Vibration of 1.8-in Hard Disk Drive Spindle Motors at Various Ambient Temperatures

In this paper, vibration of 1.8-in hard disk drive (HDD) spindle motors is studied experimentally and theoretically. In the experimental study, vibration of 1.8-in HDD motors is measured at 5degC, 25degC, and 70degC in a thermal chamber. Experimental results reveal two important phenomena. First, vi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 43; no. 9; pp. 3716 - 3720
Main Authors Tsung-Liang Wu, Shen, I.Y., Okamoto, F., Asada, T.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, vibration of 1.8-in hard disk drive (HDD) spindle motors is studied experimentally and theoretically. In the experimental study, vibration of 1.8-in HDD motors is measured at 5degC, 25degC, and 70degC in a thermal chamber. Experimental results reveal two important phenomena. First, vibration of 1.8-in HDD spindle motors is dominated by a (0,0) unbalanced mode that has a significant bending deformation of the base plate. Second, the natural frequency of the (0,0) unbalanced mode and the static gain of the frequency response function change significantly as the ambient temperature varies. To explain these experimental observations, we apply a mathematical model developed at the University of Washington to analyze the vibration of the 1.8-in HDD spindle motors. The analysis shows that (0,0) unbalanced mode shifts its natural frequency because membrane stresses are developed in the base plate during temperature changes as a result of a significant mismatch of coefficients of thermal expansion between the base plate and the fixture. Moreover, the change of the static gain results from reduction of fluid-dynamic bearing coefficients as the temperature varies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2007.902976