PhishHaven-An Efficient Real-Time AI Phishing URLs Detection System

Different machine learning and deep learning-based approaches have been proposed for designing defensive mechanisms against various phishing attacks. Recently, researchers showed that phishing attacks can be performed by employing a deep neural network-based phishing URL generating system called Dee...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 83425 - 83443
Main Authors Sameen, Maria, Han, Kyunghyun, Hwang, Seong Oun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Different machine learning and deep learning-based approaches have been proposed for designing defensive mechanisms against various phishing attacks. Recently, researchers showed that phishing attacks can be performed by employing a deep neural network-based phishing URL generating system called DeepPhish. To prevent this kind of attack, we design an ensemble machine learning-based detection system called PhishHaven to identify AI-generated as well as human-crafted phishing URLs. To the best of our knowledge, this is the first study to consider detecting phishing attacks by both AI and human attackers. PhishHaven employs lexical analysis for feature extraction. To further enhance lexical analysis, we introduce URL HTML Encoding to classify URL on-the-fly and proactively compare with some of the existing methods. We also introduce a URL Hit approach to deal with tiny URLs, which is an open problem yet to be solved. Moreover, the final classification of URLs is made on an unbiased voting mechanism in PhishHaven, which aims to avoid misclassification when the number of votes is equal. To speed up the ensemble-based machine learning models, PhishHaven employs a multi-threading approach to execute the classification in parallel, leading to real-time detection. Theoretical analysis of our solution shows that <xref rid="deqn1" ref-type="disp-formula">(1) it can always detect tiny URLs, and <xref rid="deqn2" ref-type="disp-formula">(2) it can detect future AI-generated Phishing URLs based on our selected lexical features with 100% accuracy. Through experiments, we analyze our solution with a benchmark dataset of 100,000 phishing and normal URLs. The results show that PhishHaven can achieve 98.00% accuracy, outperforming the existing lexical-based human-crafted phishing URLs detection systems.
AbstractList Different machine learning and deep learning-based approaches have been proposed for designing defensive mechanisms against various phishing attacks. Recently, researchers showed that phishing attacks can be performed by employing a deep neural network-based phishing URL generating system called DeepPhish. To prevent this kind of attack, we design an ensemble machine learning-based detection system called PhishHaven to identify AI-generated as well as human-crafted phishing URLs. To the best of our knowledge, this is the first study to consider detecting phishing attacks by both AI and human attackers. PhishHaven employs lexical analysis for feature extraction. To further enhance lexical analysis, we introduce URL HTML Encoding to classify URL on-the-fly and proactively compare with some of the existing methods. We also introduce a URL Hit approach to deal with tiny URLs, which is an open problem yet to be solved. Moreover, the final classification of URLs is made on an unbiased voting mechanism in PhishHaven, which aims to avoid misclassification when the number of votes is equal. To speed up the ensemble-based machine learning models, PhishHaven employs a multi-threading approach to execute the classification in parallel, leading to real-time detection. Theoretical analysis of our solution shows that <xref rid="deqn1" ref-type="disp-formula">(1) it can always detect tiny URLs, and <xref rid="deqn2" ref-type="disp-formula">(2) it can detect future AI-generated Phishing URLs based on our selected lexical features with 100% accuracy. Through experiments, we analyze our solution with a benchmark dataset of 100,000 phishing and normal URLs. The results show that PhishHaven can achieve 98.00% accuracy, outperforming the existing lexical-based human-crafted phishing URLs detection systems.
Different machine learning and deep learning-based approaches have been proposed for designing defensive mechanisms against various phishing attacks. Recently, researchers showed that phishing attacks can be performed by employing a deep neural network-based phishing URL generating system called DeepPhish. To prevent this kind of attack, we design an ensemble machine learning-based detection system called PhishHaven to identify AI-generated as well as human-crafted phishing URLs. To the best of our knowledge, this is the first study to consider detecting phishing attacks by both AI and human attackers. PhishHaven employs lexical analysis for feature extraction. To further enhance lexical analysis, we introduce URL HTML Encoding to classify URL on-the-fly and proactively compare with some of the existing methods. We also introduce a URL Hit approach to deal with tiny URLs, which is an open problem yet to be solved. Moreover, the final classification of URLs is made on an unbiased voting mechanism in PhishHaven, which aims to avoid misclassification when the number of votes is equal. To speed up the ensemble-based machine learning models, PhishHaven employs a multi-threading approach to execute the classification in parallel, leading to real-time detection. Theoretical analysis of our solution shows that (1) it can always detect tiny URLs, and (2) it can detect future AI-generated Phishing URLs based on our selected lexical features with 100% accuracy. Through experiments, we analyze our solution with a benchmark dataset of 100,000 phishing and normal URLs. The results show that PhishHaven can achieve 98.00% accuracy, outperforming the existing lexical-based human-crafted phishing URLs detection systems.
Author Han, Kyunghyun
Sameen, Maria
Hwang, Seong Oun
Author_xml – sequence: 1
  givenname: Maria
  orcidid: 0000-0002-6086-8974
  surname: Sameen
  fullname: Sameen, Maria
  organization: Department of IT Convergence Engineering, Gachon University, Seongnam, South Korea
– sequence: 2
  givenname: Kyunghyun
  orcidid: 0000-0002-7987-0441
  surname: Han
  fullname: Han, Kyunghyun
  organization: Department of Electrical and Computer Engineering, Hongik University, Sejong, South Korea
– sequence: 3
  givenname: Seong Oun
  orcidid: 0000-0003-4240-6255
  surname: Hwang
  fullname: Hwang, Seong Oun
  email: sohwang@gachon.ac.kr
  organization: Department of Computer Engineering, Gachon University, Seongnam, South Korea
BookMark eNpNkF1LwzAUhoMoOKe_wJuC1535OEuay1GnGwyUfVyHJD3VjK2dTRX27-2sDA_hnHB43zfhuSGXVV0hIfeMjhij-nGS59PVasQppyOuNQMqLsiAM6lTMRby8t_9mtzFuKVdZd1qrAYkf_sI8WNmv7FKJ1UyLcvgA1ZtskS7S9dhj8lknvyKQvWebJaLmDxhi74NdZWsjrHF_S25Ku0u4t3fHJLN83Sdz9LF68s8nyxSL7gQKXDnpEVLM4Xd4ZkXoJXXrgQhnFI-EwCM8qwYl0o7zmXXUILIrHJMgxiSeZ9b1HZrDk3Y2-ZoahvM76Ju3o1t2uB3aGRRIHhAEM6DKkqHmkoHoKQAZTsUQ_LQZx2a-vMLY2u29VdTdd83HMZANVfypBK9yjd1jA2W51cZNSf4podvTvDNH_zOdd-7AiKeHZpmXDIpfgAr9X6y
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_cose_2023_103387
crossref_primary_10_1109_ACCESS_2024_3409049
crossref_primary_10_1016_j_cose_2024_103843
crossref_primary_10_1080_09720529_2021_2016224
crossref_primary_10_1002_qre_3411
crossref_primary_10_1109_ACCESS_2023_3293063
crossref_primary_10_1016_j_cose_2023_103545
crossref_primary_10_1016_j_engappai_2021_104347
crossref_primary_10_1109_ACCESS_2024_3387437
crossref_primary_10_1109_ACCESS_2022_3222307
crossref_primary_10_1109_ACCESS_2022_3166474
crossref_primary_10_1109_TDSC_2021_3121388
crossref_primary_10_3390_s23073467
crossref_primary_10_1109_ACCESS_2022_3225971
crossref_primary_10_1109_ACCESS_2024_3412331
crossref_primary_10_1007_s10586_024_04655_5
crossref_primary_10_1016_j_prime_2024_100533
crossref_primary_10_1007_s40031_023_00934_8
crossref_primary_10_1109_ACCESS_2022_3196018
crossref_primary_10_1109_ACCESS_2023_3237798
crossref_primary_10_35940_ijitee_C8338_0110321
crossref_primary_10_1016_j_jisa_2021_102967
crossref_primary_10_1016_j_comnet_2024_110398
crossref_primary_10_3390_s23198070
crossref_primary_10_1109_ACCESS_2023_3247135
crossref_primary_10_1007_s11042_023_17993_0
Cites_doi 10.1109/TII.2019.2899933
10.1109/ICECA.2019.8822053
10.1007/978-3-030-20951-3_21
10.1109/TNSM.2014.2377295
10.1007/978-3-642-41136-6_5
10.1016/j.future.2018.11.004
10.1109/ICACCI.2014.6968578
10.1007/s12652-018-0798-z
10.1109/TSMC.2018.2884952
10.1214/aos/1013203451
10.1109/TSG.2018.2890809
10.1109/JIOT.2019.2912022
10.1088/0954-898X_4_3_007
10.1007/978-3-540-39964-3_62
10.1109/INCoS.2013.151
10.1145/1557019.1557153
10.1109/INFCOM.2011.5934995
10.1023/A:1010933404324
10.1016/S1352-2310(97)00447-0
10.14569/IJACSA.2019.0100133
10.1109/INFCOM.2010.5462216
10.1109/ACCESS.2019.2920655
10.1016/j.cose.2017.12.006
10.1145/3305218.3305238
10.1016/S1532-0464(03)00034-0
10.1007/s12652-019-01311-4
10.1007/s10994-006-6226-1
10.3103/S0146411619040102
10.1016/j.eswa.2018.09.029
10.1007/BF00994018
10.1080/0952813X.2014.895108
10.17487/rfc7231
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2991403
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 83443
ExternalDocumentID oai_doaj_org_article_6dde4c4e43bc47dfbe906b4476347a35
10_1109_ACCESS_2020_2991403
9082616
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT)
  grantid: 2020R1A2B5B01002145
  funderid: 10.13039/501100003725
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3233-42bb6aea087e87e28c3497c9bf433b77c83441028d5f79b2269b2e6438a7b1943
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:12:43 EDT 2024
Thu Oct 10 17:24:49 EDT 2024
Fri Aug 23 03:24:50 EDT 2024
Mon Nov 04 11:48:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3233-42bb6aea087e87e28c3497c9bf433b77c83441028d5f79b2269b2e6438a7b1943
ORCID 0000-0002-6086-8974
0000-0002-7987-0441
0000-0003-4240-6255
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9082616
PQID 2454092765
PQPubID 4845423
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_6dde4c4e43bc47dfbe906b4476347a35
crossref_primary_10_1109_ACCESS_2020_2991403
ieee_primary_9082616
proquest_journals_2454092765
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref37
ref15
ref14
ref31
ref33
ref11
(ref7) 2019
ref10
ref2
ref39
ref17
ref38
ref16
ref19
ref18
(ref41) 2019
perlich (ref34) 2003; 4
thomas (ref8) 2020
ref24
(ref36) 2006; 63
ref23
ref25
ref20
(ref43) 2019
ref22
ref21
ref28
ref27
freund (ref32) 1996; 96
ref29
whittaker (ref26) 2010
(ref12) 2018
ref9
ref4
ref3
bahnsen (ref1) 2018
ref6
ref5
delmotte (ref30) 2008
ref40
(ref42) 2019
References_xml – ident: ref5
  doi: 10.1109/TII.2019.2899933
– ident: ref27
  doi: 10.1109/ICECA.2019.8822053
– ident: ref22
  doi: 10.1007/978-3-030-20951-3_21
– ident: ref21
  doi: 10.1109/TNSM.2014.2377295
– ident: ref31
  doi: 10.1007/978-3-642-41136-6_5
– ident: ref18
  doi: 10.1016/j.future.2018.11.004
– volume: 4
  start-page: 211
  year: 2003
  ident: ref34
  article-title: Tree induction vs. Logistic regression: A learning-curve analysis
  publication-title: J Mach Learn Res
  contributor:
    fullname: perlich
– ident: ref15
  doi: 10.1109/ICACCI.2014.6968578
– year: 2010
  ident: ref26
  article-title: Large-scale automatic classification of phishing pages
  publication-title: Proc NDSS
  contributor:
    fullname: whittaker
– ident: ref19
  doi: 10.1007/s12652-018-0798-z
– year: 2019
  ident: ref41
– ident: ref3
  doi: 10.1109/TSMC.2018.2884952
– ident: ref33
  doi: 10.1214/aos/1013203451
– ident: ref4
  doi: 10.1109/TSG.2018.2890809
– ident: ref2
  doi: 10.1109/JIOT.2019.2912022
– ident: ref14
  doi: 10.1088/0954-898X_4_3_007
– start-page: 1
  year: 2018
  ident: ref1
  article-title: DeepPhish: Simulating malicious AI
  publication-title: APWG Symposium on Electronic Crime Research (eCrime)
  contributor:
    fullname: bahnsen
– ident: ref37
  doi: 10.1007/978-3-540-39964-3_62
– ident: ref17
  doi: 10.1109/INCoS.2013.151
– ident: ref28
  doi: 10.1145/1557019.1557153
– ident: ref20
  doi: 10.1109/INFCOM.2011.5934995
– year: 2008
  ident: ref30
  publication-title: Html url encoding reference
  contributor:
    fullname: delmotte
– year: 2019
  ident: ref42
– ident: ref35
  doi: 10.1023/A:1010933404324
– ident: ref40
  doi: 10.1016/S1352-2310(97)00447-0
– ident: ref24
  doi: 10.14569/IJACSA.2019.0100133
– year: 2019
  ident: ref7
  publication-title: Phishing Activity Trends Report-Third Quarter 2019
– ident: ref16
  doi: 10.1109/INFCOM.2010.5462216
– ident: ref10
  doi: 10.1109/ACCESS.2019.2920655
– ident: ref11
  doi: 10.1016/j.cose.2017.12.006
– ident: ref6
  doi: 10.1145/3305218.3305238
– ident: ref38
  doi: 10.1016/S1532-0464(03)00034-0
– year: 2019
  ident: ref43
– ident: ref23
  doi: 10.1007/s12652-019-01311-4
– volume: 63
  start-page: 3
  year: 2006
  ident: ref36
  article-title: Extremely randomized trees
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
– ident: ref9
  doi: 10.3103/S0146411619040102
– ident: ref25
  doi: 10.1016/j.eswa.2018.09.029
– volume: 96
  start-page: 148
  year: 1996
  ident: ref32
  article-title: Experiments with a new boosting algorithm
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: freund
– year: 2018
  ident: ref12
  publication-title: The Next Paradigm Shift AI-Driven Cyber-Attacks
– ident: ref39
  doi: 10.1007/BF00994018
– ident: ref13
  doi: 10.1080/0952813X.2014.895108
– year: 2020
  ident: ref8
  article-title: Machine Learning and Cybersecurity
  publication-title: Machine Learning Approaches in Cyber Security Analytics
  contributor:
    fullname: thomas
– ident: ref29
  doi: 10.17487/rfc7231
SSID ssj0000816957
Score 2.4110534
Snippet Different machine learning and deep learning-based approaches have been proposed for designing defensive mechanisms against various phishing attacks. Recently,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 83425
SubjectTerms AI-generated phishing URLs
Artificial intelligence
Artificial neural networks
Classification
Cyberattack
ensemble machine learning
Feature extraction
human-crafted phishing URLs
lexical features
Machine learning
multi-threading
Phishing
Real time
Real-time systems
tiny URLs
Uniform resource locators
URL HTML encoding
URLs
voting
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2xTsMwELVQJxgQUBCBgjwwYurGjh2PIbQqCBCqqNTNyqWOyhIQLf_P2UmrIgYWpChDcknsdznfnWW_I-SqUryEZM6ZSwrDZJVwBkpUzLk4xoYbSAo_of_0rMZT-TBLZlulvvyasIYeuAGur9D-ZCmdFFBKPa_AGa5ASrQLqQvRsJdys5VMhTE4HSiT6JZmCO_3szzHHmFCGPMbHII9Td0PVxQY-9sSK7_G5eBsRgdkv40Sada07pDsuPqI7G1xB3ZJ_rJ4Wy7Gvho8y2o6DFQQ6EHoBEM_5nd20OyeBiGUp9PJ45LeuVVYeVXThqj8mExHw9d8zNqKCKwUsRBMxgCqcAVPtcMjTkshjS4NVFII0Lr0VTN8yDBPKm0AQys8OQw60kLDwEhxQjr1e-1OCcXMEHTYQekAH_aZjVPgNCDeANxF5HoNjv1oiC9sSBi4sQ2W1mNpWywjcusB3Ih61upwAXVpW13av3QZka6Hf_MSX45dDVREemt12NbCljb21IEm1io5-49Pn5Nd351mcqVHOqvPL3eB4cYKLsOf9Q2oyc4q
  priority: 102
  providerName: Directory of Open Access Journals
Title PhishHaven-An Efficient Real-Time AI Phishing URLs Detection System
URI https://ieeexplore.ieee.org/document/9082616
https://www.proquest.com/docview/2454092765
https://doaj.org/article/6dde4c4e43bc47dfbe906b4476347a35
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCbantrDHu2GZWsLHXasUsV6Rccsa5ENa1EUC9CbYCo0OgxwhyW57NePkp1gW3sYYBiGIQk0KVEkLX4EeN84ldAulCRbB2kaqyQ63UiiqmLCA9o6B_Svrt1sbj7f2bsdONvmwhBROXxGw_xY_uUvHtI6h8rOc3luN3K7sOtD6HK1tvGUXEAiWN8DC41UOJ9Mp_wN7AJWashKNwPT_bX5FIz-vqjKI01ctpfL53C1Iaw7VfJ9uF7hMP36B7Pxfyl_Ac96O1NMuonxEnaoPYSDP9AHj2B6c_9teT_L9eTlpBUXBUyChxG3bDzKnBsiJp9EacTtxfz2y1J8pFU5u9WKDur8FcwvL75OZ7KvqSCTrrSWpkJ0NdVq7Imvapy0CT4FbIzW6H3KdTey0bGwjQ_IxhnfiM2Wce1xFIx-DXvtQ0tvQLBvib7kYBJy5-wbkUPyyBoTUdEAzjbMjj866IxYXA4VYiebmGUTe9kM4EMWyLZpxr0uL5iRsV9G0fHYJhkyGpPxiwYpKIfGsJY0vtZ2AEeZ-dtBer4P4Hgj3tiv0WWsMvhgqLyzb5_u9Q72M4FdwOUY9lY_13TCJsgKT4vrflpm4G_nGdgc
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QB7GB8DrWyAH3icOzf-qh-7sqmDdkLTKu3NyqUXDSFliLYv_PWcnbRiwANSFEWRbV3u7PPdxfc7gA-1UxXahZJkyyBNbZVEp2tJVBRMeEBbpoD-7MpN5ubTrb3dgZNtLgwR5cNn1E-P-V_-4r5ap1DZaSrP7QbuETxmu3ro2mytbUQllZAI1nfQQgMVTkfjMX8FO4GF6rPaTdB0D7afjNLflVX5SxfnDebiGcw2pLXnSr711yvsVz__QG38X9qfw35naYpROzVewA41L2HvN_zBAxh_ufu6vJukivJy1IjzDCfBw4hrNh9lyg4Ro0uRG3F7Mb-eLsVHWuXTW41owc5fwfzi_GY8kV1VBVnpQmtpCkRXUqmGnvgqhpU2wVcBa6M1el-lyhvJ7FjY2gdk84xvxIbLsPQ4CEa_ht3mvqFDEOxdos9ZmITcOXlH5JA8ss5EVNSDkw2z4_cWPCNmp0OF2MomJtnETjY9OEsC2TZNyNf5BTMydgspOh7bVIaMxsr4RY0UlENjWE8aX2rbg4PE_O0gHd97cLwRb-xW6TIWCX4wFN7ZN__u9R6eTG5m0zi9vPp8BE8TsW345Rh2Vz_W9JYNkhW-y_PwF0SQ2nI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PhishHaven-An+Efficient+Real-Time+AI+Phishing+URLs+Detection+System&rft.jtitle=IEEE+access&rft.au=Sameen%2C+Maria&rft.au=Han%2C+Kyunghyun&rft.au=Hwang%2C+Seong+Oun&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=83425&rft.epage=83443&rft_id=info:doi/10.1109%2FACCESS.2020.2991403&rft.externalDocID=9082616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon