MicronNet: A Highly Compact Deep Convolutional Neural Network Architecture for Real-Time Embedded Traffic Sign Classification
Traffic sign recognition is a very important computer vision task for a number of real-world applications such as intelligent transportation surveillance and analysis. While deep neural networks have been demonstrated in recent years to provide the state-of-the-art performance traffic sign recogniti...
Saved in:
Published in | IEEE access Vol. 6; pp. 59803 - 59810 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2018.2873948 |
Cover
Loading…
Abstract | Traffic sign recognition is a very important computer vision task for a number of real-world applications such as intelligent transportation surveillance and analysis. While deep neural networks have been demonstrated in recent years to provide the state-of-the-art performance traffic sign recognition, a key challenge for enabling the widespread deployment of deep neural networks for embedded traffic sign recognition is the high computational and memory requirements of such networks. As a consequence, there are significant benefits in investigating compact deep neural network architectures for traffic sign recognition that are better suited for embedded devices. In this paper, we introduce MicronNet, a highly compact deep convolutional neural network for real-time embedded traffic sign recognition designed based on macroarchitecture design principles (e.g., spectral macroarchitecture augmentation, parameter precision optimization, etc.) as well as numerical microarchitecture optimization strategies. The resulting overall architecture of MicronNet is thus designed with as few parameters and computations as possible while maintaining recognition performance, leading to optimized information density of the proposed network. The resulting MicronNet possesses a model size of just ~1 MB and ~5 10 000 parameters (<inline-formula> <tex-math notation="LaTeX">\sim 27\times </tex-math></inline-formula> fewer parameters than state-of-the-art) while still achieving a human performance level top-1 accuracy of 98.9% on the German traffic sign recognition benchmark. Furthermore, the MicronNet requires just ~10 million multiply-accumulate operations to perform inference, and has a time-to-compute of just 32.19 ms on a Cortex-A53 high efficiency processor. These experimental results show that the highly compact, optimized deep neural network architectures can be designed for real-time traffic sign recognition that are well-suited for embedded scenarios. |
---|---|
AbstractList | Traffic sign recognition is a very important computer vision task for a number of real-world applications such as intelligent transportation surveillance and analysis. While deep neural networks have been demonstrated in recent years to provide the state-of-the-art performance traffic sign recognition, a key challenge for enabling the widespread deployment of deep neural networks for embedded traffic sign recognition is the high computational and memory requirements of such networks. As a consequence, there are significant benefits in investigating compact deep neural network architectures for traffic sign recognition that are better suited for embedded devices. In this paper, we introduce MicronNet, a highly compact deep convolutional neural network for real-time embedded traffic sign recognition designed based on macroarchitecture design principles (e.g., spectral macroarchitecture augmentation, parameter precision optimization, etc.) as well as numerical microarchitecture optimization strategies. The resulting overall architecture of MicronNet is thus designed with as few parameters and computations as possible while maintaining recognition performance, leading to optimized information density of the proposed network. The resulting MicronNet possesses a model size of just 1 MB and 5 10000 parameters ( 27× fewer parameters than state-of-the-art) while still achieving a human performance level top-1 accuracy of 98.9% on the German traffic sign recognition benchmark. Furthermore, the MicronNet requires just 10 million multiply-accumulate operations to perform inference, and has a time-to-compute of just 32.19 ms on a Cortex-A53 high efficiency processor. These experimental results show that the highly compact, optimized deep neural network architectures can be designed for real-time traffic sign recognition that are well-suited for embedded scenarios. Traffic sign recognition is a very important computer vision task for a number of real-world applications such as intelligent transportation surveillance and analysis. While deep neural networks have been demonstrated in recent years to provide the state-of-the-art performance traffic sign recognition, a key challenge for enabling the widespread deployment of deep neural networks for embedded traffic sign recognition is the high computational and memory requirements of such networks. As a consequence, there are significant benefits in investigating compact deep neural network architectures for traffic sign recognition that are better suited for embedded devices. In this paper, we introduce MicronNet, a highly compact deep convolutional neural network for real-time embedded traffic sign recognition designed based on macroarchitecture design principles (e.g., spectral macroarchitecture augmentation, parameter precision optimization, etc.) as well as numerical microarchitecture optimization strategies. The resulting overall architecture of MicronNet is thus designed with as few parameters and computations as possible while maintaining recognition performance, leading to optimized information density of the proposed network. The resulting MicronNet possesses a model size of just ~1 MB and ~5 10 000 parameters (<inline-formula> <tex-math notation="LaTeX">\sim 27\times </tex-math></inline-formula> fewer parameters than state-of-the-art) while still achieving a human performance level top-1 accuracy of 98.9% on the German traffic sign recognition benchmark. Furthermore, the MicronNet requires just ~10 million multiply-accumulate operations to perform inference, and has a time-to-compute of just 32.19 ms on a Cortex-A53 high efficiency processor. These experimental results show that the highly compact, optimized deep neural network architectures can be designed for real-time traffic sign recognition that are well-suited for embedded scenarios. |
Author | Shafiee, Mohammad Javad Wong, Alexander St. Jules, Michael |
Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0002-5295-2797 surname: Wong fullname: Wong, Alexander email: a28wong@uwaterloo.ca organization: Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 2 givenname: Mohammad Javad orcidid: 0000-0001-5989-8255 surname: Shafiee fullname: Shafiee, Mohammad Javad organization: Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 3 givenname: Michael surname: St. Jules fullname: St. Jules, Michael organization: DarwinAI Corp., Waterloo, ON, Canada |
BookMark | eNp9kU1vEzEQhi1UJErpL-jFEucN9tq78XKLltBWaovUpGfLH-PUYbMOXi9VD_z3OtmCEAd8Gc9onnfsed-jkz70gNAFJTNKSfNp0bbL1WpWEipmpZizhos36LSkdVOwitUnf93fofNh2JJ8RC5V81P069abGPo7SJ_xAl_5zWP3jNuw2yuT8BeAfU76n6Ebkw-96vAdjPEY0lOI3_EimkefwKQxAnYh4ntQXbH2O8DLnQZrweJ1VM55g1d-0-O2U8Pgc6oOgh_QW6e6Ac5f4xl6-Lpct1fFzbfL63ZxUxhWMlFQQymfE1IBIaVriHHcgtaWa2LBGVLWVgtrtKi10SCYdrqiPIdGU01txc7Q9aRrg9rKffQ7FZ9lUF4eCyFupIrJmw4kn5fEkVrkSZQ7VzaEglWWC0aUMHWTtT5OWvsYfowwJLkNY8y7GWTJq5rUmeW5q5m68naHIYKTxqfjn1NUvpOUyIN5cjJPHsyTr-Zllv3D_n7x_6mLifIA8IcQPDstBHsB2jeodw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_TITS_2024_3457583 crossref_primary_10_1007_s11042_022_12219_1 crossref_primary_10_1016_j_cobeha_2019_07_008 crossref_primary_10_3390_computers14030088 crossref_primary_10_1109_ACCESS_2019_2912311 crossref_primary_10_3390_s20071974 crossref_primary_10_1109_TPAMI_2023_3331087 crossref_primary_10_1016_j_neucom_2024_128104 crossref_primary_10_1109_ACCESS_2022_3230282 crossref_primary_10_1109_ACCESS_2024_3459708 crossref_primary_10_1109_OJVT_2023_3326286 crossref_primary_10_3390_electronics12081802 crossref_primary_10_1007_s13042_020_01185_5 crossref_primary_10_1109_ACCESS_2022_3197906 crossref_primary_10_1016_j_ijtst_2022_06_002 crossref_primary_10_2139_ssrn_3996984 crossref_primary_10_1109_ACCESS_2019_2924947 crossref_primary_10_3390_s21030686 crossref_primary_10_1109_TVLSI_2024_3470834 crossref_primary_10_1049_iet_its_2019_0409 crossref_primary_10_1142_S0219691320500824 crossref_primary_10_1007_s10489_020_01801_5 crossref_primary_10_1016_j_neucom_2025_129402 crossref_primary_10_1109_JIOT_2024_3362851 crossref_primary_10_1049_iet_its_2018_5489 crossref_primary_10_1007_s11063_020_10211_0 crossref_primary_10_1016_j_ins_2021_12_097 crossref_primary_10_1142_S0218001422550072 crossref_primary_10_1109_TITS_2020_3009186 crossref_primary_10_1109_TPAMI_2022_3195616 |
Cites_doi | 10.1038/nature14539 10.1016/j.neunet.2012.02.016 10.1109/IJCNN.2013.6706811 10.1109/IJCNN.2011.6033589 10.1109/CVPR.2009.5206848 10.1016/j.neunet.2012.02.023 10.1016/j.robot.2016.07.003 10.1109/TITS.2014.2308281 10.1109/5.726791 10.1016/j.neunet.2018.01.005 10.1109/TGRS.2017.2755542 10.1109/ICCV.2015.123 10.1109/IJCNN.2011.6033395 10.1007/s11263-016-0955-9 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2018.2873948 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 59810 |
ExternalDocumentID | oai_doaj_org_article_4720f06800214ff2901edad4830a8c69 10_1109_ACCESS_2018_2873948 8481688 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3238-1c1147005e002f90cf4debbd4b0defc026db8dcb86bcbe83bfb5143bf9b1b1d53 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:24:14 EDT 2025 Mon Jun 30 05:53:00 EDT 2025 Tue Jul 01 02:17:51 EDT 2025 Thu Apr 24 23:03:13 EDT 2025 Wed Aug 27 02:49:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3238-1c1147005e002f90cf4debbd4b0defc026db8dcb86bcbe83bfb5143bf9b1b1d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5989-8255 0000-0002-5295-2797 |
OpenAccessLink | https://doaj.org/article/4720f06800214ff2901edad4830a8c69 |
PQID | 2456066804 |
PQPubID | 4845423 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2018_2873948 proquest_journals_2456066804 ieee_primary_8481688 crossref_citationtrail_10_1109_ACCESS_2018_2873948 doaj_primary_oai_doaj_org_article_4720f06800214ff2901edad4830a8c69 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180000 2018-00-00 20180101 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 20180000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 iandola (ref11) 2016 ref2 wu (ref24) 2016 ref1 wong (ref23) 2018 ref18 shafiee (ref19) 2017 hasanpour (ref8) 2018 howard (ref10) 2017 wong (ref22) 2018 ref26 ref25 ref20 ref21 redmon (ref16) 2016 cire?an (ref5) 2011 krizhevsky (ref13) 2012 ref7 ref9 ref3 ref6 canziani (ref4) 2017 sandler (ref17) 2018 |
References_xml | – year: 2017 ident: ref19 publication-title: Squishednets Squishing squeezenet further for edge device scenarios via deep evolutionary synthesis – year: 2016 ident: ref11 publication-title: SqueezeNet AlexNet-level accuracy with 50x fewer parameters and ¡0 5MB model size – start-page: 1918 year: 2011 ident: ref5 article-title: A committee of neural networks for traffic sign classification publication-title: Proc IEEE Int Joint Conf Neural Netw – ident: ref15 doi: 10.1038/nature14539 – start-page: 1097 year: 2012 ident: ref13 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc NIPS – year: 2018 ident: ref23 publication-title: Tiny SSD A tiny single-shot detection deep convolutional neural network for real-time embedded object detection – year: 2018 ident: ref17 publication-title: MobileNetV2 Inverted Residuals and Linear Bottlenecks – ident: ref21 doi: 10.1016/j.neunet.2012.02.016 – year: 2018 ident: ref8 publication-title: Towards principled design of deep convolutional networks Introducing SimpNet – ident: ref25 doi: 10.1109/IJCNN.2013.6706811 – ident: ref18 doi: 10.1109/IJCNN.2011.6033589 – ident: ref7 doi: 10.1109/CVPR.2009.5206848 – year: 2018 ident: ref22 publication-title: NetScore Towards universal metrics for large-scale performance analysis of deep neural networks for practical on-device edge usage – year: 2016 ident: ref24 publication-title: Squeezedet Unified small low power fully convolutional neural networks for real-time object detection for autonomous driving – ident: ref6 doi: 10.1016/j.neunet.2012.02.023 – ident: ref1 doi: 10.1016/j.robot.2016.07.003 – ident: ref12 doi: 10.1109/TITS.2014.2308281 – year: 2017 ident: ref4 publication-title: An analysis of deep neural network models for practical applications – ident: ref14 doi: 10.1109/5.726791 – ident: ref3 doi: 10.1016/j.neunet.2018.01.005 – ident: ref26 doi: 10.1109/TGRS.2017.2755542 – year: 2016 ident: ref16 publication-title: YOLO Real-Time Object Detection – ident: ref9 doi: 10.1109/ICCV.2015.123 – ident: ref20 doi: 10.1109/IJCNN.2011.6033395 – ident: ref2 doi: 10.1007/s11263-016-0955-9 – year: 2017 ident: ref10 publication-title: Mobilenets Efficient convolutional neural networks for mobile vision applications |
SSID | ssj0000816957 |
Score | 2.3404932 |
Snippet | Traffic sign recognition is a very important computer vision task for a number of real-world applications such as intelligent transportation surveillance and... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 59803 |
SubjectTerms | Artificial neural networks Computer architecture Computer vision Convolutional neural networks Deep neural network Electronic devices embedded Embedded systems Human performance Microarchitecture Microprocessors Network architecture Neural networks Object recognition Optimization Parameters Real time Real-time systems Traffic control traffic sign classification Traffic signs |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxQxDLbanuBAgYJYKCgHjp1tZueRhNuytKqQtgegUm_RJnEQokwrmK0EEv8dO5MdrQAhTvNQMsrIjh-x_RngpVLKp8pcROWLGslnNdHXhanCyuAKm1hygfPyvD27qN9eNpc7cDTWwiBiSj7DKd-mWH649ms-Kjtm6PdW613YJcdtqNUaz1O4gYRpVAYWKqU5ni8W9A-cvaWn5BdUhnv8bCmfhNGfm6r8IYmTejndh-VmYUNWyefpundT_-M3zMb_Xfl9uJftTDEfGOMB7GD3EO5uoQ8ewM8lJ-N159i_EnPBCR9X30WSD74XbxBv6KG7zaxJ32Icj3RJieNivhWCEGT6indkcxZcUiJOvjgkgRYEaUKGqBDvP33sROq_yZlJiRkewcXpyYfFWZG7MRS-Ir1elJ5cJ0WbFkmIRiN9rAM6F2onA0ZPvlxwOninW-cd6spFx8aYi8aVrgxN9Rj2uusOn4Agq7RRTkuUSIK6QmNIzsQYVGhimFXtBGYbMlmfocq5Y8aVTS6LNHagrWXa2kzbCRyNk24GpI5_D3_N9B-HMsx2ekF0s3nX2lrNZOTuJIwsFyPHnDGsQq0rudK-NRM4YFqPH8lknsDhhptsFgnfLEeYyb7Tsn7691nP4A4vcDjfOYS9_usan5PF07sXidV_Ae6W_pA priority: 102 providerName: IEEE |
Title | MicronNet: A Highly Compact Deep Convolutional Neural Network Architecture for Real-Time Embedded Traffic Sign Classification |
URI | https://ieeexplore.ieee.org/document/8481688 https://www.proquest.com/docview/2456066804 https://doaj.org/article/4720f06800214ff2901edad4830a8c69 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLHDy6mu0-knirVRFBDz7AW2iSiQi6Fq2CB_-7M9lYFgS9eFq6bNNNZjKPZub7GNuVUrrYmQsgXVYC5qw6uDLThR9pGEEVcmpwvrisz27L87vqrkP1RTVhLTxwu3AHpeyLQAQRBO4VAh37gR_5UhVipFwdW_fQ53WSqWiDVV7rSiaYoVzog8FwiDOiWi61j1lCoYnxp-OKImJ_olj5YZejszldZAspSuSD9u2W2Aw0y2y-gx24wj4vqJSuuYTJIR9wKtd4_OBxd7sJPwYY44fmPSkWjkUoHPESy775oHOAwDFw5VcYMWbUEMJPniygOfIc_RgBTPDrh_uGR_ZMqiuKolxlt6cnN8OzLHEpZK5Ar5zlDhMfiVsOcCGDFi6UHqz1pRUegsNMzFvlnVW1dRZUYYOlUMoGbXOb-6pYY7PNcwPrjGNMWUmrBAhAM1uA1mglQvDSV8H3i7rH-t_LalwCGie-i0cTEw6hTSsLQ7IwSRY9tjf90rjF2fj98SOS1_RRAsmON1B1TFId85fq9NgKSXs6CDEL1ArH3vqWvkkb-tXQ-TBGZ0qUG__x05tsjqbT_pezxWYnL2-wjdHNxO5ERd6JjYhf0VP01Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcoAeyqOgBgr4wLGb7mZfNrcQWgVocoBW6s2K7XGF2m4r2CAVif_OjNdZRYAQp33IXnk143l4Zr4BeF3XtQ2VuYi1TQokn1V5WyQqdwuFCyx9xgXOs3k1PS0-nJVnG7Df18IgYkg-wyHfhli-u7ZLPio7YOj3Sso7cJf0fpl11Vr9iQq3kFBlHaGFslQdjCcT-gvO35JD8gxyxV1-1tRPQOmPbVX-kMVBwRw9gNlqaV1eycVw2Zqh_fEbauP_rv0hbEdLU4w71ngEG9g8hq01_MEd-DnjdLxmju0bMRac8nF5K4KEsK14h3hDD833yJz0LUbyCJeQOi7Ga0EIQcav-ERWZ8JFJeLwyiCJNCdIFzJIhfj85bwRoQMn5yYFdngCp0eHJ5NpEvsxJDYnzZ5klpynmrYtkhj1KrW-cGiMK0zq0Fvy5pyRzhpZGWtQ5sYbNseMVyYzmSvzp7DZXDe4C4Ls0rI2MsUUSVTnqBRJGu9d7UrvRnk1gNGKTNpGsHLumXGpg9OSKt3RVjNtdaTtAPb7STcdVse_h79l-vdDGWg7vCC66bhvdVGPUs_9SRhbznuOOqNbuELm6ULaSg1gh2ndfySSeQB7K27SUSh80xxjJgtPpsWzv896BfemJ7Njffx-_vE53OfFdqc9e7DZfl3iC7J_WvMysP0vVbMB6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicronNet%3A+A+Highly+Compact+Deep+Convolutional+Neural+Network+Architecture+for+Real-Time+Embedded+Traffic+Sign+Classification&rft.jtitle=IEEE+access&rft.au=Wong%2C+Alexander&rft.au=Shafiee%2C+Mohammad+Javad&rft.au=St.+Jules%2C+Michael&rft.date=2018&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=59803&rft.epage=59810&rft_id=info:doi/10.1109%2FACCESS.2018.2873948&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2873948 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |