Micro-PL analysis of high current density resonant tunneling diodes for THz applications

Low-temperature micro-photoluminescence (μPL) is used to evaluate wafer structural uniformity of current densities >5mA/μm2 InGaAs/AlAs/InP resonant tunneling diode (RTD) structures on different length scales. Thin, highly strained quantum wells (QWs) are subject to monolayer fluctuations, leadin...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 119; no. 7
Main Authors Cito, M., Cimbri, D., Childs, D., Baba, R., Harrison, B. A., Watt, A., Mukai, T., Wasige, E., Hogg, R. A.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 16.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low-temperature micro-photoluminescence (μPL) is used to evaluate wafer structural uniformity of current densities >5mA/μm2 InGaAs/AlAs/InP resonant tunneling diode (RTD) structures on different length scales. Thin, highly strained quantum wells (QWs) are subject to monolayer fluctuations, leading to a large statistical distribution in their electrical properties. This has an important impact on the RTD device performance and manufacturability. The PL spot size is reduced using a common photolithography mask to reach a typical high Jpeak for a given RTD mesa size (1 ∼ 100 μm2). We observe that for lower strain-budget samples, the PL line shape is essentially identical for all excitation/collection areas. For higher strain-budget samples, there is a variation in the PL line shape that is discussed in terms of a variation in long-range disorder brought about by strain relaxation processes. The RTD operating characteristics are discussed in light of these findings, and we conclude that strain model limits overestimate the strain budget that can be incorporated in these devices. We also highlight μPL as a powerful nondestructive characterization method for RTD structures.
AbstractList Low-temperature micro-photoluminescence (μPL) is used to evaluate wafer structural uniformity of current densities >5mA/μm2 InGaAs/AlAs/InP resonant tunneling diode (RTD) structures on different length scales. Thin, highly strained quantum wells (QWs) are subject to monolayer fluctuations, leading to a large statistical distribution in their electrical properties. This has an important impact on the RTD device performance and manufacturability. The PL spot size is reduced using a common photolithography mask to reach a typical high Jpeak for a given RTD mesa size (1 ∼ 100 μm2). We observe that for lower strain-budget samples, the PL line shape is essentially identical for all excitation/collection areas. For higher strain-budget samples, there is a variation in the PL line shape that is discussed in terms of a variation in long-range disorder brought about by strain relaxation processes. The RTD operating characteristics are discussed in light of these findings, and we conclude that strain model limits overestimate the strain budget that can be incorporated in these devices. We also highlight μPL as a powerful nondestructive characterization method for RTD structures.
Author Cimbri, D.
Mukai, T.
Wasige, E.
Hogg, R. A.
Watt, A.
Cito, M.
Childs, D.
Harrison, B. A.
Baba, R.
Author_xml – sequence: 1
  givenname: M.
  surname: Cito
  fullname: Cito, M.
  organization: School of Engineering, University of Glasgow
– sequence: 2
  givenname: D.
  surname: Cimbri
  fullname: Cimbri, D.
  organization: School of Engineering, University of Glasgow
– sequence: 3
  givenname: D.
  surname: Childs
  fullname: Childs, D.
  organization: School of Engineering, University of Glasgow
– sequence: 4
  givenname: R.
  surname: Baba
  fullname: Baba, R.
  organization: School of Engineering, University of Glasgow
– sequence: 5
  givenname: B. A.
  surname: Harrison
  fullname: Harrison, B. A.
  organization: Department of Electronic and Electrical Engineering, EPSRC National Centre for III-V Technologies, University of Sheffield
– sequence: 6
  givenname: A.
  surname: Watt
  fullname: Watt, A.
  organization: School of Engineering, University of Glasgow
– sequence: 7
  givenname: T.
  surname: Mukai
  fullname: Mukai, T.
  organization: Sensing Technology R&D Project, R&D Headquarters LED Division
– sequence: 8
  givenname: E.
  surname: Wasige
  fullname: Wasige, E.
  organization: School of Engineering, University of Glasgow
– sequence: 9
  givenname: R. A.
  surname: Hogg
  fullname: Hogg, R. A.
  organization: School of Engineering, University of Glasgow
BookMark eNp90EFLwzAUB_AgE9ymB79BwJNCZ9LXtOlRhjphoocJ3kKaJltGTWrSCvPTW53oQfD0eI8ff_i_CRo57zRCp5TMKMnhks0IYSVAeYDGlBRFApTyERoTQiDJS0aP0CTG7bCyFGCMnu-tCj55XGLpZLOLNmJv8MauN1j1IWjX4Vq7aLsdDjp6J4dD1zunG-vWuLa-1hEbH_Bq8Y5l2zZWyc56F4_RoZFN1Cffc4qebq5X80WyfLi9m18tEwVp2iWGaWaUKglnPC0M56SqtWRc1XlB8gpoyZVOqwwg45zKClJjOANZZExWhkmYorN9bhv8a69jJ7a-D0OXKFKWpyQDAtmgzvdqKBtj0Ea0wb7IsBOUiM_HCSa-HzfYi72NynZfZX7wmw-_ULS1-Q__Tf4AOf5-AQ
CODEN APPLAB
Cites_doi 10.1109/OJCOMS.2019.2953633
10.1021/cg025502y
10.1063/5.0035394
10.1103/PhysRevB.60.5664
10.1088/0268-1242/11/5/004
10.1109/MSPEC.2004.1309810
10.1143/JJAP.44.7314
10.1109/TCT.1961.1086849
10.1063/1.5113585
10.1063/1.4997664
10.1587/transele.E99.C.181
10.1587/elex.8.1127
10.1016/S0022-0248(74)80055-2
10.1016/j.pcrysgrow.2020.100485
10.1103/PhysRevLett.64.1943
10.1117/12.2582781
10.1116/1.585704
10.1063/1.3525834
10.1109/LED.2015.2491339
10.1016/j.jcrysgro.2004.09.024
10.1063/1.110421
10.1103/PhysRevLett.72.3570
10.1016/0022-0248(94)00562-1
10.1016/j.jcrysgro.2015.02.017
10.1016/0749-6036(92)90356-A
10.1063/1.349613
10.1103/PhysRevLett.93.216101
10.1109/JQE.2018.2797960
ContentType Journal Article
Copyright Author(s)
2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0059339
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0059339
apl
GrantInformation_xml – fundername: H2020 Marie Skłodowska-Curie Actions
  grantid: 765426
  funderid: https://doi.org/10.13039/100010665
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c322t-f5e5fcc9085827f880bdea58cd6706b3198ce2b4334881ab32ff853a745abf5a3
IEDL.DBID AJDQP
ISSN 0003-6951
IngestDate Mon Jun 30 05:58:35 EDT 2025
Thu Jul 03 08:38:36 EDT 2025
Fri Jun 21 00:13:31 EDT 2024
Thu Jun 23 13:44:43 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-f5e5fcc9085827f880bdea58cd6706b3198ce2b4334881ab32ff853a745abf5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9679-628X
0000-0002-0781-6809
0000-0003-2582-9037
0000-0001-5014-342X
OpenAccessLink http://dx.doi.org/10.1063/5.0059339
PQID 2562043034
PQPubID 2050678
PageCount 6
ParticipantIDs scitation_primary_10_1063_5_0059339
proquest_journals_2562043034
crossref_primary_10_1063_5_0059339
PublicationCentury 2000
PublicationDate 20210816
2021-08-16
PublicationDateYYYYMMDD 2021-08-16
PublicationDate_xml – month: 08
  year: 2021
  text: 20210816
  day: 16
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Baba, Stevens, Mukai, Hogg (c22) 2018
Cito, Kojima, Stevens, Mukai, Hogg (c10) 2021
Porte (c16) 2004
Kim, Brandli (c31) 1961
Cito, Kojima, Stevens, Mukai, Hogg (c12) 2021
Christen, Grundmann, Bimberg (c15) 1991
Sugiyama (c17) 2005
Baba, Jacobs, Harrison, Stevens, Mukai, Hogg (c8) 2019
Jacobs, Stevens, Hogg (c9) 2016
Cherry (c2) 2004
Brasil, Nahory, Tamargo, Schwarz (c13) 1993
Gobato, Triques, Rivera, Schulz (c30) 1999
Jacobs, Stevens, Wada, Mukai, Ohnishi, Hogg (c19) 2015
Matthews, Blakeslee (c20) 1974
Jacobs, Stevens, Mukai, Ohnishi, Hogg (c11) 2015
Nagatsuma (c3) 2011
Nabetani, Yamamoto, Tokuda, Sasaki (c28) 1995
Herman, Bimberg, Christen (c14) 1991
Tersoff, LeGoues (c26) 1994
Ekins-Daukes, Kawaguchi, Zhang (c24) 2002
Suzuki, Asada, Teranishi, Sugiyama, Yokoyama (c5) 2010
Yachmenev, Pushkarev, Reznik, Khabibullin, Ponomarev (c6) 2020
Eaglesham, Cerullo (c27) 1990
Elayan (c1) 2020
Jacobs, Stevens, Baba, Wada, Mukai, Hogg (c7) 2017
Tu, Tersoff (c25) 2004
Bruno, Hurley (c29) 1992
Jain, Willander, Maes (c21) 1996
(2023061816000657100_c16) 2004; 273
(2023061816000657100_c18) 2015
(2023061816000657100_c1) 2020; 1
(2023061816000657100_c28) 1995; 146
(2023061816000657100_c26) 1994; 72
(2023061816000657100_c11) 2015; 418
(2023061816000657100_c17) 2005; 44
(2023061816000657100_c31) 1961; 8
(2023061816000657100_c10) 2021; 11
(2023061816000657100_c22) 2018; 54
(2023061816000657100_c23) 2016
(2023061816000657100_c14) 1991; 70
(2023061816000657100_c15) 1991; 9
(2023061816000657100_c12) 2021; 11685
(2023061816000657100_c19) 2015; 36
(2023061816000657100_c2) 2004; 41
(2023061816000657100_c3) 2011; 8
(2023061816000657100_c24) 2002; 2
(2023061816000657100_c6) 2020; 66
(2023061816000657100_c21) 1996; 11
(2023061816000657100_c8) 2019; 126
(2023061816000657100_c20) 1974; 27
(2023061816000657100_c25) 2004; 93
(2023061816000657100_c4) 2017
(2023061816000657100_c7) 2017; 7
(2023061816000657100_c29) 1992; 11
(2023061816000657100_c9) 2016; E99.C
(2023061816000657100_c27) 1990; 64
(2023061816000657100_c13) 1993; 63
(2023061816000657100_c30) 1999; 60
(2023061816000657100_c5) 2010; 97
References_xml – start-page: 100485
  year: 2020
  ident: c6
  publication-title: Prog. Cryst. Growth Charact. Mater.
– start-page: 2688
  year: 1993
  ident: c13
  publication-title: Appl. Phys. Lett.
– start-page: 58
  year: 2004
  ident: c2
  publication-title: IEEE Spectrum
– start-page: 3570
  year: 1994
  ident: c26
  publication-title: Phys. Rev. Lett.
– start-page: 242102
  year: 2010
  ident: c5
  publication-title: Appl. Phys. Lett.
– start-page: 5664
  year: 1999
  ident: c30
  publication-title: Phys. Rev. B
– start-page: 181
  year: 2016
  ident: c9
  publication-title: IEICE Trans. Electron.
– start-page: 1168511
  year: 2021
  ident: c12
  publication-title: Proc. SPIE
– start-page: 1127
  year: 2011
  ident: c3
  publication-title: IEICE Electron. Express
– start-page: 1
  year: 2020
  ident: c1
  publication-title: IEEE Open J. Commun. Soc.
– start-page: 118
  year: 1974
  ident: c20
  publication-title: J. Cryst. Growth
– start-page: 1
  year: 2018
  ident: c22
  publication-title: IEEE J. Quantum Electron.
– start-page: 216101
  year: 2004
  ident: c25
  publication-title: Phys. Rev. Lett.
– start-page: 1943
  year: 1990
  ident: c27
  publication-title: Phys. Rev. Lett.
– start-page: 7314
  year: 2005
  ident: c17
  publication-title: Jpn. J. Appl. Phys.
– start-page: 641
  year: 1996
  ident: c21
  publication-title: Semicond. Sci. Technol.
– start-page: 416
  year: 1961
  ident: c31
  publication-title: IRE Trans. Circuit Theory
– start-page: 124304
  year: 2019
  ident: c8
  publication-title: J. Appl. Phys.
– start-page: R1
  year: 1991
  ident: c14
  publication-title: J. Appl. Phys.
– start-page: 363
  year: 1995
  ident: c28
  publication-title: J. Cryst. Growth
– start-page: 2358
  year: 1991
  ident: c15
  publication-title: J. Vac. Sci. Technol. B
– start-page: 136
  year: 2004
  ident: c16
  publication-title: J. Cryst. Growth
– start-page: 23
  year: 1992
  ident: c29
  publication-title: Superlattices Microstruct.
– start-page: 102
  year: 2015
  ident: c11
  publication-title: J. Cryst. Growth
– start-page: 105316
  year: 2017
  ident: c7
  publication-title: AIP Adv.
– start-page: 035122
  year: 2021
  ident: c10
  publication-title: AIP Adv.
– start-page: 1295
  year: 2015
  ident: c19
  publication-title: IEEE Electron Device Lett.
– start-page: 287
  year: 2002
  ident: c24
  publication-title: Cryst. Growth Des.
– volume: 1
  start-page: 1
  year: 2020
  ident: 2023061816000657100_c1
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2019.2953633
– volume: 2
  start-page: 287
  year: 2002
  ident: 2023061816000657100_c24
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg025502y
– volume: 11
  start-page: 035122
  year: 2021
  ident: 2023061816000657100_c10
  publication-title: AIP Adv.
  doi: 10.1063/5.0035394
– volume: 60
  start-page: 5664
  year: 1999
  ident: 2023061816000657100_c30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.5664
– volume: 11
  start-page: 641
  year: 1996
  ident: 2023061816000657100_c21
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/11/5/004
– volume: 41
  start-page: 58
  year: 2004
  ident: 2023061816000657100_c2
  publication-title: IEEE Spectrum
  doi: 10.1109/MSPEC.2004.1309810
– volume: 44
  start-page: 7314
  year: 2005
  ident: 2023061816000657100_c17
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.44.7314
– volume: 8
  start-page: 416
  year: 1961
  ident: 2023061816000657100_c31
  publication-title: IRE Trans. Circuit Theory
  doi: 10.1109/TCT.1961.1086849
– volume: 126
  start-page: 124304
  year: 2019
  ident: 2023061816000657100_c8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5113585
– volume: 7
  start-page: 105316
  year: 2017
  ident: 2023061816000657100_c7
  publication-title: AIP Adv.
  doi: 10.1063/1.4997664
– volume: E99.C
  start-page: 181
  year: 2016
  ident: 2023061816000657100_c9
  publication-title: IEICE Trans. Electron.
  doi: 10.1587/transele.E99.C.181
– volume: 8
  start-page: 1127
  year: 2011
  ident: 2023061816000657100_c3
  publication-title: IEICE Electron. Express
  doi: 10.1587/elex.8.1127
– volume: 27
  start-page: 118
  year: 1974
  ident: 2023061816000657100_c20
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(74)80055-2
– volume: 66
  start-page: 100485
  year: 2020
  ident: 2023061816000657100_c6
  publication-title: Prog. Cryst. Growth Charact. Mater.
  doi: 10.1016/j.pcrysgrow.2020.100485
– volume: 64
  start-page: 1943
  year: 1990
  ident: 2023061816000657100_c27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.1943
– volume: 11685
  start-page: 1168511
  year: 2021
  ident: 2023061816000657100_c12
  publication-title: Proc. SPIE
  doi: 10.1117/12.2582781
– volume: 9
  start-page: 2358
  year: 1991
  ident: 2023061816000657100_c15
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.585704
– volume: 97
  start-page: 242102
  year: 2010
  ident: 2023061816000657100_c5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3525834
– volume: 36
  start-page: 1295
  year: 2015
  ident: 2023061816000657100_c19
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2015.2491339
– year: 2016
  ident: 2023061816000657100_c23
– volume: 273
  start-page: 136
  year: 2004
  ident: 2023061816000657100_c16
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2004.09.024
– volume: 63
  start-page: 2688
  year: 1993
  ident: 2023061816000657100_c13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.110421
– volume: 72
  start-page: 3570
  year: 1994
  ident: 2023061816000657100_c26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.3570
– volume: 146
  start-page: 363
  year: 1995
  ident: 2023061816000657100_c28
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(94)00562-1
– volume: 418
  start-page: 102
  year: 2015
  ident: 2023061816000657100_c11
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2015.02.017
– year: 2017
  ident: 2023061816000657100_c4
– volume: 11
  start-page: 23
  year: 1992
  ident: 2023061816000657100_c29
  publication-title: Superlattices Microstruct.
  doi: 10.1016/0749-6036(92)90356-A
– volume: 70
  start-page: R1
  year: 1991
  ident: 2023061816000657100_c14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.349613
– year: 2015
  ident: 2023061816000657100_c18
– volume: 93
  start-page: 216101
  year: 2004
  ident: 2023061816000657100_c25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.216101
– volume: 54
  start-page: 1
  year: 2018
  ident: 2023061816000657100_c22
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2018.2797960
SSID ssj0005233
Score 2.3733394
Snippet Low-temperature micro-photoluminescence (μPL) is used to evaluate wafer structural uniformity of current densities >5mA/μm2 InGaAs/AlAs/InP resonant tunneling...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Applied physics
Budgets
Current density
Electrical properties
Line shape
Low temperature
Manufacturability
Nondestructive testing
Photolithography
Photoluminescence
Quantum wells
Resonant tunneling
Statistical methods
Strain relaxation
Tunnel diodes
Title Micro-PL analysis of high current density resonant tunneling diodes for THz applications
URI http://dx.doi.org/10.1063/5.0059339
https://www.proquest.com/docview/2562043034
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB1qi6gH0apYrSWo1-C62WS3x2KVUlpRbKG3JZ_gpSt2K-ivd9Ju7Qoq3pM5TGaYN5mXF4BLh2VHxcZSxQNGI6kCmlhuqG6bJBBKe0jv2Rb3ojeO-hM-qcDFLxN8wa78nQfHtru9AbUQwTGGbq3T7z4-lJgcjK0-xhOIGFYCQuXN38vOGktuYaFZzrxLZeVuD3YLPEg6ywPch4qd1mGnpBJYh80FS1PPDmAy9PQ5-jAgstASIZkjXnGY6KXOEjGekJ6_E-yiM89xIfncM1nQEDHPmbEzgiiVjHofpDy6PoTx3e3opkeLrxGoxgzMqeOWO63bCJiSMHaYhMpYyRNtRIwuxrxKtA1V5N_ZJtdSsdA5LMwyjrhUjkt2BNVpNrXHQGIlJPZdCDUciwLppOXC4E6LQCtS164B5yvPpS9LBYx0MbkWLOVp4d4GNFc-TYskmKWIpvzL24BFDbj48vNfRn5Y9Za9rlekL8ad_MvWKWyHnn3ixWtFE6r569yeIXzIVQvDpzscPLWKMPoErLfBNA
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60RdSD-MT6DOo1ujab7PYoPqi1lgoVelvyBEG6i90K-uuddLd2BRHvyRCGDPNN5psvAGcO046KjKWKB4yGUgU0ttxQ3TJxIJT2kN6zLXqi_Rx2hnxYcnP8LAweYnwuX7JCIjh7vSgdSF8Rc06yueCAYBf-NYRjQd5ahDpW4wIvdf2qc_PUr3A8GJt9mScQS8ykhaqbfyakOcpcxhRUdMMrCeduHdZKpEiuipNtwIIdbcJqRT9wE5am_E093oLhoyfW0X6XyFJlhKSOeC1iogsFJmI8VT3_IFhfp579QvKJ57igIWJeUmPHBPErGbQ_SbWpvQ3Pd7eD6zYtP02gGmMzp45b7rRuIZSKm5HD8FTGSh5rIyJ0PkZcrG1ThX4CN76UijWdw5Qto5BL5bhkO1AbpSO7CyRSQmJFhiDEsTCQTlouDO60CMFCdekacDLzXJIV2hjJtKctWMKT0r0NOJj5NCnDY5wgzvIzuQELG3D67ee_jPyy6j19m69IMuP2_mXrGJbbg8du0r3vPezDStNzVLzErTiAWv42sYcIMnJ1VF6lL7ipzKE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micro-PL+analysis+of+high+current+density+resonant+tunneling+diodes+for+THz+applications&rft.jtitle=Applied+physics+letters&rft.au=Cito%2C+M&rft.au=Cimbri%2C+D&rft.au=Childs%2C+D&rft.au=Baba%2C+R&rft.date=2021-08-16&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=119&rft.issue=7&rft_id=info:doi/10.1063%2F5.0059339&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon