Study on Robust H_∞ Filtering in Networked Environments
This paper is concerned with the robust H ∞ filter problem for networked environments, which are subject to both transmission delay and packet dropouts randomly. By employing random series which have Bernoulli distributions taking value of 0 or 1, the data transmission model is obtained. Based on st...
Saved in:
Published in | International journal of automation and computing Vol. 8; no. 4; pp. 465 - 471 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Institute of Automation, Chinese Academy of Sciences
01.11.2011
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1476-8186 2153-182X 1751-8520 2153-1838 |
DOI | 10.1007/s11633-011-0605-1 |
Cover
Summary: | This paper is concerned with the robust H ∞ filter problem for networked environments, which are subject to both transmission delay and packet dropouts randomly. By employing random series which have Bernoulli distributions taking value of 0 or 1, the data transmission model is obtained. Based on state augmentation and stochastic theory, the sufficient condition for robust stability with H ∞ constraints is derived for the filtering error system. The robust filter is designed in terms of feasibility of one certain linear matrix inequality (LMI), which is formed by adopting matrix congruence transformations. A numerical example is given to show the effectiveness of the proposed filtering method. |
---|---|
Bibliography: | Robust filtering, networked environments, transmission delay, packet dropouts, linear matrix inequality (LMI). This paper is concerned with the robust H ∞ filter problem for networked environments, which are subject to both transmission delay and packet dropouts randomly. By employing random series which have Bernoulli distributions taking value of 0 or 1, the data transmission model is obtained. Based on state augmentation and stochastic theory, the sufficient condition for robust stability with H ∞ constraints is derived for the filtering error system. The robust filter is designed in terms of feasibility of one certain linear matrix inequality (LMI), which is formed by adopting matrix congruence transformations. A numerical example is given to show the effectiveness of the proposed filtering method. 11-5350/TP ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1476-8186 2153-182X 1751-8520 2153-1838 |
DOI: | 10.1007/s11633-011-0605-1 |