DeepSVM-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks

Abstract Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermor...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 21; no. 5; pp. 1733 - 1741
Main Authors Liu, Bin, Li, Chen-Chen, Yan, Ke
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.09.2020
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermore, the existing feature vectorization strategies are not able to measure the global relationships among proteins from different protein folds. In this article, we proposed a new computational predictor called DeepSVM-fold for protein fold recognition by introducing a new feature vector based on the pairwise sequence similarity scores calculated from the fold-specific features extracted by deep learning networks. The feature vectors are then fed into a support vector machine to construct the predictor. Experimental results on the benchmark dataset (LE) show that DeepSVM-fold obviously outperforms all the other competing methods.
AbstractList Abstract Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermore, the existing feature vectorization strategies are not able to measure the global relationships among proteins from different protein folds. In this article, we proposed a new computational predictor called DeepSVM-fold for protein fold recognition by introducing a new feature vector based on the pairwise sequence similarity scores calculated from the fold-specific features extracted by deep learning networks. The feature vectors are then fed into a support vector machine to construct the predictor. Experimental results on the benchmark dataset (LE) show that DeepSVM-fold obviously outperforms all the other competing methods.
Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermore, the existing feature vectorization strategies are not able to measure the global relationships among proteins from different protein folds. In this article, we proposed a new computational predictor called DeepSVM-fold for protein fold recognition by introducing a new feature vector based on the pairwise sequence similarity scores calculated from the fold-specific features extracted by deep learning networks. The feature vectors are then fed into a support vector machine to construct the predictor. Experimental results on the benchmark dataset (LE) show that DeepSVM-fold obviously outperforms all the other competing methods.Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermore, the existing feature vectorization strategies are not able to measure the global relationships among proteins from different protein folds. In this article, we proposed a new computational predictor called DeepSVM-fold for protein fold recognition by introducing a new feature vector based on the pairwise sequence similarity scores calculated from the fold-specific features extracted by deep learning networks. The feature vectors are then fed into a support vector machine to construct the predictor. Experimental results on the benchmark dataset (LE) show that DeepSVM-fold obviously outperforms all the other competing methods.
Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermore, the existing feature vectorization strategies are not able to measure the global relationships among proteins from different protein folds. In this article, we proposed a new computational predictor called DeepSVM-fold for protein fold recognition by introducing a new feature vector based on the pairwise sequence similarity scores calculated from the fold-specific features extracted by deep learning networks. The feature vectors are then fed into a support vector machine to construct the predictor. Experimental results on the benchmark dataset (LE) show that DeepSVM-fold obviously outperforms all the other competing methods.
Author Liu, Bin
Yan, Ke
Li, Chen-Chen
Author_xml – sequence: 1
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  email: bliu@bliulab.net
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Chen-Chen
  surname: Li
  fullname: Li, Chen-Chen
  email: bliu@bliulab.net
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
– sequence: 3
  givenname: Ke
  surname: Yan
  fullname: Yan, Ke
  email: kyan@bliulab.net
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
BookMark eNp9kctKxTAQhoMoeLxsfIKACCJUkzYnad2Jdzjiwsu2pOn0GG2TmqTK8UV8XVOPKxFXMwPf_Pwz_wZaNdYAQjuUHFJSZEeVro6q6oMU-QqaUCZEwsiUrY49F8mU8WwdbXj_TEhKRE4n6PMMoL97vEka29bHuHc2gDZ4nLADZedGB20NrhZY2a7SRps59kPfWxfwG6hgHe6ketIGPJamxr3U7l17wB5eBzAqNrrTrXQ6LLBX1kVuDgacDFCPsnU0gFuQ7lvaQHi37sVvobVGth62f-omerg4vz-9Sma3l9enJ7NEZWkaEqgZl8BTFWtdZ5xAA7KhTVFMueCUNUAEqyiVUDUKuABOi4IxQVMCNM-n2SbaX-rGy6NfH8pOewVtKw3YwZdpRomgBStoRHd_oc92cCa6K1PGecZykolIkSWlnPXeQVMqHeT4w-CkbktKyjGpMiZVLpOKKwe_VnqnO-kWf8N7S9gO_X_cF6erqDE
CitedBy_id crossref_primary_10_1016_j_compbiolchem_2020_107357
crossref_primary_10_3389_fimmu_2022_1053617
crossref_primary_10_1021_acs_jcim_2c00959
crossref_primary_10_1093_bib_bbab255
crossref_primary_10_1109_ACCESS_2019_2953951
crossref_primary_10_1109_TCBB_2020_3031888
crossref_primary_10_1093_nargab_lqac043
crossref_primary_10_1109_TCBB_2024_3414497
crossref_primary_10_3389_fgene_2019_00842
crossref_primary_10_1109_ACCESS_2019_2952621
crossref_primary_10_1093_bib_bbab008
crossref_primary_10_1093_bib_bbab248
crossref_primary_10_1155_2020_8926750
crossref_primary_10_2174_1574893617666220404145517
crossref_primary_10_1049_cit2_12070
crossref_primary_10_1109_TCBB_2020_2964221
crossref_primary_10_3389_fgene_2022_853258
crossref_primary_10_1142_S0219720023500233
crossref_primary_10_1109_ACCESS_2020_2992468
crossref_primary_10_3390_rs13214201
crossref_primary_10_3390_ijms24054328
crossref_primary_10_3390_e23121605
crossref_primary_10_1093_bib_bbz139
crossref_primary_10_1109_ACCESS_2020_3032143
crossref_primary_10_3389_fbioe_2020_00502
crossref_primary_10_1093_bib_bbab001
crossref_primary_10_1109_ACCESS_2020_2982410
crossref_primary_10_2174_1381612826666201112142826
crossref_primary_10_1109_ACCESS_2019_2952237
crossref_primary_10_1016_j_ymeth_2022_11_001
crossref_primary_10_1093_bfgp_elz036
crossref_primary_10_2174_1574893615999200601122328
crossref_primary_10_3389_fgene_2021_808856
crossref_primary_10_1016_j_patter_2024_101023
crossref_primary_10_1109_ACCESS_2020_3013409
crossref_primary_10_1016_j_compbiomed_2023_107571
crossref_primary_10_1109_ACCESS_2019_2962821
crossref_primary_10_1109_ACCESS_2020_2985111
crossref_primary_10_1007_s11704_021_0548_9
crossref_primary_10_1109_TCBB_2021_3085589
crossref_primary_10_1155_2020_9235920
crossref_primary_10_3389_fbioe_2020_584807
crossref_primary_10_1002_pro_4758
crossref_primary_10_1155_2020_8852258
crossref_primary_10_1007_s12033_024_01119_4
crossref_primary_10_3389_fgene_2020_00005
crossref_primary_10_3389_fbioe_2020_00274
crossref_primary_10_3390_math10173188
crossref_primary_10_3934_mbe_2021382
crossref_primary_10_1021_acs_jproteome_0c00314
crossref_primary_10_1016_j_ymeth_2022_01_004
crossref_primary_10_1016_j_chemolab_2021_104245
crossref_primary_10_1155_2022_4621121
crossref_primary_10_1109_TCBB_2020_2991268
crossref_primary_10_1093_bib_bbab146
crossref_primary_10_1099_mgen_0_000483
crossref_primary_10_1016_j_engappai_2024_108315
crossref_primary_10_1007_s11760_020_01638_y
crossref_primary_10_1016_j_compbiomed_2022_106523
crossref_primary_10_1016_j_compbiomed_2022_106489
crossref_primary_10_3934_mbe_2022644
crossref_primary_10_1371_journal_pcbi_1010668
crossref_primary_10_1021_acs_chemrev_3c00189
crossref_primary_10_7554_eLife_82819
crossref_primary_10_3389_fbioe_2020_00134
crossref_primary_10_1093_bib_bbac142
crossref_primary_10_1109_ACCESS_2020_3004446
crossref_primary_10_1186_s12859_020_3388_y
crossref_primary_10_7717_peerj_10813
crossref_primary_10_1016_j_ijbiomac_2020_11_111
crossref_primary_10_1155_2021_3272119
crossref_primary_10_1109_ACCESS_2020_2994206
crossref_primary_10_3389_fgene_2021_818841
crossref_primary_10_1002_pmic_202100017
crossref_primary_10_1093_bib_bbab609
crossref_primary_10_1109_ACCESS_2020_2973220
crossref_primary_10_1002_pep2_24247
crossref_primary_10_1093_bib_bbaa192
crossref_primary_10_1155_2021_5542224
crossref_primary_10_1016_j_ygeno_2021_06_038
crossref_primary_10_1093_bfgp_elab036
crossref_primary_10_1007_s11704_020_0180_0
crossref_primary_10_1007_s12539_024_00665_4
crossref_primary_10_1093_nar_gkab829
crossref_primary_10_1109_ACCESS_2020_3023800
crossref_primary_10_1093_bib_bbab041
crossref_primary_10_2174_1381612826666201124112710
crossref_primary_10_3389_fcell_2021_629681
crossref_primary_10_1093_bib_bbz177
crossref_primary_10_3389_fbioe_2020_00635
crossref_primary_10_1016_j_ab_2020_114013
crossref_primary_10_1093_bib_bbaa144
crossref_primary_10_1016_j_ab_2022_114695
crossref_primary_10_1093_bib_bbaa018
crossref_primary_10_1093_bib_bbaa016
crossref_primary_10_1109_ACCESS_2020_2999394
crossref_primary_10_1016_j_medntd_2024_100341
crossref_primary_10_1109_TCBB_2020_3012732
crossref_primary_10_1109_ACCESS_2020_2989749
crossref_primary_10_52586_4935
crossref_primary_10_1093_bib_bbaa254
crossref_primary_10_1109_ACCESS_2020_2972922
crossref_primary_10_3390_membranes11070503
crossref_primary_10_3389_fbioe_2020_00245
crossref_primary_10_1093_bioinformatics_btac006
crossref_primary_10_3389_fgene_2021_809001
crossref_primary_10_1093_bib_bbaa008
crossref_primary_10_1109_ACCESS_2020_2980897
crossref_primary_10_1109_TCBB_2020_2966450
crossref_primary_10_3389_fgene_2020_00156
crossref_primary_10_3389_fbioe_2020_645520
crossref_primary_10_1016_j_ymeth_2021_05_016
Cites_doi 10.1007/978-3-642-02008-7_3
10.1093/bioinformatics/14.10.846
10.1093/bioinformatics/btt578
10.1093/bioinformatics/btx780
10.1002/prot.21459
10.1186/1471-2105-9-510
10.1093/nar/gkw226
10.1093/bib/bbx126
10.1002/prot.20007
10.1186/s12859-017-1842-2
10.1038/srep17573
10.1371/journal.pone.0002325
10.1093/bioinformatics/btw768
10.1016/j.compbiolchem.2009.07.001
10.1038/nmeth.1818
10.1093/bioinformatics/btz040
10.1002/prot.20308
10.18632/oncotarget.14524
10.1038/srep32333
10.1109/ACCESS.2019.2929363
10.1093/nar/25.17.3389
10.1016/j.artmed.2017.03.006
10.1093/bioinformatics/btt709
10.1093/bioinformatics/btx514
10.1002/(SICI)1097-0134(19990701)36:1<68::AID-PROT6>3.0.CO;2-1
10.1023/A:1018628609742
10.1002/pro.5560040613
10.1109/TCBB.2018.2789880
10.1186/1471-2105-15-S11-S14
10.1093/bioinformatics/btx429
10.1093/bib/bbw108
10.1002/prot.23025
10.1038/358086a0
10.1371/journal.pcbi.1003500
10.1093/bioinformatics/bti125
10.1142/S0219720003000186
10.1006/jmbi.1999.3377
10.1162/neco.1997.9.8.1735
10.1089/106652703322756113
10.1093/bioinformatics/btl102
10.1006/jmbi.2001.4762
10.1101/gad.262766.115
10.1093/nar/gki408
10.1093/bioinformatics/btu500
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbz098
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Genetics Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 1741
ExternalDocumentID 10_1093_bib_bbz098
10.1093/bib/bbz098
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c322t-ed46ae62cd46dd360efeaf1f99567614fe074b11aebfce67e6199447120e18853
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Jul 10 18:53:14 EDT 2025
Mon Jun 30 08:53:46 EDT 2025
Tue Jul 01 03:39:28 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Wed Aug 28 03:17:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords support vector machine
pairwise sequence similarity scores
convolutional neural network
protein fold recognition
long short-term memory
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-ed46ae62cd46dd360efeaf1f99567614fe074b11aebfce67e6199447120e18853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2466348037
PQPubID 26846
PageCount 9
ParticipantIDs proquest_miscellaneous_2310719491
proquest_journals_2466348037
crossref_citationtrail_10_1093_bib_bbz098
crossref_primary_10_1093_bib_bbz098
oup_primary_10_1093_bib_bbz098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2020
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Yan (2021031111363161000_ref2) 2017; 79
Remmert (2021031111363161000_ref19) 2011; 9
Alrfou (2021031111363161000_ref26) 2016
Peng (2021031111363161000_ref49) 2009; 5541
Chen (2021031111363161000_ref34) 2017; 33
Pearson (2021031111363161000_ref38) 1995; 4
Liu (2021031111363161000_ref21) 2019; 7
Cheng (2021031111363161000_ref12) 2006; 22
Hargbo (2021031111363161000_ref39) 1999; 36
Liu (2021031111363161000_ref46) 2007; 68
Xu (2021031111363161000_ref50) 2014; 30
Hochreiter (2021031111363161000_ref25) 1997; 9
Liu (2021031111363161000_ref20) 2014; 30
Liu (2021031111363161000_ref23) 2017; 8
Altschul (2021031111363161000_ref4) 1997; 25
Liu (2021031111363161000_ref15) 2008; 9
Chen (2021031111363161000_ref3) 2018; 9
Zhang (2021031111363161000_ref47) 2008; 3
Karplus (2021031111363161000_ref37) 1998; 14
Seemayer (2021031111363161000_ref17) 2014; 30
Yue (2021031111363161000_ref1) 2015; 29
Lindahl (2021031111363161000_ref16) 2000; 295
Hou (2021031111363161000_ref10) 2018; 34
Xu (2021031111363161000_ref42) 2003; 1
Shi (2021031111363161000_ref41) 2001; 310
Liu (2021031111363161000_ref8) 2009; 33
Jo (2021031111363161000_ref14) 2015; 5
Jones (2021031111363161000_ref40) 1992; 358
Li (2021031111363161000_ref18) 2017; 18
Soding (2021031111363161000_ref5) 2005; 21
Liu (2021031111363161000_ref52)
Zhou (2021031111363161000_ref45) 2005; 58
Xia (2021031111363161000_ref9) 2017; 33
Liao (2021031111363161000_ref31) 2003; 10
Liu (2021031111363161000_ref36)
Krizhevsky (2021031111363161000_ref24) 2012
Quang (2021031111363161000_ref29) 2016; 44
Liu (2021031111363161000_ref7) 2019
Suykens (2021031111363161000_ref32) 1999; 9
Pedregosa (2021031111363161000_ref33) 2011; 12
Yang (2021031111363161000_ref44) 2011; 79
Liu (2021031111363161000_ref53) 2019; 20
Yan (2021031111363161000_ref35) 2019
Jo (2021031111363161000_ref13) 2014; 15
Zhou (2021031111363161000_ref43) 2004; 55
Ma (2021031111363161000_ref6) 2014; 10
Zou (2021031111363161000_ref30) 2019
Ioffe (2021031111363161000_ref27) 2015
Soding (2021031111363161000_ref48) 2005; 33
Zhu (2021031111363161000_ref11) 2017; 33
Srivastava (2021031111363161000_ref28) 2014; 15
Liu (2021031111363161000_ref22) 2019; 16
Chen (2021031111363161000_ref51) 2016; 6
References_xml – volume: 5541
  start-page: 31−+
  year: 2009
  ident: 2021031111363161000_ref49
  article-title: Boosting protein threading accuracy
  publication-title: Res Comput Mol Biol
  doi: 10.1007/978-3-642-02008-7_3
– volume: 14
  start-page: 846
  year: 1998
  ident: 2021031111363161000_ref37
  article-title: Hidden Markov models for detecting remote protein homologies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.10.846
– volume: 30
  start-page: 660
  year: 2014
  ident: 2021031111363161000_ref50
  article-title: FFAS-3D: improving fold recognition by including optimized structural features and template re-ranking
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt578
– volume: 34
  start-page: 1295
  year: 2018
  ident: 2021031111363161000_ref10
  article-title: DeepSF: deep convolutional neural network for mapping protein sequences to folds
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx780
– volume: 68
  start-page: 636
  year: 2007
  ident: 2021031111363161000_ref46
  article-title: Fold recognition by concurrent use of solvent accessibility and residue depth
  publication-title: Proteins
  doi: 10.1002/prot.21459
– volume: 9
  start-page: 510
  year: 2008
  ident: 2021031111363161000_ref15
  article-title: A discriminative method for protein remote homology detection and fold recognition combining top-n-grams and latent semantic analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-510
– volume: 44
  start-page: e107
  year: 2016
  ident: 2021031111363161000_ref29
  article-title: DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw226
– volume: 20
  start-page: 330
  year: 2019
  ident: 2021031111363161000_ref53
  article-title: A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx126
– start-page: 292
  volume-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  year: 2019
  ident: 2021031111363161000_ref7
  article-title: Protein remote homology detection and fold recognition based on Sequence-Order Frequency Matrix
– volume: 55
  start-page: 1005
  year: 2004
  ident: 2021031111363161000_ref43
  article-title: Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition
  publication-title: Proteins
  doi: 10.1002/prot.20007
– volume: 18
  start-page: 443
  year: 2017
  ident: 2021031111363161000_ref18
  article-title: Protein remote homology detection based on bidirectional long short-term memory
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1842-2
– start-page: 1097
  year: 2012
  ident: 2021031111363161000_ref24
  article-title: In Imagenet classification with deep convolutional neural networks
  publication-title: Neural Inf Process Syst
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2021031111363161000_ref33
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume: 5
  start-page: 17573
  year: 2015
  ident: 2021031111363161000_ref14
  article-title: Improving protein fold recognition by deep learning networks
  publication-title: Sci Rep
  doi: 10.1038/srep17573
– volume: 3
  year: 2008
  ident: 2021031111363161000_ref47
  article-title: SP5: improving protein fold recognition by using torsion angle profiles and profile-based gap penalty model
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002325
– volume: 33
  start-page: 863
  year: 2017
  ident: 2021031111363161000_ref9
  article-title: An ensemble approach to protein fold classification by integration of template-based assignment and support vector machine classifier
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw768
– volume: 33
  start-page: 303
  year: 2009
  ident: 2021031111363161000_ref8
  article-title: Exploiting three kinds of interface propensities to identify protein binding sites
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2009.07.001
– start-page: 205
  volume-title: RNA
  year: 2019
  ident: 2021031111363161000_ref30
  article-title: Gene2vec: Gene Subsequence Embedding for Prediction of Mammalian N6-Methyladenosine Sites from mRNA
– ident: 2021031111363161000_ref52
  article-title: BioSeq-analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches
  publication-title: Brief Bioinform
– volume: 9
  start-page: 173
  year: 2011
  ident: 2021031111363161000_ref19
  article-title: HHblits: lightning-fast iterative protein sequence searching by HMM–HMM alignment
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1818
– year: 2019
  ident: 2021031111363161000_ref35
  article-title: Protein fold recognition based on multi-view Modeling
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz040
– volume: 58
  start-page: 321
  year: 2005
  ident: 2021031111363161000_ref45
  article-title: Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments
  publication-title: Proteins
  doi: 10.1002/prot.20308
– volume: 8
  start-page: 13338
  year: 2017
  ident: 2021031111363161000_ref23
  article-title: Pse-Analysis: a python package for DNA, RNA and protein peptide sequence analysis based on pseudo components and kernel methods
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14524
– volume: 6
  start-page: 32333
  year: 2016
  ident: 2021031111363161000_ref51
  article-title: dRHP-PseRA: detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation
  publication-title: Sci Rep
  doi: 10.1038/srep32333
– ident: 2021031111363161000_ref36
  article-title: BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA, and protein sequences at sequence level and residue level based on machine learning approaches
  publication-title: Nucleic Acids Research
– volume: 7
  start-page: 102499
  year: 2019
  ident: 2021031111363161000_ref21
  article-title: ProtDec-LTR3.0: protein remote homology detection by incorporating profile-based features into Learning to Rank
  publication-title: IEEE ACCESS
  doi: 10.1109/ACCESS.2019.2929363
– volume: 25
  start-page: 3389
  year: 1997
  ident: 2021031111363161000_ref4
  article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 79
  start-page: 1
  year: 2017
  ident: 2021031111363161000_ref2
  article-title: Protein fold recognition based on sparse representation based classification
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2017.03.006
– volume: 30
  start-page: 472
  year: 2014
  ident: 2021031111363161000_ref20
  article-title: Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt709
– volume: 33
  start-page: 3749
  year: 2017
  ident: 2021031111363161000_ref11
  article-title: Improving protein fold recognition by extracting fold-specific features from predicted residue–residue contacts
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx514
– volume: 36
  start-page: 68
  year: 1999
  ident: 2021031111363161000_ref39
  article-title: Hidden Markov models that use predicted secondary structures for fold recognition
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(19990701)36:1<68::AID-PROT6>3.0.CO;2-1
– volume: 9
  start-page: 293
  year: 1999
  ident: 2021031111363161000_ref32
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– volume: 4
  start-page: 1145
  year: 1995
  ident: 2021031111363161000_ref38
  article-title: Comparison of methods for searching protein sequence databases
  publication-title: Protein Sci
  doi: 10.1002/pro.5560040613
– volume: 16
  start-page: 1203
  year: 2019
  ident: 2021031111363161000_ref22
  article-title: ProtDet-CCH: protein remote homology detection by combining long short-term memory and ranking methods
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2018.2789880
– volume: 15
  start-page: S14
  issue: Suppl 11
  year: 2014
  ident: 2021031111363161000_ref13
  article-title: Improving protein fold recognition by random forest
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-S11-S14
– volume: 15
  start-page: 1929
  year: 2014
  ident: 2021031111363161000_ref28
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 33
  start-page: 3473
  year: 2017
  ident: 2021031111363161000_ref34
  article-title: ProtDec-LTR2.0: an improved method for protein remote homology detection by combining pseudo protein and supervised learning to rank
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx429
– volume: 9
  start-page: 231
  year: 2018
  ident: 2021031111363161000_ref3
  article-title: A comprehensive review and comparison of different computational methods for protein remote homology detection
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbw108
– volume: 79
  start-page: 2053
  year: 2011
  ident: 2021031111363161000_ref44
  article-title: Improving taxonomy-based protein fold recognition by using global and local features
  publication-title: Proteins
  doi: 10.1002/prot.23025
– start-page: 448
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: 2021031111363161000_ref27
– volume: 358
  start-page: 86
  year: 1992
  ident: 2021031111363161000_ref40
  article-title: A new approach to protein fold recognition
  publication-title: Nature
  doi: 10.1038/358086a0
– volume: 10
  year: 2014
  ident: 2021031111363161000_ref6
  article-title: MRFalign: protein homology detection through alignment of Markov random fields
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003500
– volume: 21
  start-page: 951
  year: 2005
  ident: 2021031111363161000_ref5
  article-title: Protein homology detection by HMM–HMM comparison
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti125
– volume: 1
  start-page: 95
  year: 2003
  ident: 2021031111363161000_ref42
  article-title: RAPTOR: optimal protein threading by linear programming
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720003000186
– volume: 295
  start-page: 613
  year: 2000
  ident: 2021031111363161000_ref16
  article-title: Identification of related proteins on family, superfamily and fold level
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3377
– volume: 9
  start-page: 1735
  year: 1997
  ident: 2021031111363161000_ref25
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 10
  start-page: 857
  year: 2003
  ident: 2021031111363161000_ref31
  article-title: Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships
  publication-title: J Comput Biol
  doi: 10.1089/106652703322756113
– volume: 22
  start-page: 1456
  year: 2006
  ident: 2021031111363161000_ref12
  article-title: A machine learning information retrieval approach to protein fold recognition
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl102
– year: 2016
  ident: 2021031111363161000_ref26
  article-title: Theano: a Python framework for fast computation of mathematical expressions
– volume: 310
  start-page: 243
  year: 2001
  ident: 2021031111363161000_ref41
  article-title: FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.4762
– volume: 29
  start-page: 1343
  year: 2015
  ident: 2021031111363161000_ref1
  article-title: RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation
  publication-title: Genes Dev
  doi: 10.1101/gad.262766.115
– volume: 33
  start-page: W244
  year: 2005
  ident: 2021031111363161000_ref48
  article-title: The HHpred interactive server for protein homology detection and structure prediction
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki408
– volume: 30
  start-page: 3128
  year: 2014
  ident: 2021031111363161000_ref17
  article-title: CCMpred—fast and precise prediction of protein residue–residue contacts from correlated mutations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu500
SSID ssj0020781
Score 2.593784
Snippet Abstract Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to...
Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1733
SubjectTerms Computer applications
Deep learning
Feature extraction
Mathematical analysis
Protein folding
Proteins
Similarity
Support vector machines
Vector processing (computers)
Title DeepSVM-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks
URI https://www.proquest.com/docview/2466348037
https://www.proquest.com/docview/2310719491
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5EELyIT6wvRvTiIZhs0k3jTdQiQvXgg97CbnZWApoWt1X0j_h3nd0khYLoKYRMHmR2Mt9kZr5h7DgRkc5M0g00YX2fZiSbUzwQxiAPhYoL30g7uBXXj8nNsDtsimjsLyn8LD5VpTpV6ivMXEsveV_HkP9wN5yFVY6upu4hSgNH7t6SkM6dOud25lrZ2m-vdyj9VbbSIEE4r1W3xhawWmdL9WzIzw32fYk4vn8aBGb0os_A8ymUFbg9mFX9jCpQn0CLRvk5D2CnY4en4d3_i4dXXymJFmSlYSzLt4_SIrTV02DL15ICW8LhYB2bpYVnT0JNINRdVtMDQDNV4hmqul7cbrLH_tXDxXXQTFEICjLWSYA6ERIFL2irdSxCNChNZFxLa0rO2SChCBVFEpUpUKQoHF0w-SweYtQjb77FFqtRhdsMNCd4GSmJPZ4lsidl5tgGu4TpjOJpiB120r7kvGgoxt2ki5e8TnXHOSkkrxXSYUcz2XFNrPGr1AHp6k-BvVaNeWN9NucJ4aikF8Zphx3ODpPduGSIrHA0JRnCtWmUJVm08989dtkyd1G2ryzbY4uTtynuExSZqAO_En8AB13fgQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepSVM-fold%3A+protein+fold+recognition+by+combining+support+vector+machines+and+pairwise+sequence+similarity+scores+generated+by+deep+learning+networks&rft.jtitle=Briefings+in+bioinformatics&rft.au=Liu%2C+Bin&rft.au=Chen-Chen%2C+Li&rft.au=Yan%2C+Ke&rft.date=2020-09-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=21&rft.issue=5&rft.spage=1733&rft.epage=1741&rft_id=info:doi/10.1093%2Fbib%2Fbbz098&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon