PhishHaven-An Efficient Real-Time AI Phishing URLs Detection System
Different machine learning and deep learning-based approaches have been proposed for designing defensive mechanisms against various phishing attacks. Recently, researchers showed that phishing attacks can be performed by employing a deep neural network-based phishing URL generating system called Dee...
Saved in:
Published in | IEEE access Vol. 8; pp. 83425 - 83443 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Different machine learning and deep learning-based approaches have been proposed for designing defensive mechanisms against various phishing attacks. Recently, researchers showed that phishing attacks can be performed by employing a deep neural network-based phishing URL generating system called DeepPhish. To prevent this kind of attack, we design an ensemble machine learning-based detection system called PhishHaven to identify AI-generated as well as human-crafted phishing URLs. To the best of our knowledge, this is the first study to consider detecting phishing attacks by both AI and human attackers. PhishHaven employs lexical analysis for feature extraction. To further enhance lexical analysis, we introduce URL HTML Encoding to classify URL on-the-fly and proactively compare with some of the existing methods. We also introduce a URL Hit approach to deal with tiny URLs, which is an open problem yet to be solved. Moreover, the final classification of URLs is made on an unbiased voting mechanism in PhishHaven, which aims to avoid misclassification when the number of votes is equal. To speed up the ensemble-based machine learning models, PhishHaven employs a multi-threading approach to execute the classification in parallel, leading to real-time detection. Theoretical analysis of our solution shows that <xref rid="deqn1" ref-type="disp-formula">(1) it can always detect tiny URLs, and <xref rid="deqn2" ref-type="disp-formula">(2) it can detect future AI-generated Phishing URLs based on our selected lexical features with 100% accuracy. Through experiments, we analyze our solution with a benchmark dataset of 100,000 phishing and normal URLs. The results show that PhishHaven can achieve 98.00% accuracy, outperforming the existing lexical-based human-crafted phishing URLs detection systems. |
---|---|
AbstractList | Different machine learning and deep learning-based approaches have been proposed for designing defensive mechanisms against various phishing attacks. Recently, researchers showed that phishing attacks can be performed by employing a deep neural network-based phishing URL generating system called DeepPhish. To prevent this kind of attack, we design an ensemble machine learning-based detection system called PhishHaven to identify AI-generated as well as human-crafted phishing URLs. To the best of our knowledge, this is the first study to consider detecting phishing attacks by both AI and human attackers. PhishHaven employs lexical analysis for feature extraction. To further enhance lexical analysis, we introduce URL HTML Encoding to classify URL on-the-fly and proactively compare with some of the existing methods. We also introduce a URL Hit approach to deal with tiny URLs, which is an open problem yet to be solved. Moreover, the final classification of URLs is made on an unbiased voting mechanism in PhishHaven, which aims to avoid misclassification when the number of votes is equal. To speed up the ensemble-based machine learning models, PhishHaven employs a multi-threading approach to execute the classification in parallel, leading to real-time detection. Theoretical analysis of our solution shows that <xref rid="deqn1" ref-type="disp-formula">(1) it can always detect tiny URLs, and <xref rid="deqn2" ref-type="disp-formula">(2) it can detect future AI-generated Phishing URLs based on our selected lexical features with 100% accuracy. Through experiments, we analyze our solution with a benchmark dataset of 100,000 phishing and normal URLs. The results show that PhishHaven can achieve 98.00% accuracy, outperforming the existing lexical-based human-crafted phishing URLs detection systems. Different machine learning and deep learning-based approaches have been proposed for designing defensive mechanisms against various phishing attacks. Recently, researchers showed that phishing attacks can be performed by employing a deep neural network-based phishing URL generating system called DeepPhish. To prevent this kind of attack, we design an ensemble machine learning-based detection system called PhishHaven to identify AI-generated as well as human-crafted phishing URLs. To the best of our knowledge, this is the first study to consider detecting phishing attacks by both AI and human attackers. PhishHaven employs lexical analysis for feature extraction. To further enhance lexical analysis, we introduce URL HTML Encoding to classify URL on-the-fly and proactively compare with some of the existing methods. We also introduce a URL Hit approach to deal with tiny URLs, which is an open problem yet to be solved. Moreover, the final classification of URLs is made on an unbiased voting mechanism in PhishHaven, which aims to avoid misclassification when the number of votes is equal. To speed up the ensemble-based machine learning models, PhishHaven employs a multi-threading approach to execute the classification in parallel, leading to real-time detection. Theoretical analysis of our solution shows that (1) it can always detect tiny URLs, and (2) it can detect future AI-generated Phishing URLs based on our selected lexical features with 100% accuracy. Through experiments, we analyze our solution with a benchmark dataset of 100,000 phishing and normal URLs. The results show that PhishHaven can achieve 98.00% accuracy, outperforming the existing lexical-based human-crafted phishing URLs detection systems. |
Author | Han, Kyunghyun Sameen, Maria Hwang, Seong Oun |
Author_xml | – sequence: 1 givenname: Maria orcidid: 0000-0002-6086-8974 surname: Sameen fullname: Sameen, Maria organization: Department of IT Convergence Engineering, Gachon University, Seongnam, South Korea – sequence: 2 givenname: Kyunghyun orcidid: 0000-0002-7987-0441 surname: Han fullname: Han, Kyunghyun organization: Department of Electrical and Computer Engineering, Hongik University, Sejong, South Korea – sequence: 3 givenname: Seong Oun orcidid: 0000-0003-4240-6255 surname: Hwang fullname: Hwang, Seong Oun email: sohwang@gachon.ac.kr organization: Department of Computer Engineering, Gachon University, Seongnam, South Korea |
BookMark | eNpNkF1LwzAUhoMoOKe_wJuC1535OEuay1GnGwyUfVyHJD3VjK2dTRX27-2sDA_hnHB43zfhuSGXVV0hIfeMjhij-nGS59PVasQppyOuNQMqLsiAM6lTMRby8t_9mtzFuKVdZd1qrAYkf_sI8WNmv7FKJ1UyLcvgA1ZtskS7S9dhj8lknvyKQvWebJaLmDxhi74NdZWsjrHF_S25Ku0u4t3fHJLN83Sdz9LF68s8nyxSL7gQKXDnpEVLM4Xd4ZkXoJXXrgQhnFI-EwCM8qwYl0o7zmXXUILIrHJMgxiSeZ9b1HZrDk3Y2-ZoahvM76Ju3o1t2uB3aGRRIHhAEM6DKkqHmkoHoKQAZTsUQ_LQZx2a-vMLY2u29VdTdd83HMZANVfypBK9yjd1jA2W51cZNSf4podvTvDNH_zOdd-7AiKeHZpmXDIpfgAr9X6y |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_cose_2023_103387 crossref_primary_10_1109_ACCESS_2024_3409049 crossref_primary_10_1016_j_cose_2024_103843 crossref_primary_10_1080_09720529_2021_2016224 crossref_primary_10_1002_qre_3411 crossref_primary_10_1109_ACCESS_2023_3293063 crossref_primary_10_1016_j_cose_2023_103545 crossref_primary_10_1016_j_engappai_2021_104347 crossref_primary_10_1109_ACCESS_2024_3387437 crossref_primary_10_1109_ACCESS_2022_3222307 crossref_primary_10_1109_ACCESS_2022_3166474 crossref_primary_10_1109_TDSC_2021_3121388 crossref_primary_10_3390_s23073467 crossref_primary_10_1109_ACCESS_2022_3225971 crossref_primary_10_1109_ACCESS_2024_3412331 crossref_primary_10_1007_s10586_024_04655_5 crossref_primary_10_1016_j_prime_2024_100533 crossref_primary_10_1007_s40031_023_00934_8 crossref_primary_10_1109_ACCESS_2022_3196018 crossref_primary_10_1109_ACCESS_2023_3237798 crossref_primary_10_35940_ijitee_C8338_0110321 crossref_primary_10_1016_j_jisa_2021_102967 crossref_primary_10_1016_j_comnet_2024_110398 crossref_primary_10_3390_s23198070 crossref_primary_10_1109_ACCESS_2023_3247135 crossref_primary_10_1007_s11042_023_17993_0 |
Cites_doi | 10.1109/TII.2019.2899933 10.1109/ICECA.2019.8822053 10.1007/978-3-030-20951-3_21 10.1109/TNSM.2014.2377295 10.1007/978-3-642-41136-6_5 10.1016/j.future.2018.11.004 10.1109/ICACCI.2014.6968578 10.1007/s12652-018-0798-z 10.1109/TSMC.2018.2884952 10.1214/aos/1013203451 10.1109/TSG.2018.2890809 10.1109/JIOT.2019.2912022 10.1088/0954-898X_4_3_007 10.1007/978-3-540-39964-3_62 10.1109/INCoS.2013.151 10.1145/1557019.1557153 10.1109/INFCOM.2011.5934995 10.1023/A:1010933404324 10.1016/S1352-2310(97)00447-0 10.14569/IJACSA.2019.0100133 10.1109/INFCOM.2010.5462216 10.1109/ACCESS.2019.2920655 10.1016/j.cose.2017.12.006 10.1145/3305218.3305238 10.1016/S1532-0464(03)00034-0 10.1007/s12652-019-01311-4 10.1007/s10994-006-6226-1 10.3103/S0146411619040102 10.1016/j.eswa.2018.09.029 10.1007/BF00994018 10.1080/0952813X.2014.895108 10.17487/rfc7231 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2020.2991403 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 83443 |
ExternalDocumentID | oai_doaj_org_article_6dde4c4e43bc47dfbe906b4476347a35 10_1109_ACCESS_2020_2991403 9082616 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT) grantid: 2020R1A2B5B01002145 funderid: 10.13039/501100003725 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3233-42bb6aea087e87e28c3497c9bf433b77c83441028d5f79b2269b2e6438a7b1943 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:12:43 EDT 2024 Thu Oct 10 17:24:49 EDT 2024 Fri Aug 23 03:24:50 EDT 2024 Mon Nov 04 11:48:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3233-42bb6aea087e87e28c3497c9bf433b77c83441028d5f79b2269b2e6438a7b1943 |
ORCID | 0000-0002-6086-8974 0000-0002-7987-0441 0000-0003-4240-6255 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9082616 |
PQID | 2454092765 |
PQPubID | 4845423 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6dde4c4e43bc47dfbe906b4476347a35 crossref_primary_10_1109_ACCESS_2020_2991403 ieee_primary_9082616 proquest_journals_2454092765 |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref37 ref15 ref14 ref31 ref33 ref11 (ref7) 2019 ref10 ref2 ref39 ref17 ref38 ref16 ref19 ref18 (ref41) 2019 perlich (ref34) 2003; 4 thomas (ref8) 2020 ref24 (ref36) 2006; 63 ref23 ref25 ref20 (ref43) 2019 ref22 ref21 ref28 ref27 freund (ref32) 1996; 96 ref29 whittaker (ref26) 2010 (ref12) 2018 ref9 ref4 ref3 bahnsen (ref1) 2018 ref6 ref5 delmotte (ref30) 2008 ref40 (ref42) 2019 |
References_xml | – ident: ref5 doi: 10.1109/TII.2019.2899933 – ident: ref27 doi: 10.1109/ICECA.2019.8822053 – ident: ref22 doi: 10.1007/978-3-030-20951-3_21 – ident: ref21 doi: 10.1109/TNSM.2014.2377295 – ident: ref31 doi: 10.1007/978-3-642-41136-6_5 – ident: ref18 doi: 10.1016/j.future.2018.11.004 – volume: 4 start-page: 211 year: 2003 ident: ref34 article-title: Tree induction vs. Logistic regression: A learning-curve analysis publication-title: J Mach Learn Res contributor: fullname: perlich – ident: ref15 doi: 10.1109/ICACCI.2014.6968578 – year: 2010 ident: ref26 article-title: Large-scale automatic classification of phishing pages publication-title: Proc NDSS contributor: fullname: whittaker – ident: ref19 doi: 10.1007/s12652-018-0798-z – year: 2019 ident: ref41 – ident: ref3 doi: 10.1109/TSMC.2018.2884952 – ident: ref33 doi: 10.1214/aos/1013203451 – ident: ref4 doi: 10.1109/TSG.2018.2890809 – ident: ref2 doi: 10.1109/JIOT.2019.2912022 – ident: ref14 doi: 10.1088/0954-898X_4_3_007 – start-page: 1 year: 2018 ident: ref1 article-title: DeepPhish: Simulating malicious AI publication-title: APWG Symposium on Electronic Crime Research (eCrime) contributor: fullname: bahnsen – ident: ref37 doi: 10.1007/978-3-540-39964-3_62 – ident: ref17 doi: 10.1109/INCoS.2013.151 – ident: ref28 doi: 10.1145/1557019.1557153 – ident: ref20 doi: 10.1109/INFCOM.2011.5934995 – year: 2008 ident: ref30 publication-title: Html url encoding reference contributor: fullname: delmotte – year: 2019 ident: ref42 – ident: ref35 doi: 10.1023/A:1010933404324 – ident: ref40 doi: 10.1016/S1352-2310(97)00447-0 – ident: ref24 doi: 10.14569/IJACSA.2019.0100133 – year: 2019 ident: ref7 publication-title: Phishing Activity Trends Report-Third Quarter 2019 – ident: ref16 doi: 10.1109/INFCOM.2010.5462216 – ident: ref10 doi: 10.1109/ACCESS.2019.2920655 – ident: ref11 doi: 10.1016/j.cose.2017.12.006 – ident: ref6 doi: 10.1145/3305218.3305238 – ident: ref38 doi: 10.1016/S1532-0464(03)00034-0 – year: 2019 ident: ref43 – ident: ref23 doi: 10.1007/s12652-019-01311-4 – volume: 63 start-page: 3 year: 2006 ident: ref36 article-title: Extremely randomized trees publication-title: Mach Learn doi: 10.1007/s10994-006-6226-1 – ident: ref9 doi: 10.3103/S0146411619040102 – ident: ref25 doi: 10.1016/j.eswa.2018.09.029 – volume: 96 start-page: 148 year: 1996 ident: ref32 article-title: Experiments with a new boosting algorithm publication-title: Proc Int Conf Mach Learn contributor: fullname: freund – year: 2018 ident: ref12 publication-title: The Next Paradigm Shift AI-Driven Cyber-Attacks – ident: ref39 doi: 10.1007/BF00994018 – ident: ref13 doi: 10.1080/0952813X.2014.895108 – year: 2020 ident: ref8 article-title: Machine Learning and Cybersecurity publication-title: Machine Learning Approaches in Cyber Security Analytics contributor: fullname: thomas – ident: ref29 doi: 10.17487/rfc7231 |
SSID | ssj0000816957 |
Score | 2.4110534 |
Snippet | Different machine learning and deep learning-based approaches have been proposed for designing defensive mechanisms against various phishing attacks. Recently,... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 83425 |
SubjectTerms | AI-generated phishing URLs Artificial intelligence Artificial neural networks Classification Cyberattack ensemble machine learning Feature extraction human-crafted phishing URLs lexical features Machine learning multi-threading Phishing Real time Real-time systems tiny URLs Uniform resource locators URL HTML encoding URLs voting |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2xTsMwELVQJxgQUBCBgjwwYurGjh2PIbQqCBCqqNTNyqWOyhIQLf_P2UmrIgYWpChDcknsdznfnWW_I-SqUryEZM6ZSwrDZJVwBkpUzLk4xoYbSAo_of_0rMZT-TBLZlulvvyasIYeuAGur9D-ZCmdFFBKPa_AGa5ASrQLqQvRsJdys5VMhTE4HSiT6JZmCO_3szzHHmFCGPMbHII9Td0PVxQY-9sSK7_G5eBsRgdkv40Sada07pDsuPqI7G1xB3ZJ_rJ4Wy7Gvho8y2o6DFQQ6EHoBEM_5nd20OyeBiGUp9PJ45LeuVVYeVXThqj8mExHw9d8zNqKCKwUsRBMxgCqcAVPtcMjTkshjS4NVFII0Lr0VTN8yDBPKm0AQys8OQw60kLDwEhxQjr1e-1OCcXMEHTYQekAH_aZjVPgNCDeANxF5HoNjv1oiC9sSBi4sQ2W1mNpWywjcusB3Ih61upwAXVpW13av3QZka6Hf_MSX45dDVREemt12NbCljb21IEm1io5-49Pn5Nd351mcqVHOqvPL3eB4cYKLsOf9Q2oyc4q priority: 102 providerName: Directory of Open Access Journals |
Title | PhishHaven-An Efficient Real-Time AI Phishing URLs Detection System |
URI | https://ieeexplore.ieee.org/document/9082616 https://www.proquest.com/docview/2454092765 https://doaj.org/article/6dde4c4e43bc47dfbe906b4476347a35 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCbantrDHu2GZWsLHXasUsV6Rccsa5ENa1EUC9CbYCo0OgxwhyW57NePkp1gW3sYYBiGIQk0KVEkLX4EeN84ldAulCRbB2kaqyQ63UiiqmLCA9o6B_Svrt1sbj7f2bsdONvmwhBROXxGw_xY_uUvHtI6h8rOc3luN3K7sOtD6HK1tvGUXEAiWN8DC41UOJ9Mp_wN7AJWashKNwPT_bX5FIz-vqjKI01ctpfL53C1Iaw7VfJ9uF7hMP36B7Pxfyl_Ac96O1NMuonxEnaoPYSDP9AHj2B6c_9teT_L9eTlpBUXBUyChxG3bDzKnBsiJp9EacTtxfz2y1J8pFU5u9WKDur8FcwvL75OZ7KvqSCTrrSWpkJ0NdVq7Imvapy0CT4FbIzW6H3KdTey0bGwjQ_IxhnfiM2Wce1xFIx-DXvtQ0tvQLBvib7kYBJy5-wbkUPyyBoTUdEAzjbMjj866IxYXA4VYiebmGUTe9kM4EMWyLZpxr0uL5iRsV9G0fHYJhkyGpPxiwYpKIfGsJY0vtZ2AEeZ-dtBer4P4Hgj3tiv0WWsMvhgqLyzb5_u9Q72M4FdwOUY9lY_13TCJsgKT4vrflpm4G_nGdgc |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QB7GB8DrWyAH3icOzf-qh-7sqmDdkLTKu3NyqUXDSFliLYv_PWcnbRiwANSFEWRbV3u7PPdxfc7gA-1UxXahZJkyyBNbZVEp2tJVBRMeEBbpoD-7MpN5ubTrb3dgZNtLgwR5cNn1E-P-V_-4r5ap1DZaSrP7QbuETxmu3ro2mytbUQllZAI1nfQQgMVTkfjMX8FO4GF6rPaTdB0D7afjNLflVX5SxfnDebiGcw2pLXnSr711yvsVz__QG38X9qfw35naYpROzVewA41L2HvN_zBAxh_ufu6vJukivJy1IjzDCfBw4hrNh9lyg4Ro0uRG3F7Mb-eLsVHWuXTW41owc5fwfzi_GY8kV1VBVnpQmtpCkRXUqmGnvgqhpU2wVcBa6M1el-lyhvJ7FjY2gdk84xvxIbLsPQ4CEa_ht3mvqFDEOxdos9ZmITcOXlH5JA8ss5EVNSDkw2z4_cWPCNmp0OF2MomJtnETjY9OEsC2TZNyNf5BTMydgspOh7bVIaMxsr4RY0UlENjWE8aX2rbg4PE_O0gHd97cLwRb-xW6TIWCX4wFN7ZN__u9R6eTG5m0zi9vPp8BE8TsW345Rh2Vz_W9JYNkhW-y_PwF0SQ2nI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PhishHaven-An+Efficient+Real-Time+AI+Phishing+URLs+Detection+System&rft.jtitle=IEEE+access&rft.au=Sameen%2C+Maria&rft.au=Han%2C+Kyunghyun&rft.au=Hwang%2C+Seong+Oun&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=83425&rft.epage=83443&rft_id=info:doi/10.1109%2FACCESS.2020.2991403&rft.externalDocID=9082616 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |