmG4zSj7qsTnVp7tcYKUuzuDwxQZOVu6fxtdH31bkXZpi6ULcJ36TtZgmt8zKtR4dlvzXA7LrodVpu8OaKR6rP3Sbbxigo6w9hXVYTehoY7IvAkKS5Dcpva7-5U9vSg6cjjvltO3D0sqvFmUkygbNlDKLNxtcl-4_fJgezo6MknszjK-gqBYfDOufveyIyBlaQvaan-7iO_pPQF9ujb5s3F_gs1naJb6IbrdOBXzoE3UIDXd1G1z2k3EGJxRLeYAmXFfZ64C0sYcAStljCv2Lpx9fvLYqwj6K7aHYwiV9Ng_byjSBnlDXBWKox1bQA9yElSqiUZCLLpSwineV6nxSFoin4BmPFpI5STVQkCh5Cj4iZNc7uoZ2qrvQDhEWkmGAwDpWKj3kYEUZDkTPFiqgQBRmioJuzJG-Z6c0FKWeJ49SmiZnjpJ_jIXrW9__kOFku7LnXiSBp1-0qoZFJXktB6RA96V-DVjWpsrTS9dr0Ac8HPCMqhui-E13_VywEl4UJvvv3wR-ia5ulsId2muVaPwIDtskeW2z9BKfvndA |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+Strategies+in+Engineering+Nanomedicines+for+Tumor+Microenvironment%E2%80%90Enabled+Phototherapy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=He%2C+Shiliang&rft.au=Xiao+Jia&rft.au=Feng%2C+Sai&rft.au=Hu%2C+Junqing&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=37&rft_id=info:doi/10.1002%2Fsmll.202300078&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |