Micro-PL analysis of high current density resonant tunneling diodes for THz applications
Low-temperature micro-photoluminescence (μPL) is used to evaluate wafer structural uniformity of current densities >5mA/μm2 InGaAs/AlAs/InP resonant tunneling diode (RTD) structures on different length scales. Thin, highly strained quantum wells (QWs) are subject to monolayer fluctuations, leadin...
Saved in:
Published in | Applied physics letters Vol. 119; no. 7 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
16.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low-temperature micro-photoluminescence (μPL) is used to evaluate wafer structural uniformity of current densities >5mA/μm2 InGaAs/AlAs/InP resonant tunneling diode (RTD) structures on different length scales. Thin, highly strained quantum wells (QWs) are subject to monolayer fluctuations, leading to a large statistical distribution in their electrical properties. This has an important impact on the RTD device performance and manufacturability. The PL spot size is reduced using a common photolithography mask to reach a typical high Jpeak for a given RTD mesa size (1 ∼ 100 μm2). We observe that for lower strain-budget samples, the PL line shape is essentially identical for all excitation/collection areas. For higher strain-budget samples, there is a variation in the PL line shape that is discussed in terms of a variation in long-range disorder brought about by strain relaxation processes. The RTD operating characteristics are discussed in light of these findings, and we conclude that strain model limits overestimate the strain budget that can be incorporated in these devices. We also highlight μPL as a powerful nondestructive characterization method for RTD structures. |
---|---|
AbstractList | Low-temperature micro-photoluminescence (μPL) is used to evaluate wafer structural uniformity of current densities >5mA/μm2 InGaAs/AlAs/InP resonant tunneling diode (RTD) structures on different length scales. Thin, highly strained quantum wells (QWs) are subject to monolayer fluctuations, leading to a large statistical distribution in their electrical properties. This has an important impact on the RTD device performance and manufacturability. The PL spot size is reduced using a common photolithography mask to reach a typical high Jpeak for a given RTD mesa size (1 ∼ 100 μm2). We observe that for lower strain-budget samples, the PL line shape is essentially identical for all excitation/collection areas. For higher strain-budget samples, there is a variation in the PL line shape that is discussed in terms of a variation in long-range disorder brought about by strain relaxation processes. The RTD operating characteristics are discussed in light of these findings, and we conclude that strain model limits overestimate the strain budget that can be incorporated in these devices. We also highlight μPL as a powerful nondestructive characterization method for RTD structures. |
Author | Cimbri, D. Mukai, T. Wasige, E. Hogg, R. A. Watt, A. Cito, M. Childs, D. Harrison, B. A. Baba, R. |
Author_xml | – sequence: 1 givenname: M. surname: Cito fullname: Cito, M. organization: School of Engineering, University of Glasgow – sequence: 2 givenname: D. surname: Cimbri fullname: Cimbri, D. organization: School of Engineering, University of Glasgow – sequence: 3 givenname: D. surname: Childs fullname: Childs, D. organization: School of Engineering, University of Glasgow – sequence: 4 givenname: R. surname: Baba fullname: Baba, R. organization: School of Engineering, University of Glasgow – sequence: 5 givenname: B. A. surname: Harrison fullname: Harrison, B. A. organization: Department of Electronic and Electrical Engineering, EPSRC National Centre for III-V Technologies, University of Sheffield – sequence: 6 givenname: A. surname: Watt fullname: Watt, A. organization: School of Engineering, University of Glasgow – sequence: 7 givenname: T. surname: Mukai fullname: Mukai, T. organization: Sensing Technology R&D Project, R&D Headquarters LED Division – sequence: 8 givenname: E. surname: Wasige fullname: Wasige, E. organization: School of Engineering, University of Glasgow – sequence: 9 givenname: R. A. surname: Hogg fullname: Hogg, R. A. organization: School of Engineering, University of Glasgow |
BookMark | eNp90EFLwzAUB_AgE9ymB79BwJNCZ9LXtOlRhjphoocJ3kKaJltGTWrSCvPTW53oQfD0eI8ff_i_CRo57zRCp5TMKMnhks0IYSVAeYDGlBRFApTyERoTQiDJS0aP0CTG7bCyFGCMnu-tCj55XGLpZLOLNmJv8MauN1j1IWjX4Vq7aLsdDjp6J4dD1zunG-vWuLa-1hEbH_Bq8Y5l2zZWyc56F4_RoZFN1Cffc4qebq5X80WyfLi9m18tEwVp2iWGaWaUKglnPC0M56SqtWRc1XlB8gpoyZVOqwwg45zKClJjOANZZExWhkmYorN9bhv8a69jJ7a-D0OXKFKWpyQDAtmgzvdqKBtj0Ea0wb7IsBOUiM_HCSa-HzfYi72NynZfZX7wmw-_ULS1-Q__Tf4AOf5-AQ |
CODEN | APPLAB |
Cites_doi | 10.1109/OJCOMS.2019.2953633 10.1021/cg025502y 10.1063/5.0035394 10.1103/PhysRevB.60.5664 10.1088/0268-1242/11/5/004 10.1109/MSPEC.2004.1309810 10.1143/JJAP.44.7314 10.1109/TCT.1961.1086849 10.1063/1.5113585 10.1063/1.4997664 10.1587/transele.E99.C.181 10.1587/elex.8.1127 10.1016/S0022-0248(74)80055-2 10.1016/j.pcrysgrow.2020.100485 10.1103/PhysRevLett.64.1943 10.1117/12.2582781 10.1116/1.585704 10.1063/1.3525834 10.1109/LED.2015.2491339 10.1016/j.jcrysgro.2004.09.024 10.1063/1.110421 10.1103/PhysRevLett.72.3570 10.1016/0022-0248(94)00562-1 10.1016/j.jcrysgro.2015.02.017 10.1016/0749-6036(92)90356-A 10.1063/1.349613 10.1103/PhysRevLett.93.216101 10.1109/JQE.2018.2797960 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0059339 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0059339 apl |
GrantInformation_xml | – fundername: H2020 Marie Skłodowska-Curie Actions grantid: 765426 funderid: https://doi.org/10.13039/100010665 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c322t-f5e5fcc9085827f880bdea58cd6706b3198ce2b4334881ab32ff853a745abf5a3 |
IEDL.DBID | AJDQP |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 05:58:35 EDT 2025 Thu Jul 03 08:38:36 EDT 2025 Fri Jun 21 00:13:31 EDT 2024 Thu Jun 23 13:44:43 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-f5e5fcc9085827f880bdea58cd6706b3198ce2b4334881ab32ff853a745abf5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9679-628X 0000-0002-0781-6809 0000-0003-2582-9037 0000-0001-5014-342X |
OpenAccessLink | http://dx.doi.org/10.1063/5.0059339 |
PQID | 2562043034 |
PQPubID | 2050678 |
PageCount | 6 |
ParticipantIDs | scitation_primary_10_1063_5_0059339 proquest_journals_2562043034 crossref_primary_10_1063_5_0059339 |
PublicationCentury | 2000 |
PublicationDate | 20210816 2021-08-16 |
PublicationDateYYYYMMDD | 2021-08-16 |
PublicationDate_xml | – month: 08 year: 2021 text: 20210816 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Baba, Stevens, Mukai, Hogg (c22) 2018 Cito, Kojima, Stevens, Mukai, Hogg (c10) 2021 Porte (c16) 2004 Kim, Brandli (c31) 1961 Cito, Kojima, Stevens, Mukai, Hogg (c12) 2021 Christen, Grundmann, Bimberg (c15) 1991 Sugiyama (c17) 2005 Baba, Jacobs, Harrison, Stevens, Mukai, Hogg (c8) 2019 Jacobs, Stevens, Hogg (c9) 2016 Cherry (c2) 2004 Brasil, Nahory, Tamargo, Schwarz (c13) 1993 Gobato, Triques, Rivera, Schulz (c30) 1999 Jacobs, Stevens, Wada, Mukai, Ohnishi, Hogg (c19) 2015 Matthews, Blakeslee (c20) 1974 Jacobs, Stevens, Mukai, Ohnishi, Hogg (c11) 2015 Nagatsuma (c3) 2011 Nabetani, Yamamoto, Tokuda, Sasaki (c28) 1995 Herman, Bimberg, Christen (c14) 1991 Tersoff, LeGoues (c26) 1994 Ekins-Daukes, Kawaguchi, Zhang (c24) 2002 Suzuki, Asada, Teranishi, Sugiyama, Yokoyama (c5) 2010 Yachmenev, Pushkarev, Reznik, Khabibullin, Ponomarev (c6) 2020 Eaglesham, Cerullo (c27) 1990 Elayan (c1) 2020 Jacobs, Stevens, Baba, Wada, Mukai, Hogg (c7) 2017 Tu, Tersoff (c25) 2004 Bruno, Hurley (c29) 1992 Jain, Willander, Maes (c21) 1996 (2023061816000657100_c16) 2004; 273 (2023061816000657100_c18) 2015 (2023061816000657100_c1) 2020; 1 (2023061816000657100_c28) 1995; 146 (2023061816000657100_c26) 1994; 72 (2023061816000657100_c11) 2015; 418 (2023061816000657100_c17) 2005; 44 (2023061816000657100_c31) 1961; 8 (2023061816000657100_c10) 2021; 11 (2023061816000657100_c22) 2018; 54 (2023061816000657100_c23) 2016 (2023061816000657100_c14) 1991; 70 (2023061816000657100_c15) 1991; 9 (2023061816000657100_c12) 2021; 11685 (2023061816000657100_c19) 2015; 36 (2023061816000657100_c2) 2004; 41 (2023061816000657100_c3) 2011; 8 (2023061816000657100_c24) 2002; 2 (2023061816000657100_c6) 2020; 66 (2023061816000657100_c21) 1996; 11 (2023061816000657100_c8) 2019; 126 (2023061816000657100_c20) 1974; 27 (2023061816000657100_c25) 2004; 93 (2023061816000657100_c4) 2017 (2023061816000657100_c7) 2017; 7 (2023061816000657100_c29) 1992; 11 (2023061816000657100_c9) 2016; E99.C (2023061816000657100_c27) 1990; 64 (2023061816000657100_c13) 1993; 63 (2023061816000657100_c30) 1999; 60 (2023061816000657100_c5) 2010; 97 |
References_xml | – start-page: 100485 year: 2020 ident: c6 publication-title: Prog. Cryst. Growth Charact. Mater. – start-page: 2688 year: 1993 ident: c13 publication-title: Appl. Phys. Lett. – start-page: 58 year: 2004 ident: c2 publication-title: IEEE Spectrum – start-page: 3570 year: 1994 ident: c26 publication-title: Phys. Rev. Lett. – start-page: 242102 year: 2010 ident: c5 publication-title: Appl. Phys. Lett. – start-page: 5664 year: 1999 ident: c30 publication-title: Phys. Rev. B – start-page: 181 year: 2016 ident: c9 publication-title: IEICE Trans. Electron. – start-page: 1168511 year: 2021 ident: c12 publication-title: Proc. SPIE – start-page: 1127 year: 2011 ident: c3 publication-title: IEICE Electron. Express – start-page: 1 year: 2020 ident: c1 publication-title: IEEE Open J. Commun. Soc. – start-page: 118 year: 1974 ident: c20 publication-title: J. Cryst. Growth – start-page: 1 year: 2018 ident: c22 publication-title: IEEE J. Quantum Electron. – start-page: 216101 year: 2004 ident: c25 publication-title: Phys. Rev. Lett. – start-page: 1943 year: 1990 ident: c27 publication-title: Phys. Rev. Lett. – start-page: 7314 year: 2005 ident: c17 publication-title: Jpn. J. Appl. Phys. – start-page: 641 year: 1996 ident: c21 publication-title: Semicond. Sci. Technol. – start-page: 416 year: 1961 ident: c31 publication-title: IRE Trans. Circuit Theory – start-page: 124304 year: 2019 ident: c8 publication-title: J. Appl. Phys. – start-page: R1 year: 1991 ident: c14 publication-title: J. Appl. Phys. – start-page: 363 year: 1995 ident: c28 publication-title: J. Cryst. Growth – start-page: 2358 year: 1991 ident: c15 publication-title: J. Vac. Sci. Technol. B – start-page: 136 year: 2004 ident: c16 publication-title: J. Cryst. Growth – start-page: 23 year: 1992 ident: c29 publication-title: Superlattices Microstruct. – start-page: 102 year: 2015 ident: c11 publication-title: J. Cryst. Growth – start-page: 105316 year: 2017 ident: c7 publication-title: AIP Adv. – start-page: 035122 year: 2021 ident: c10 publication-title: AIP Adv. – start-page: 1295 year: 2015 ident: c19 publication-title: IEEE Electron Device Lett. – start-page: 287 year: 2002 ident: c24 publication-title: Cryst. Growth Des. – volume: 1 start-page: 1 year: 2020 ident: 2023061816000657100_c1 publication-title: IEEE Open J. Commun. Soc. doi: 10.1109/OJCOMS.2019.2953633 – volume: 2 start-page: 287 year: 2002 ident: 2023061816000657100_c24 publication-title: Cryst. Growth Des. doi: 10.1021/cg025502y – volume: 11 start-page: 035122 year: 2021 ident: 2023061816000657100_c10 publication-title: AIP Adv. doi: 10.1063/5.0035394 – volume: 60 start-page: 5664 year: 1999 ident: 2023061816000657100_c30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.5664 – volume: 11 start-page: 641 year: 1996 ident: 2023061816000657100_c21 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/11/5/004 – volume: 41 start-page: 58 year: 2004 ident: 2023061816000657100_c2 publication-title: IEEE Spectrum doi: 10.1109/MSPEC.2004.1309810 – volume: 44 start-page: 7314 year: 2005 ident: 2023061816000657100_c17 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.44.7314 – volume: 8 start-page: 416 year: 1961 ident: 2023061816000657100_c31 publication-title: IRE Trans. Circuit Theory doi: 10.1109/TCT.1961.1086849 – volume: 126 start-page: 124304 year: 2019 ident: 2023061816000657100_c8 publication-title: J. Appl. Phys. doi: 10.1063/1.5113585 – volume: 7 start-page: 105316 year: 2017 ident: 2023061816000657100_c7 publication-title: AIP Adv. doi: 10.1063/1.4997664 – volume: E99.C start-page: 181 year: 2016 ident: 2023061816000657100_c9 publication-title: IEICE Trans. Electron. doi: 10.1587/transele.E99.C.181 – volume: 8 start-page: 1127 year: 2011 ident: 2023061816000657100_c3 publication-title: IEICE Electron. Express doi: 10.1587/elex.8.1127 – volume: 27 start-page: 118 year: 1974 ident: 2023061816000657100_c20 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(74)80055-2 – volume: 66 start-page: 100485 year: 2020 ident: 2023061816000657100_c6 publication-title: Prog. Cryst. Growth Charact. Mater. doi: 10.1016/j.pcrysgrow.2020.100485 – volume: 64 start-page: 1943 year: 1990 ident: 2023061816000657100_c27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.1943 – volume: 11685 start-page: 1168511 year: 2021 ident: 2023061816000657100_c12 publication-title: Proc. SPIE doi: 10.1117/12.2582781 – volume: 9 start-page: 2358 year: 1991 ident: 2023061816000657100_c15 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.585704 – volume: 97 start-page: 242102 year: 2010 ident: 2023061816000657100_c5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3525834 – volume: 36 start-page: 1295 year: 2015 ident: 2023061816000657100_c19 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2015.2491339 – year: 2016 ident: 2023061816000657100_c23 – volume: 273 start-page: 136 year: 2004 ident: 2023061816000657100_c16 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2004.09.024 – volume: 63 start-page: 2688 year: 1993 ident: 2023061816000657100_c13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.110421 – volume: 72 start-page: 3570 year: 1994 ident: 2023061816000657100_c26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.3570 – volume: 146 start-page: 363 year: 1995 ident: 2023061816000657100_c28 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(94)00562-1 – volume: 418 start-page: 102 year: 2015 ident: 2023061816000657100_c11 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2015.02.017 – year: 2017 ident: 2023061816000657100_c4 – volume: 11 start-page: 23 year: 1992 ident: 2023061816000657100_c29 publication-title: Superlattices Microstruct. doi: 10.1016/0749-6036(92)90356-A – volume: 70 start-page: R1 year: 1991 ident: 2023061816000657100_c14 publication-title: J. Appl. Phys. doi: 10.1063/1.349613 – year: 2015 ident: 2023061816000657100_c18 – volume: 93 start-page: 216101 year: 2004 ident: 2023061816000657100_c25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.216101 – volume: 54 start-page: 1 year: 2018 ident: 2023061816000657100_c22 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2018.2797960 |
SSID | ssj0005233 |
Score | 2.3733394 |
Snippet | Low-temperature micro-photoluminescence (μPL) is used to evaluate wafer structural uniformity of current densities >5mA/μm2 InGaAs/AlAs/InP resonant tunneling... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Applied physics Budgets Current density Electrical properties Line shape Low temperature Manufacturability Nondestructive testing Photolithography Photoluminescence Quantum wells Resonant tunneling Statistical methods Strain relaxation Tunnel diodes |
Title | Micro-PL analysis of high current density resonant tunneling diodes for THz applications |
URI | http://dx.doi.org/10.1063/5.0059339 https://www.proquest.com/docview/2562043034 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB1qi6gH0apYrSWo1-C62WS3x2KVUlpRbKG3JZ_gpSt2K-ivd9Ju7Qoq3pM5TGaYN5mXF4BLh2VHxcZSxQNGI6kCmlhuqG6bJBBKe0jv2Rb3ojeO-hM-qcDFLxN8wa78nQfHtru9AbUQwTGGbq3T7z4-lJgcjK0-xhOIGFYCQuXN38vOGktuYaFZzrxLZeVuD3YLPEg6ywPch4qd1mGnpBJYh80FS1PPDmAy9PQ5-jAgstASIZkjXnGY6KXOEjGekJ6_E-yiM89xIfncM1nQEDHPmbEzgiiVjHofpDy6PoTx3e3opkeLrxGoxgzMqeOWO63bCJiSMHaYhMpYyRNtRIwuxrxKtA1V5N_ZJtdSsdA5LMwyjrhUjkt2BNVpNrXHQGIlJPZdCDUciwLppOXC4E6LQCtS164B5yvPpS9LBYx0MbkWLOVp4d4GNFc-TYskmKWIpvzL24BFDbj48vNfRn5Y9Za9rlekL8ad_MvWKWyHnn3ixWtFE6r569yeIXzIVQvDpzscPLWKMPoErLfBNA |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60RdSD-MT6DOo1ujab7PYoPqi1lgoVelvyBEG6i90K-uuddLd2BRHvyRCGDPNN5psvAGcO046KjKWKB4yGUgU0ttxQ3TJxIJT2kN6zLXqi_Rx2hnxYcnP8LAweYnwuX7JCIjh7vSgdSF8Rc06yueCAYBf-NYRjQd5ahDpW4wIvdf2qc_PUr3A8GJt9mScQS8ykhaqbfyakOcpcxhRUdMMrCeduHdZKpEiuipNtwIIdbcJqRT9wE5am_E093oLhoyfW0X6XyFJlhKSOeC1iogsFJmI8VT3_IFhfp579QvKJ57igIWJeUmPHBPErGbQ_SbWpvQ3Pd7eD6zYtP02gGmMzp45b7rRuIZSKm5HD8FTGSh5rIyJ0PkZcrG1ThX4CN76UijWdw5Qto5BL5bhkO1AbpSO7CyRSQmJFhiDEsTCQTlouDO60CMFCdekacDLzXJIV2hjJtKctWMKT0r0NOJj5NCnDY5wgzvIzuQELG3D67ee_jPyy6j19m69IMuP2_mXrGJbbg8du0r3vPezDStNzVLzErTiAWv42sYcIMnJ1VF6lL7ipzKE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micro-PL+analysis+of+high+current+density+resonant+tunneling+diodes+for+THz+applications&rft.jtitle=Applied+physics+letters&rft.au=Cito%2C+M&rft.au=Cimbri%2C+D&rft.au=Childs%2C+D&rft.au=Baba%2C+R&rft.date=2021-08-16&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=119&rft.issue=7&rft_id=info:doi/10.1063%2F5.0059339&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |