MicronNet: A Highly Compact Deep Convolutional Neural Network Architecture for Real-Time Embedded Traffic Sign Classification

Traffic sign recognition is a very important computer vision task for a number of real-world applications such as intelligent transportation surveillance and analysis. While deep neural networks have been demonstrated in recent years to provide the state-of-the-art performance traffic sign recogniti...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 6; pp. 59803 - 59810
Main Authors Wong, Alexander, Shafiee, Mohammad Javad, St. Jules, Michael
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2018.2873948

Cover

Loading…
Abstract Traffic sign recognition is a very important computer vision task for a number of real-world applications such as intelligent transportation surveillance and analysis. While deep neural networks have been demonstrated in recent years to provide the state-of-the-art performance traffic sign recognition, a key challenge for enabling the widespread deployment of deep neural networks for embedded traffic sign recognition is the high computational and memory requirements of such networks. As a consequence, there are significant benefits in investigating compact deep neural network architectures for traffic sign recognition that are better suited for embedded devices. In this paper, we introduce MicronNet, a highly compact deep convolutional neural network for real-time embedded traffic sign recognition designed based on macroarchitecture design principles (e.g., spectral macroarchitecture augmentation, parameter precision optimization, etc.) as well as numerical microarchitecture optimization strategies. The resulting overall architecture of MicronNet is thus designed with as few parameters and computations as possible while maintaining recognition performance, leading to optimized information density of the proposed network. The resulting MicronNet possesses a model size of just ~1 MB and ~5 10 000 parameters (<inline-formula> <tex-math notation="LaTeX">\sim 27\times </tex-math></inline-formula> fewer parameters than state-of-the-art) while still achieving a human performance level top-1 accuracy of 98.9% on the German traffic sign recognition benchmark. Furthermore, the MicronNet requires just ~10 million multiply-accumulate operations to perform inference, and has a time-to-compute of just 32.19 ms on a Cortex-A53 high efficiency processor. These experimental results show that the highly compact, optimized deep neural network architectures can be designed for real-time traffic sign recognition that are well-suited for embedded scenarios.
AbstractList Traffic sign recognition is a very important computer vision task for a number of real-world applications such as intelligent transportation surveillance and analysis. While deep neural networks have been demonstrated in recent years to provide the state-of-the-art performance traffic sign recognition, a key challenge for enabling the widespread deployment of deep neural networks for embedded traffic sign recognition is the high computational and memory requirements of such networks. As a consequence, there are significant benefits in investigating compact deep neural network architectures for traffic sign recognition that are better suited for embedded devices. In this paper, we introduce MicronNet, a highly compact deep convolutional neural network for real-time embedded traffic sign recognition designed based on macroarchitecture design principles (e.g., spectral macroarchitecture augmentation, parameter precision optimization, etc.) as well as numerical microarchitecture optimization strategies. The resulting overall architecture of MicronNet is thus designed with as few parameters and computations as possible while maintaining recognition performance, leading to optimized information density of the proposed network. The resulting MicronNet possesses a model size of just 1 MB and 5 10000 parameters ( 27× fewer parameters than state-of-the-art) while still achieving a human performance level top-1 accuracy of 98.9% on the German traffic sign recognition benchmark. Furthermore, the MicronNet requires just 10 million multiply-accumulate operations to perform inference, and has a time-to-compute of just 32.19 ms on a Cortex-A53 high efficiency processor. These experimental results show that the highly compact, optimized deep neural network architectures can be designed for real-time traffic sign recognition that are well-suited for embedded scenarios.
Traffic sign recognition is a very important computer vision task for a number of real-world applications such as intelligent transportation surveillance and analysis. While deep neural networks have been demonstrated in recent years to provide the state-of-the-art performance traffic sign recognition, a key challenge for enabling the widespread deployment of deep neural networks for embedded traffic sign recognition is the high computational and memory requirements of such networks. As a consequence, there are significant benefits in investigating compact deep neural network architectures for traffic sign recognition that are better suited for embedded devices. In this paper, we introduce MicronNet, a highly compact deep convolutional neural network for real-time embedded traffic sign recognition designed based on macroarchitecture design principles (e.g., spectral macroarchitecture augmentation, parameter precision optimization, etc.) as well as numerical microarchitecture optimization strategies. The resulting overall architecture of MicronNet is thus designed with as few parameters and computations as possible while maintaining recognition performance, leading to optimized information density of the proposed network. The resulting MicronNet possesses a model size of just ~1 MB and ~5 10 000 parameters (<inline-formula> <tex-math notation="LaTeX">\sim 27\times </tex-math></inline-formula> fewer parameters than state-of-the-art) while still achieving a human performance level top-1 accuracy of 98.9% on the German traffic sign recognition benchmark. Furthermore, the MicronNet requires just ~10 million multiply-accumulate operations to perform inference, and has a time-to-compute of just 32.19 ms on a Cortex-A53 high efficiency processor. These experimental results show that the highly compact, optimized deep neural network architectures can be designed for real-time traffic sign recognition that are well-suited for embedded scenarios.
Author Shafiee, Mohammad Javad
Wong, Alexander
St. Jules, Michael
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0002-5295-2797
  surname: Wong
  fullname: Wong, Alexander
  email: a28wong@uwaterloo.ca
  organization: Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 2
  givenname: Mohammad Javad
  orcidid: 0000-0001-5989-8255
  surname: Shafiee
  fullname: Shafiee, Mohammad Javad
  organization: Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 3
  givenname: Michael
  surname: St. Jules
  fullname: St. Jules, Michael
  organization: DarwinAI Corp., Waterloo, ON, Canada
BookMark eNp9kU1vEzEQhi1UJErpL-jFEucN9tq78XKLltBWaovUpGfLH-PUYbMOXi9VD_z3OtmCEAd8Gc9onnfsed-jkz70gNAFJTNKSfNp0bbL1WpWEipmpZizhos36LSkdVOwitUnf93fofNh2JJ8RC5V81P069abGPo7SJ_xAl_5zWP3jNuw2yuT8BeAfU76n6Ebkw-96vAdjPEY0lOI3_EimkefwKQxAnYh4ntQXbH2O8DLnQZrweJ1VM55g1d-0-O2U8Pgc6oOgh_QW6e6Ac5f4xl6-Lpct1fFzbfL63ZxUxhWMlFQQymfE1IBIaVriHHcgtaWa2LBGVLWVgtrtKi10SCYdrqiPIdGU01txc7Q9aRrg9rKffQ7FZ9lUF4eCyFupIrJmw4kn5fEkVrkSZQ7VzaEglWWC0aUMHWTtT5OWvsYfowwJLkNY8y7GWTJq5rUmeW5q5m68naHIYKTxqfjn1NUvpOUyIN5cjJPHsyTr-Zllv3D_n7x_6mLifIA8IcQPDstBHsB2jeodw
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TITS_2024_3457583
crossref_primary_10_1007_s11042_022_12219_1
crossref_primary_10_1016_j_cobeha_2019_07_008
crossref_primary_10_3390_computers14030088
crossref_primary_10_1109_ACCESS_2019_2912311
crossref_primary_10_3390_s20071974
crossref_primary_10_1109_TPAMI_2023_3331087
crossref_primary_10_1016_j_neucom_2024_128104
crossref_primary_10_1109_ACCESS_2022_3230282
crossref_primary_10_1109_ACCESS_2024_3459708
crossref_primary_10_1109_OJVT_2023_3326286
crossref_primary_10_3390_electronics12081802
crossref_primary_10_1007_s13042_020_01185_5
crossref_primary_10_1109_ACCESS_2022_3197906
crossref_primary_10_1016_j_ijtst_2022_06_002
crossref_primary_10_2139_ssrn_3996984
crossref_primary_10_1109_ACCESS_2019_2924947
crossref_primary_10_3390_s21030686
crossref_primary_10_1109_TVLSI_2024_3470834
crossref_primary_10_1049_iet_its_2019_0409
crossref_primary_10_1142_S0219691320500824
crossref_primary_10_1007_s10489_020_01801_5
crossref_primary_10_1016_j_neucom_2025_129402
crossref_primary_10_1109_JIOT_2024_3362851
crossref_primary_10_1049_iet_its_2018_5489
crossref_primary_10_1007_s11063_020_10211_0
crossref_primary_10_1016_j_ins_2021_12_097
crossref_primary_10_1142_S0218001422550072
crossref_primary_10_1109_TITS_2020_3009186
crossref_primary_10_1109_TPAMI_2022_3195616
Cites_doi 10.1038/nature14539
10.1016/j.neunet.2012.02.016
10.1109/IJCNN.2013.6706811
10.1109/IJCNN.2011.6033589
10.1109/CVPR.2009.5206848
10.1016/j.neunet.2012.02.023
10.1016/j.robot.2016.07.003
10.1109/TITS.2014.2308281
10.1109/5.726791
10.1016/j.neunet.2018.01.005
10.1109/TGRS.2017.2755542
10.1109/ICCV.2015.123
10.1109/IJCNN.2011.6033395
10.1007/s11263-016-0955-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2873948
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 59810
ExternalDocumentID oai_doaj_org_article_4720f06800214ff2901edad4830a8c69
10_1109_ACCESS_2018_2873948
8481688
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3238-1c1147005e002f90cf4debbd4b0defc026db8dcb86bcbe83bfb5143bf9b1b1d53
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:24:14 EDT 2025
Mon Jun 30 05:53:00 EDT 2025
Tue Jul 01 02:17:51 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Wed Aug 27 02:49:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3238-1c1147005e002f90cf4debbd4b0defc026db8dcb86bcbe83bfb5143bf9b1b1d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5989-8255
0000-0002-5295-2797
OpenAccessLink https://doaj.org/article/4720f06800214ff2901edad4830a8c69
PQID 2456066804
PQPubID 4845423
PageCount 8
ParticipantIDs crossref_primary_10_1109_ACCESS_2018_2873948
proquest_journals_2456066804
ieee_primary_8481688
crossref_citationtrail_10_1109_ACCESS_2018_2873948
doaj_primary_oai_doaj_org_article_4720f06800214ff2901edad4830a8c69
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180000
2018-00-00
20180101
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 20180000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
iandola (ref11) 2016
ref2
wu (ref24) 2016
ref1
wong (ref23) 2018
ref18
shafiee (ref19) 2017
hasanpour (ref8) 2018
howard (ref10) 2017
wong (ref22) 2018
ref26
ref25
ref20
ref21
redmon (ref16) 2016
cire?an (ref5) 2011
krizhevsky (ref13) 2012
ref7
ref9
ref3
ref6
canziani (ref4) 2017
sandler (ref17) 2018
References_xml – year: 2017
  ident: ref19
  publication-title: Squishednets Squishing squeezenet further for edge device scenarios via deep evolutionary synthesis
– year: 2016
  ident: ref11
  publication-title: SqueezeNet AlexNet-level accuracy with 50x fewer parameters and ¡0 5MB model size
– start-page: 1918
  year: 2011
  ident: ref5
  article-title: A committee of neural networks for traffic sign classification
  publication-title: Proc IEEE Int Joint Conf Neural Netw
– ident: ref15
  doi: 10.1038/nature14539
– start-page: 1097
  year: 2012
  ident: ref13
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc NIPS
– year: 2018
  ident: ref23
  publication-title: Tiny SSD A tiny single-shot detection deep convolutional neural network for real-time embedded object detection
– year: 2018
  ident: ref17
  publication-title: MobileNetV2 Inverted Residuals and Linear Bottlenecks
– ident: ref21
  doi: 10.1016/j.neunet.2012.02.016
– year: 2018
  ident: ref8
  publication-title: Towards principled design of deep convolutional networks Introducing SimpNet
– ident: ref25
  doi: 10.1109/IJCNN.2013.6706811
– ident: ref18
  doi: 10.1109/IJCNN.2011.6033589
– ident: ref7
  doi: 10.1109/CVPR.2009.5206848
– year: 2018
  ident: ref22
  publication-title: NetScore Towards universal metrics for large-scale performance analysis of deep neural networks for practical on-device edge usage
– year: 2016
  ident: ref24
  publication-title: Squeezedet Unified small low power fully convolutional neural networks for real-time object detection for autonomous driving
– ident: ref6
  doi: 10.1016/j.neunet.2012.02.023
– ident: ref1
  doi: 10.1016/j.robot.2016.07.003
– ident: ref12
  doi: 10.1109/TITS.2014.2308281
– year: 2017
  ident: ref4
  publication-title: An analysis of deep neural network models for practical applications
– ident: ref14
  doi: 10.1109/5.726791
– ident: ref3
  doi: 10.1016/j.neunet.2018.01.005
– ident: ref26
  doi: 10.1109/TGRS.2017.2755542
– year: 2016
  ident: ref16
  publication-title: YOLO Real-Time Object Detection
– ident: ref9
  doi: 10.1109/ICCV.2015.123
– ident: ref20
  doi: 10.1109/IJCNN.2011.6033395
– ident: ref2
  doi: 10.1007/s11263-016-0955-9
– year: 2017
  ident: ref10
  publication-title: Mobilenets Efficient convolutional neural networks for mobile vision applications
SSID ssj0000816957
Score 2.3404932
Snippet Traffic sign recognition is a very important computer vision task for a number of real-world applications such as intelligent transportation surveillance and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 59803
SubjectTerms Artificial neural networks
Computer architecture
Computer vision
Convolutional neural networks
Deep neural network
Electronic devices
embedded
Embedded systems
Human performance
Microarchitecture
Microprocessors
Network architecture
Neural networks
Object recognition
Optimization
Parameters
Real time
Real-time systems
Traffic control
traffic sign classification
Traffic signs
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxQxDLbanuBAgYJYKCgHjp1tZueRhNuytKqQtgegUm_RJnEQokwrmK0EEv8dO5MdrQAhTvNQMsrIjh-x_RngpVLKp8pcROWLGslnNdHXhanCyuAKm1hygfPyvD27qN9eNpc7cDTWwiBiSj7DKd-mWH649ms-Kjtm6PdW613YJcdtqNUaz1O4gYRpVAYWKqU5ni8W9A-cvaWn5BdUhnv8bCmfhNGfm6r8IYmTejndh-VmYUNWyefpundT_-M3zMb_Xfl9uJftTDEfGOMB7GD3EO5uoQ8ewM8lJ-N159i_EnPBCR9X30WSD74XbxBv6KG7zaxJ32Icj3RJieNivhWCEGT6indkcxZcUiJOvjgkgRYEaUKGqBDvP33sROq_yZlJiRkewcXpyYfFWZG7MRS-Ir1elJ5cJ0WbFkmIRiN9rAM6F2onA0ZPvlxwOninW-cd6spFx8aYi8aVrgxN9Rj2uusOn4Agq7RRTkuUSIK6QmNIzsQYVGhimFXtBGYbMlmfocq5Y8aVTS6LNHagrWXa2kzbCRyNk24GpI5_D3_N9B-HMsx2ekF0s3nX2lrNZOTuJIwsFyPHnDGsQq0rudK-NRM4YFqPH8lknsDhhptsFgnfLEeYyb7Tsn7691nP4A4vcDjfOYS9_usan5PF07sXidV_Ae6W_pA
  priority: 102
  providerName: IEEE
Title MicronNet: A Highly Compact Deep Convolutional Neural Network Architecture for Real-Time Embedded Traffic Sign Classification
URI https://ieeexplore.ieee.org/document/8481688
https://www.proquest.com/docview/2456066804
https://doaj.org/article/4720f06800214ff2901edad4830a8c69
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLHDy6mu0-knirVRFBDz7AW2iSiQi6Fq2CB_-7M9lYFgS9eFq6bNNNZjKPZub7GNuVUrrYmQsgXVYC5qw6uDLThR9pGEEVcmpwvrisz27L87vqrkP1RTVhLTxwu3AHpeyLQAQRBO4VAh37gR_5UhVipFwdW_fQ53WSqWiDVV7rSiaYoVzog8FwiDOiWi61j1lCoYnxp-OKImJ_olj5YZejszldZAspSuSD9u2W2Aw0y2y-gx24wj4vqJSuuYTJIR9wKtd4_OBxd7sJPwYY44fmPSkWjkUoHPESy775oHOAwDFw5VcYMWbUEMJPniygOfIc_RgBTPDrh_uGR_ZMqiuKolxlt6cnN8OzLHEpZK5Ar5zlDhMfiVsOcCGDFi6UHqz1pRUegsNMzFvlnVW1dRZUYYOlUMoGbXOb-6pYY7PNcwPrjGNMWUmrBAhAM1uA1mglQvDSV8H3i7rH-t_LalwCGie-i0cTEw6hTSsLQ7IwSRY9tjf90rjF2fj98SOS1_RRAsmON1B1TFId85fq9NgKSXs6CDEL1ArH3vqWvkkb-tXQ-TBGZ0qUG__x05tsjqbT_pezxWYnL2-wjdHNxO5ERd6JjYhf0VP01Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcoAeyqOgBgr4wLGb7mZfNrcQWgVocoBW6s2K7XGF2m4r2CAVif_OjNdZRYAQp33IXnk143l4Zr4BeF3XtQ2VuYi1TQokn1V5WyQqdwuFCyx9xgXOs3k1PS0-nJVnG7Df18IgYkg-wyHfhli-u7ZLPio7YOj3Sso7cJf0fpl11Vr9iQq3kFBlHaGFslQdjCcT-gvO35JD8gxyxV1-1tRPQOmPbVX-kMVBwRw9gNlqaV1eycVw2Zqh_fEbauP_rv0hbEdLU4w71ngEG9g8hq01_MEd-DnjdLxmju0bMRac8nF5K4KEsK14h3hDD833yJz0LUbyCJeQOi7Ga0EIQcav-ERWZ8JFJeLwyiCJNCdIFzJIhfj85bwRoQMn5yYFdngCp0eHJ5NpEvsxJDYnzZ5klpynmrYtkhj1KrW-cGiMK0zq0Fvy5pyRzhpZGWtQ5sYbNseMVyYzmSvzp7DZXDe4C4Ls0rI2MsUUSVTnqBRJGu9d7UrvRnk1gNGKTNpGsHLumXGpg9OSKt3RVjNtdaTtAPb7STcdVse_h79l-vdDGWg7vCC66bhvdVGPUs_9SRhbznuOOqNbuELm6ULaSg1gh2ndfySSeQB7K27SUSh80xxjJgtPpsWzv896BfemJ7Njffx-_vE53OfFdqc9e7DZfl3iC7J_WvMysP0vVbMB6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicronNet%3A+A+Highly+Compact+Deep+Convolutional+Neural+Network+Architecture+for+Real-Time+Embedded+Traffic+Sign+Classification&rft.jtitle=IEEE+access&rft.au=Wong%2C+Alexander&rft.au=Shafiee%2C+Mohammad+Javad&rft.au=St.+Jules%2C+Michael&rft.date=2018&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=59803&rft.epage=59810&rft_id=info:doi/10.1109%2FACCESS.2018.2873948&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2873948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon