Robust Human Activity Recognition Using Multimodal Feature-Level Fusion

Automated recognition of human activities or actions has great significance as it incorporates wide-ranging applications, including surveillance, robotics, and personal health monitoring. Over the past few years, many computer vision-based methods have been developed for recognizing human actions fr...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 60736 - 60751
Main Authors Ehatisham-Ul-Haq, Muhammad, Javed, Ali, Azam, Muhammad Awais, Malik, Hafiz M. A., Irtaza, Aun, Lee, Ik Hyun, Mahmood, Muhammad Tariq
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automated recognition of human activities or actions has great significance as it incorporates wide-ranging applications, including surveillance, robotics, and personal health monitoring. Over the past few years, many computer vision-based methods have been developed for recognizing human actions from RGB and depth camera videos. These methods include space-time trajectory, motion encoding, key poses extraction, space-time occupancy patterns, depth motion maps, and skeleton joints. However, these camera-based approaches are affected by background clutter and illumination changes and applicable to a limited field of view only. Wearable inertial sensors provide a viable solution to these challenges but are subject to several limitations such as location and orientation sensitivity. Due to the complementary trait of the data obtained from the camera and inertial sensors, the utilization of multiple sensing modalities for accurate recognition of human actions is gradually increasing. This paper presents a viable multimodal feature-level fusion approach for robust human action recognition, which utilizes data from multiple sensors, including RGB camera, depth sensor, and wearable inertial sensors. We extracted the computationally efficient features from the data obtained from RGB-D video camera and inertial body sensors. These features include densely extracted histogram of oriented gradient (HOG) features from RGB/depth videos and statistical signal attributes from wearable sensors data. The proposed human action recognition (HAR) framework is tested on a publicly available multimodal human action dataset UTD-MHAD consisting of 27 different human actions. K-nearest neighbor and support vector machine classifiers are used for training and testing the proposed fusion model for HAR. The experimental results indicate that the proposed scheme achieves better recognition results as compared to the state of the art. The feature-level fusion of RGB and inertial sensors provides the overall best performance for the proposed system, with an accuracy rate of 97.6%.
AbstractList Automated recognition of human activities or actions has great significance as it incorporates wide-ranging applications, including surveillance, robotics, and personal health monitoring. Over the past few years, many computer vision-based methods have been developed for recognizing human actions from RGB and depth camera videos. These methods include space-time trajectory, motion encoding, key poses extraction, space-time occupancy patterns, depth motion maps, and skeleton joints. However, these camera-based approaches are affected by background clutter and illumination changes and applicable to a limited field of view only. Wearable inertial sensors provide a viable solution to these challenges but are subject to several limitations such as location and orientation sensitivity. Due to the complementary trait of the data obtained from the camera and inertial sensors, the utilization of multiple sensing modalities for accurate recognition of human actions is gradually increasing. This paper presents a viable multimodal feature-level fusion approach for robust human action recognition, which utilizes data from multiple sensors, including RGB camera, depth sensor, and wearable inertial sensors. We extracted the computationally efficient features from the data obtained from RGB-D video camera and inertial body sensors. These features include densely extracted histogram of oriented gradient (HOG) features from RGB/depth videos and statistical signal attributes from wearable sensors data. The proposed human action recognition (HAR) framework is tested on a publicly available multimodal human action dataset UTD-MHAD consisting of 27 different human actions. K-nearest neighbor and support vector machine classifiers are used for training and testing the proposed fusion model for HAR. The experimental results indicate that the proposed scheme achieves better recognition results as compared to the state of the art. The feature-level fusion of RGB and inertial sensors provides the overall best performance for the proposed system, with an accuracy rate of 97.6%.
Author Irtaza, Aun
Malik, Hafiz M. A.
Lee, Ik Hyun
Javed, Ali
Ehatisham-Ul-Haq, Muhammad
Mahmood, Muhammad Tariq
Azam, Muhammad Awais
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Ehatisham-Ul-Haq
  fullname: Ehatisham-Ul-Haq, Muhammad
  organization: Department of Computer Engineering, University of Engineering and Technology, Taxila, Pakistan
– sequence: 2
  givenname: Ali
  orcidid: 0000-0002-1290-1477
  surname: Javed
  fullname: Javed, Ali
  organization: Department of Software Engineering, University of Engineering and Technology, Taxila, Pakistan
– sequence: 3
  givenname: Muhammad Awais
  orcidid: 0000-0003-0488-4598
  surname: Azam
  fullname: Azam, Muhammad Awais
  organization: Department of Computer Engineering, University of Engineering and Technology, Taxila, Pakistan
– sequence: 4
  givenname: Hafiz M. A.
  orcidid: 0000-0001-6006-3888
  surname: Malik
  fullname: Malik, Hafiz M. A.
  organization: Electrical and Computer Engineering Department, University of Michigan-Dearborn, Dearborn, MI, USA
– sequence: 5
  givenname: Aun
  surname: Irtaza
  fullname: Irtaza, Aun
  organization: Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan
– sequence: 6
  givenname: Ik Hyun
  orcidid: 0000-0002-0605-7572
  surname: Lee
  fullname: Lee, Ik Hyun
  organization: Department of Mechatronics, Korea Polytechnic University, Gyeonggi-do, South Korea
– sequence: 7
  givenname: Muhammad Tariq
  orcidid: 0000-0001-6814-3137
  surname: Mahmood
  fullname: Mahmood, Muhammad Tariq
  email: tariq@koreatech.ac.kr
  organization: School of Computer Science and Information Engineering, Korea University of Technology and Education, Cheonan, South Korea
BookMark eNp9kVtLAzEQhYMoWC-_wJcFn7fmutk8llKtUBG8PIdsdrakbDc1yRb8925dFfHBecnMcL7DkHOGjjvfAUJXBE8JwepmNp8vnp-nFBM1pYowptgRmlBSqJwJVhz_6k_RZYwbPFQ5rIScoLsnX_UxZct-a7psZpPbu_SePYH1684l57vsNbpunT30bXJbX5s2uwWT-gD5CvYwTH0cVBfopDFthMuv9xy93i5e5st89Xh3P5-tcssoY7kkFWWVglo1uCgMMGUMtqWsRcMpp7IipSyhsFga1QiBZdlgCYIUXBhOKWXn6H70rb3Z6F1wWxPetTdOfy58WGsTkrMtaCCUYdmwRvGC19hWNVRC1MqWuObUVoPX9ei1C_6th5j0xvehG87XlAtRUKGUHFRqVNngYwzQaOuSOfxMCsa1mmB9iEGPMehDDPorhoFlf9jvi_-nrkbKAcAPUUpMOFXsA4U9lA4
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3481631
crossref_primary_10_1002_spe_3394
crossref_primary_10_1186_s40662_024_00405_1
crossref_primary_10_1002_cpe_7588
crossref_primary_10_1088_1755_1315_461_1_012075
crossref_primary_10_1007_s11042_020_09438_9
crossref_primary_10_1016_j_patcog_2020_107561
crossref_primary_10_1038_s41598_024_57912_3
crossref_primary_10_3390_app10186188
crossref_primary_10_3390_s24237695
crossref_primary_10_1109_JSEN_2020_3034614
crossref_primary_10_1007_s10115_024_02122_6
crossref_primary_10_2139_ssrn_4111254
crossref_primary_10_3390_s24247975
crossref_primary_10_3390_jimaging9070130
crossref_primary_10_3390_su13020970
crossref_primary_10_1109_ACCESS_2020_2976496
crossref_primary_10_1109_ACCESS_2024_3436910
crossref_primary_10_1109_ACCESS_2024_3479165
crossref_primary_10_1177_14604582231171927
crossref_primary_10_3390_s24113371
crossref_primary_10_1109_ACCESS_2019_2949269
crossref_primary_10_1109_JSEN_2021_3062261
crossref_primary_10_1007_s11042_023_16423_5
crossref_primary_10_1109_JSEN_2021_3102666
crossref_primary_10_3390_s22051939
crossref_primary_10_3390_life12081103
crossref_primary_10_1016_j_vrih_2022_07_008
crossref_primary_10_1109_ACCESS_2019_2954851
crossref_primary_10_1109_TIP_2021_3086590
crossref_primary_10_1109_JSEN_2020_3000498
crossref_primary_10_1109_LSENS_2023_3303081
crossref_primary_10_1109_ACCESS_2020_3025229
crossref_primary_10_1016_j_lmot_2023_101943
crossref_primary_10_1109_JSEN_2021_3108011
crossref_primary_10_1109_TCSVT_2023_3255832
crossref_primary_10_1177_0142331220984350
crossref_primary_10_3390_e22080817
crossref_primary_10_1109_JSEN_2024_3406727
crossref_primary_10_3390_app112411807
crossref_primary_10_3390_app13095567
crossref_primary_10_3390_s23094373
crossref_primary_10_1109_ACCESS_2024_3473828
crossref_primary_10_2478_amns_2023_2_00262
crossref_primary_10_3390_s23208609
crossref_primary_10_1007_s00521_023_09362_7
crossref_primary_10_1039_D1NR06680C
crossref_primary_10_4018_IJIIT_296236
crossref_primary_10_1016_j_sna_2022_114004
crossref_primary_10_1080_10447318_2023_2267296
crossref_primary_10_3390_s22072489
crossref_primary_10_1142_S0129065723500028
crossref_primary_10_1016_j_sciaf_2023_e01796
crossref_primary_10_32604_iasc_2022_025421
crossref_primary_10_1016_j_bspc_2022_103762
crossref_primary_10_1016_j_cosrev_2023_100548
crossref_primary_10_1109_ACCESS_2020_3040758
crossref_primary_10_1016_j_patrec_2021_08_029
crossref_primary_10_1145_3699776
crossref_primary_10_1002_aisy_202100071
crossref_primary_10_1109_JSEN_2020_3028561
crossref_primary_10_1016_j_eswa_2022_119419
crossref_primary_10_1109_JBHI_2022_3168004
crossref_primary_10_1002_admt_202200549
crossref_primary_10_3390_electronics12010193
crossref_primary_10_1109_JSEN_2023_3337367
crossref_primary_10_1016_j_eswa_2024_123153
crossref_primary_10_1016_j_knosys_2023_110867
crossref_primary_10_1109_JSEN_2020_3022326
crossref_primary_10_1007_s42979_021_00484_0
crossref_primary_10_12677_CSA_2023_133052
crossref_primary_10_3390_mi14122204
crossref_primary_10_1109_LCOMM_2022_3145099
crossref_primary_10_1109_ACCESS_2020_2989267
crossref_primary_10_1109_JSEN_2023_3314728
crossref_primary_10_1109_TIM_2023_3240198
crossref_primary_10_2139_ssrn_4167818
crossref_primary_10_3390_app12063199
crossref_primary_10_1109_ACCESS_2024_3365138
crossref_primary_10_1109_ACCESS_2021_3130613
crossref_primary_10_1038_s41928_020_0422_z
crossref_primary_10_1109_JSEN_2020_3006386
crossref_primary_10_1177_17298806221103708
crossref_primary_10_32604_cmc_2022_024422
crossref_primary_10_1016_j_dajour_2023_100327
crossref_primary_10_1016_j_inffus_2021_10_017
Cites_doi 10.1016/j.imavis.2009.11.014
10.1109/CVPR.2005.177
10.1109/LSENS.2018.2878572
10.1167/16.3.33
10.1109/CVPRW.2010.5543273
10.1109/ACCESS.2018.2889797
10.12733/jics20150733
10.1007/978-3-319-09396-3_9
10.1109/TPAMI.2018.2868668
10.1016/j.patcog.2005.01.012
10.1007/11573425_12
10.1109/WACV.2015.150
10.1109/CVPR.2013.365
10.1109/IDT.2016.7843019
10.5244/C.22.99
10.1109/34.910878
10.1109/MFI.2017.8170441
10.1109/IJCNN.2017.7966210
10.1016/j.patcog.2017.10.033
10.1016/j.future.2017.11.029
10.1109/TSMC.2016.2562509
10.1109/THMS.2014.2325871
10.1016/j.cviu.2018.04.007
10.1145/1922649.1922653
10.1109/TSMC.2018.2850149
10.5244/C.23.124
10.1016/j.knosys.2018.05.029
10.1109/ICIP.2017.8296441
10.1109/ICCV.2005.66
10.1109/SPCOM.2012.6290032
10.1109/ICASSP.2016.7472170
10.1109/TSMC.2016.2639788
10.1145/2578726.2578744
10.1109/ICPR.2014.772
10.1007/s11263-005-1838-7
10.1109/THMS.2014.2362520
10.1007/978-3-642-33275-3_31
10.1109/ICIP.2015.7350781
10.3390/s140610146
10.1109/TGRS.2014.2381602
10.1109/TST.2014.6838194
10.1109/TSMC.2017.2660547
10.1049/iet-cvi.2016.0355
10.1109/JSEN.2018.2872862
10.1109/CVPRW.2012.6239232
10.1145/2393347.2396382
10.1109/TPAMI.2016.2565479
10.1109/TCSVT.2016.2628339
10.1007/s11042-018-5893-9
10.1109/CCNC.2013.6488584
10.1049/iet-cvi.2015.0416
10.1109/SURV.2012.110112.00192
10.1007/s10916-018-0948-z
10.1109/LSP.2017.2778190
10.1007/978-3-030-01234-2_21
10.1007/s00138-012-0450-4
10.1109/PERCOMW.2015.7134104
10.1109/CVPRW.2012.6239233
10.1016/j.cviu.2018.03.003
10.3390/s16040426
10.1016/j.jnca.2018.02.020
10.1117/12.853223
10.1016/j.cviu.2016.03.013
10.1109/TPAMI.2016.2558148
10.1109/CVPR.2008.4587756
10.1007/s11554-013-0370-1
10.1109/TSMCB.2012.2231959
10.1016/j.cviu.2010.10.002
10.1109/JSEN.2015.2487358
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2913393
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 60751
ExternalDocumentID oai_doaj_org_article_e12307f3f9464d0cbdeb55d9c80d42cb
10_1109_ACCESS_2019_2913393
8701429
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
– fundername: National Research Foundation of Korea
  grantid: 2017R1D1A1B03033526; 2016R1D1A1B03933860
  funderid: 10.13039/501100003725
– fundername: Ministry of Education
  grantid: NRF-2017R1A6A1A03015562
  funderid: 10.13039/100010002
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3233-71b23b9ed9f066ae39aa0c87d5f42427b1878e6c07a9f55078f07e51645a42223
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:28:15 EDT 2025
Sun Jun 29 16:24:15 EDT 2025
Thu Apr 24 22:50:56 EDT 2025
Tue Jul 01 02:41:31 EDT 2025
Wed Aug 27 02:46:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3233-71b23b9ed9f066ae39aa0c87d5f42427b1878e6c07a9f55078f07e51645a42223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1290-1477
0000-0001-6006-3888
0000-0002-0605-7572
0000-0001-6814-3137
0000-0003-0488-4598
OpenAccessLink https://doaj.org/article/e12307f3f9464d0cbdeb55d9c80d42cb
PQID 2455625997
PQPubID 4845423
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_e12307f3f9464d0cbdeb55d9c80d42cb
ieee_primary_8701429
crossref_primary_10_1109_ACCESS_2019_2913393
crossref_citationtrail_10_1109_ACCESS_2019_2913393
proquest_journals_2455625997
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
wu (ref59) 2018; 29
cheng (ref3) 2015; 17
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
li (ref6) 2014; 1
ref49
ref8
ref7
ref9
ref4
csurka (ref63) 2004
soomro (ref5) 2014; 71
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref66
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref7
  doi: 10.1016/j.imavis.2009.11.014
– ident: ref62
  doi: 10.1109/CVPR.2005.177
– ident: ref60
  doi: 10.1109/LSENS.2018.2878572
– ident: ref4
  doi: 10.1167/16.3.33
– ident: ref33
  doi: 10.1109/CVPRW.2010.5543273
– ident: ref61
  doi: 10.1109/ACCESS.2018.2889797
– volume: 1
  start-page: 498
  year: 2014
  ident: ref6
  article-title: A crowdsourcing solution for road surface roughness detection using smartphones
  publication-title: Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS
– ident: ref35
  doi: 10.12733/jics20150733
– volume: 71
  start-page: 181
  year: 2014
  ident: ref5
  article-title: Action recognition in realistic sports videos
  publication-title: Advances in Computer Vision and Pattern Recognition
  doi: 10.1007/978-3-319-09396-3_9
– ident: ref19
  doi: 10.1109/TPAMI.2018.2868668
– ident: ref69
  doi: 10.1016/j.patcog.2005.01.012
– ident: ref10
  doi: 10.1007/11573425_12
– ident: ref34
  doi: 10.1109/WACV.2015.150
– ident: ref36
  doi: 10.1109/CVPR.2013.365
– ident: ref8
  doi: 10.1109/IDT.2016.7843019
– ident: ref15
  doi: 10.5244/C.22.99
– ident: ref9
  doi: 10.1109/34.910878
– ident: ref57
  doi: 10.1109/MFI.2017.8170441
– ident: ref22
  doi: 10.1109/IJCNN.2017.7966210
– ident: ref43
  doi: 10.1016/j.patcog.2017.10.033
– ident: ref51
  doi: 10.1016/j.future.2017.11.029
– ident: ref47
  doi: 10.1109/TSMC.2016.2562509
– ident: ref23
  doi: 10.1109/THMS.2014.2325871
– start-page: 59
  year: 2004
  ident: ref63
  article-title: Visual categorization with bags of keypoints
  publication-title: Proc Int Workshop Stat Eur Conf Comput Vis (ECCV)
– ident: ref45
  doi: 10.1016/j.cviu.2018.04.007
– ident: ref25
  doi: 10.1145/1922649.1922653
– ident: ref41
  doi: 10.1109/TSMC.2018.2850149
– ident: ref67
  doi: 10.5244/C.23.124
– ident: ref40
  doi: 10.1016/j.knosys.2018.05.029
– ident: ref20
  doi: 10.1109/ICIP.2017.8296441
– ident: ref66
  doi: 10.1109/ICCV.2005.66
– ident: ref28
  doi: 10.1109/SPCOM.2012.6290032
– ident: ref56
  doi: 10.1109/ICASSP.2016.7472170
– ident: ref2
  doi: 10.1109/TSMC.2016.2639788
– ident: ref68
  doi: 10.1145/2578726.2578744
– ident: ref38
  doi: 10.1109/ICPR.2014.772
– ident: ref16
  doi: 10.1007/s11263-005-1838-7
– ident: ref55
  doi: 10.1109/THMS.2014.2362520
– volume: 17
  start-page: 1
  year: 2015
  ident: ref3
  article-title: Advances in human action recognition: A survey
  publication-title: New J Phys
– volume: 29
  start-page: 82
  year: 2018
  ident: ref59
  article-title: Autoencoder-based feature learning from a 2D depth map and 3D skeleton for action recognition
  publication-title: J Comput
– ident: ref30
  doi: 10.1007/978-3-642-33275-3_31
– ident: ref53
  doi: 10.1109/ICIP.2015.7350781
– ident: ref70
  doi: 10.3390/s140610146
– ident: ref73
  doi: 10.1109/TGRS.2014.2381602
– ident: ref72
  doi: 10.1109/TST.2014.6838194
– ident: ref1
  doi: 10.1109/TSMC.2017.2660547
– ident: ref26
  doi: 10.1049/iet-cvi.2016.0355
– ident: ref58
  doi: 10.1109/JSEN.2018.2872862
– ident: ref31
  doi: 10.1109/CVPRW.2012.6239232
– ident: ref29
  doi: 10.1145/2393347.2396382
– ident: ref37
  doi: 10.1109/TPAMI.2016.2565479
– ident: ref39
  doi: 10.1109/TCSVT.2016.2628339
– ident: ref21
  doi: 10.1007/s11042-018-5893-9
– ident: ref71
  doi: 10.1109/CCNC.2013.6488584
– ident: ref17
  doi: 10.1049/iet-cvi.2015.0416
– ident: ref48
  doi: 10.1109/SURV.2012.110112.00192
– ident: ref52
  doi: 10.1007/s10916-018-0948-z
– ident: ref18
  doi: 10.1109/LSP.2017.2778190
– ident: ref44
  doi: 10.1007/978-3-030-01234-2_21
– ident: ref65
  doi: 10.1007/s00138-012-0450-4
– ident: ref50
  doi: 10.1109/PERCOMW.2015.7134104
– ident: ref27
  doi: 10.1109/CVPRW.2012.6239233
– ident: ref42
  doi: 10.1016/j.cviu.2018.03.003
– ident: ref49
  doi: 10.3390/s16040426
– ident: ref46
  doi: 10.1016/j.jnca.2018.02.020
– ident: ref11
  doi: 10.1117/12.853223
– ident: ref12
  doi: 10.1016/j.cviu.2016.03.013
– ident: ref13
  doi: 10.1109/TPAMI.2016.2558148
– ident: ref64
  doi: 10.1109/CVPR.2008.4587756
– ident: ref32
  doi: 10.1007/s11554-013-0370-1
– ident: ref14
  doi: 10.1109/TSMCB.2012.2231959
– ident: ref24
  doi: 10.1016/j.cviu.2010.10.002
– ident: ref54
  doi: 10.1109/JSEN.2015.2487358
SSID ssj0000816957
Score 2.4976645
Snippet Automated recognition of human activities or actions has great significance as it incorporates wide-ranging applications, including surveillance, robotics, and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 60736
SubjectTerms Cameras
Clutter
Computer vision
Dense HOG
depth sensor
Feature extraction
Feature recognition
feature-level fusion
Field of view
Histograms
human action recognition
Human activity recognition
Inertial sensing devices
inertial sensor
Moving object recognition
Occupancy
RGB camera
Robotics
Robustness
Sensor fusion
Sensor phenomena and characterization
Sensors
Spacetime
Support vector machines
Three-dimensional displays
Video
Wearable sensors
Wearable technology
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1te4IDUApiaaly4Nhsk9iO7eOy6nZVUQ4VlXqz_HmhbKrt5sKvx-N4o1IqxC2KYsvJG9szk-c3AJ-dDsYFqkupdVVSaUMpgqSlFlZH78G2deLmXH1rVzf08pbdTuB0PAvjvU_kMz_Dy_Qv33W2x1TZWbStOq6fe7AXA7fhrNaYT8ECEpLxLCxUV_JsvljEd0D2lpw1MsZikvyx-SSN_lxU5a-VOG0vy9dwtRvYwCr5Meu3ZmZ_PdFs_N-Rv4FX2c8s5oNhHMDEr9_Cy0fqg4dwcd2Z_mFbpDx-MbdDHYniekcp6tZFIhQU6ZDuz87F_tBj7De-_Ipco2LZY67tHdwsz78vVmWuq1Ba0hBS8to0xEjvZIgOh_YEcbKCOxZo3LG5qQUXvrUV1zKg3pkIFfcsBlZMY8aIvIf9dbf2H6BA9R3iY1AkAqeiFZIa0lgtWKt5Wzk2hWb3wZXNouNY--JOpeCjkmpASSFKKqM0hdOx0f2gufHvx78gkuOjKJidbkQEVJ5_ytfIeA8k2mFLXWWN84YxJ62oHG2smcIhojZ2kgGbwvHOLlSe3A-qoSyFjZJ_fL7VEbzAAQ6ZmmPY3256_yn6Lltzkoz2N7_P6c8
  priority: 102
  providerName: IEEE
Title Robust Human Activity Recognition Using Multimodal Feature-Level Fusion
URI https://ieeexplore.ieee.org/document/8701429
https://www.proquest.com/docview/2455625997
https://doaj.org/article/e12307f3f9464d0cbdeb55d9c80d42cb
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQUBCFgjIwEprEdmyPpaJUCBgqKnWz_JwgQX38f3xOWhUhwcIaOU58Pt9Ln79D6MYqr60nKhVKZSkRxqfcC5IqblSIHkyZR2zOy2s5mZGnOZ3vtPoCTFhDD9wIbuBygCp7HCYoic2Mtk5TaoXhmSWF0WB9g8_bSaaiDeZ5KShraYbyTAyGo1FYEWC5xF0hQmYm8DdXFBn72xYrP-xydDbjI3TYRonJsPm7Y7TnqhN0sMMd2EWP01qvl6skVuGToWm6QCTTDSCorpIIB0jiFduP2ob5IN5bL1z6DEihZLyGStkpmo0f3kaTtO2KkBpcYJyyXBdYC2eFD-GCchikbDiz1JPgb5nOOeOuNBlTwgNbGfcZczSkRVRBvQefoU5VV-4cJcCdg11IabhnhJdcEI0LozgtFSszS3uo2AhImpYyHDpXvMuYOmRCNlKVIFXZSrWHbrcvfTaMGb8PvwfJb4cC3XV8EJRAtkog_1KCHurCvm0nCUYoD462h_qbfZTt0VzKgtCY9Al28R-fvkT7sJymKtNHndVi7a5CnLLS11Elr-OVwi_li-Ii
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAO5aMglhbIgWOzTWI7to_bFcsCuz1UrdSb5c8LsEHt5sKvx-N4IygIcYui2HLyxvbM5PkNwDung3GB6lJqXZVU2lCKIGmphdXRe7Btnbg56_N2eUU_XbPrPTgZz8J47xP5zE_xMv3Ld53tMVV2Gm2rjuvnPbgf931WD6e1xowKlpCQjGdpobqSp7P5PL4F8rfktJExGpPkt-0nqfTnsip_rMVpg1k8hvVuaAOv5Mu035qp_XFHtfF_x_4EDrKnWcwG03gKe37zDB79oj94CB8uOtPfbouUyS9mdqgkUVzsSEXdpkiUgiId0_3Wudgf-oz9jS9XyDYqFj1m257D1eL95XxZ5soKpSUNISWvTUOM9E6G6HJoTxApK7hjgcY9m5tacOFbW3EtAyqeiVBxz2JoxTTmjMgL2N90G_8SCtTfIT6GRSJwKlohqSGN1YK1mreVYxNodh9c2Sw7jtUvvqoUflRSDSgpRElllCZwMjb6Pqhu_PvxM0RyfBQls9ONiIDKM1D5GjnvgURLbKmrrHHeMOakFZWjjTUTOETUxk4yYBM43tmFytP7VjXR_DBwlPzV31u9hQfLy_VKrT6efz6ChzjYIW9zDPvbm96_jp7M1rxJBvwTGmftGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Human+Activity+Recognition+Using+Multimodal+Feature-Level+Fusion&rft.jtitle=IEEE+access&rft.au=Ehatisham-Ul-Haq%2C+Muhammad&rft.au=Javed%2C+Ali&rft.au=Azam%2C+Muhammad+Awais&rft.au=Malik%2C+Hafiz+M.+A.&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=60736&rft.epage=60751&rft_id=info:doi/10.1109%2FACCESS.2019.2913393&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2913393
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon