DeepSVM-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks
Abstract Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermor...
Saved in:
Published in | Briefings in bioinformatics Vol. 21; no. 5; pp. 1733 - 1741 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.09.2020
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Protein
fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermore, the existing feature vectorization strategies are not able to measure the global relationships among proteins from different protein folds. In this article, we proposed a new computational predictor called DeepSVM-fold for protein fold recognition by introducing a new feature vector based on the pairwise sequence similarity scores calculated from the fold-specific features extracted by deep learning networks. The feature vectors are then fed into a support vector machine to construct the predictor. Experimental results on the benchmark dataset (LE) show that DeepSVM-fold obviously outperforms all the other competing methods. |
---|---|
AbstractList | Abstract
Protein
fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermore, the existing feature vectorization strategies are not able to measure the global relationships among proteins from different protein folds. In this article, we proposed a new computational predictor called DeepSVM-fold for protein fold recognition by introducing a new feature vector based on the pairwise sequence similarity scores calculated from the fold-specific features extracted by deep learning networks. The feature vectors are then fed into a support vector machine to construct the predictor. Experimental results on the benchmark dataset (LE) show that DeepSVM-fold obviously outperforms all the other competing methods. Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermore, the existing feature vectorization strategies are not able to measure the global relationships among proteins from different protein folds. In this article, we proposed a new computational predictor called DeepSVM-fold for protein fold recognition by introducing a new feature vector based on the pairwise sequence similarity scores calculated from the fold-specific features extracted by deep learning networks. The feature vectors are then fed into a support vector machine to construct the predictor. Experimental results on the benchmark dataset (LE) show that DeepSVM-fold obviously outperforms all the other competing methods.Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermore, the existing feature vectorization strategies are not able to measure the global relationships among proteins from different protein folds. In this article, we proposed a new computational predictor called DeepSVM-fold for protein fold recognition by introducing a new feature vector based on the pairwise sequence similarity scores calculated from the fold-specific features extracted by deep learning networks. The feature vectors are then fed into a support vector machine to construct the predictor. Experimental results on the benchmark dataset (LE) show that DeepSVM-fold obviously outperforms all the other competing methods. Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermore, the existing feature vectorization strategies are not able to measure the global relationships among proteins from different protein folds. In this article, we proposed a new computational predictor called DeepSVM-fold for protein fold recognition by introducing a new feature vector based on the pairwise sequence similarity scores calculated from the fold-specific features extracted by deep learning networks. The feature vectors are then fed into a support vector machine to construct the predictor. Experimental results on the benchmark dataset (LE) show that DeepSVM-fold obviously outperforms all the other competing methods. |
Author | Liu, Bin Yan, Ke Li, Chen-Chen |
Author_xml | – sequence: 1 givenname: Bin surname: Liu fullname: Liu, Bin email: bliu@bliulab.net organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China – sequence: 2 givenname: Chen-Chen surname: Li fullname: Li, Chen-Chen email: bliu@bliulab.net organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China – sequence: 3 givenname: Ke surname: Yan fullname: Yan, Ke email: kyan@bliulab.net organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China |
BookMark | eNp9kctKxTAQhoMoeLxsfIKACCJUkzYnad2Jdzjiwsu2pOn0GG2TmqTK8UV8XVOPKxFXMwPf_Pwz_wZaNdYAQjuUHFJSZEeVro6q6oMU-QqaUCZEwsiUrY49F8mU8WwdbXj_TEhKRE4n6PMMoL97vEka29bHuHc2gDZ4nLADZedGB20NrhZY2a7SRps59kPfWxfwG6hgHe6ketIGPJamxr3U7l17wB5eBzAqNrrTrXQ6LLBX1kVuDgacDFCPsnU0gFuQ7lvaQHi37sVvobVGth62f-omerg4vz-9Sma3l9enJ7NEZWkaEqgZl8BTFWtdZ5xAA7KhTVFMueCUNUAEqyiVUDUKuABOi4IxQVMCNM-n2SbaX-rGy6NfH8pOewVtKw3YwZdpRomgBStoRHd_oc92cCa6K1PGecZykolIkSWlnPXeQVMqHeT4w-CkbktKyjGpMiZVLpOKKwe_VnqnO-kWf8N7S9gO_X_cF6erqDE |
CitedBy_id | crossref_primary_10_1016_j_compbiolchem_2020_107357 crossref_primary_10_3389_fimmu_2022_1053617 crossref_primary_10_1021_acs_jcim_2c00959 crossref_primary_10_1093_bib_bbab255 crossref_primary_10_1109_ACCESS_2019_2953951 crossref_primary_10_1109_TCBB_2020_3031888 crossref_primary_10_1093_nargab_lqac043 crossref_primary_10_1109_TCBB_2024_3414497 crossref_primary_10_3389_fgene_2019_00842 crossref_primary_10_1109_ACCESS_2019_2952621 crossref_primary_10_1093_bib_bbab008 crossref_primary_10_1093_bib_bbab248 crossref_primary_10_1155_2020_8926750 crossref_primary_10_2174_1574893617666220404145517 crossref_primary_10_1049_cit2_12070 crossref_primary_10_1109_TCBB_2020_2964221 crossref_primary_10_3389_fgene_2022_853258 crossref_primary_10_1142_S0219720023500233 crossref_primary_10_1109_ACCESS_2020_2992468 crossref_primary_10_3390_rs13214201 crossref_primary_10_3390_ijms24054328 crossref_primary_10_3390_e23121605 crossref_primary_10_1093_bib_bbz139 crossref_primary_10_1109_ACCESS_2020_3032143 crossref_primary_10_3389_fbioe_2020_00502 crossref_primary_10_1093_bib_bbab001 crossref_primary_10_1109_ACCESS_2020_2982410 crossref_primary_10_2174_1381612826666201112142826 crossref_primary_10_1109_ACCESS_2019_2952237 crossref_primary_10_1016_j_ymeth_2022_11_001 crossref_primary_10_1093_bfgp_elz036 crossref_primary_10_2174_1574893615999200601122328 crossref_primary_10_3389_fgene_2021_808856 crossref_primary_10_1016_j_patter_2024_101023 crossref_primary_10_1109_ACCESS_2020_3013409 crossref_primary_10_1016_j_compbiomed_2023_107571 crossref_primary_10_1109_ACCESS_2019_2962821 crossref_primary_10_1109_ACCESS_2020_2985111 crossref_primary_10_1007_s11704_021_0548_9 crossref_primary_10_1109_TCBB_2021_3085589 crossref_primary_10_1155_2020_9235920 crossref_primary_10_3389_fbioe_2020_584807 crossref_primary_10_1002_pro_4758 crossref_primary_10_1155_2020_8852258 crossref_primary_10_1007_s12033_024_01119_4 crossref_primary_10_3389_fgene_2020_00005 crossref_primary_10_3389_fbioe_2020_00274 crossref_primary_10_3390_math10173188 crossref_primary_10_3934_mbe_2021382 crossref_primary_10_1021_acs_jproteome_0c00314 crossref_primary_10_1016_j_ymeth_2022_01_004 crossref_primary_10_1016_j_chemolab_2021_104245 crossref_primary_10_1155_2022_4621121 crossref_primary_10_1109_TCBB_2020_2991268 crossref_primary_10_1093_bib_bbab146 crossref_primary_10_1099_mgen_0_000483 crossref_primary_10_1016_j_engappai_2024_108315 crossref_primary_10_1007_s11760_020_01638_y crossref_primary_10_1016_j_compbiomed_2022_106523 crossref_primary_10_1016_j_compbiomed_2022_106489 crossref_primary_10_3934_mbe_2022644 crossref_primary_10_1371_journal_pcbi_1010668 crossref_primary_10_1021_acs_chemrev_3c00189 crossref_primary_10_7554_eLife_82819 crossref_primary_10_3389_fbioe_2020_00134 crossref_primary_10_1093_bib_bbac142 crossref_primary_10_1109_ACCESS_2020_3004446 crossref_primary_10_1186_s12859_020_3388_y crossref_primary_10_7717_peerj_10813 crossref_primary_10_1016_j_ijbiomac_2020_11_111 crossref_primary_10_1155_2021_3272119 crossref_primary_10_1109_ACCESS_2020_2994206 crossref_primary_10_3389_fgene_2021_818841 crossref_primary_10_1002_pmic_202100017 crossref_primary_10_1093_bib_bbab609 crossref_primary_10_1109_ACCESS_2020_2973220 crossref_primary_10_1002_pep2_24247 crossref_primary_10_1093_bib_bbaa192 crossref_primary_10_1155_2021_5542224 crossref_primary_10_1016_j_ygeno_2021_06_038 crossref_primary_10_1093_bfgp_elab036 crossref_primary_10_1007_s11704_020_0180_0 crossref_primary_10_1007_s12539_024_00665_4 crossref_primary_10_1093_nar_gkab829 crossref_primary_10_1109_ACCESS_2020_3023800 crossref_primary_10_1093_bib_bbab041 crossref_primary_10_2174_1381612826666201124112710 crossref_primary_10_3389_fcell_2021_629681 crossref_primary_10_1093_bib_bbz177 crossref_primary_10_3389_fbioe_2020_00635 crossref_primary_10_1016_j_ab_2020_114013 crossref_primary_10_1093_bib_bbaa144 crossref_primary_10_1016_j_ab_2022_114695 crossref_primary_10_1093_bib_bbaa018 crossref_primary_10_1093_bib_bbaa016 crossref_primary_10_1109_ACCESS_2020_2999394 crossref_primary_10_1016_j_medntd_2024_100341 crossref_primary_10_1109_TCBB_2020_3012732 crossref_primary_10_1109_ACCESS_2020_2989749 crossref_primary_10_52586_4935 crossref_primary_10_1093_bib_bbaa254 crossref_primary_10_1109_ACCESS_2020_2972922 crossref_primary_10_3390_membranes11070503 crossref_primary_10_3389_fbioe_2020_00245 crossref_primary_10_1093_bioinformatics_btac006 crossref_primary_10_3389_fgene_2021_809001 crossref_primary_10_1093_bib_bbaa008 crossref_primary_10_1109_ACCESS_2020_2980897 crossref_primary_10_1109_TCBB_2020_2966450 crossref_primary_10_3389_fgene_2020_00156 crossref_primary_10_3389_fbioe_2020_645520 crossref_primary_10_1016_j_ymeth_2021_05_016 |
Cites_doi | 10.1007/978-3-642-02008-7_3 10.1093/bioinformatics/14.10.846 10.1093/bioinformatics/btt578 10.1093/bioinformatics/btx780 10.1002/prot.21459 10.1186/1471-2105-9-510 10.1093/nar/gkw226 10.1093/bib/bbx126 10.1002/prot.20007 10.1186/s12859-017-1842-2 10.1038/srep17573 10.1371/journal.pone.0002325 10.1093/bioinformatics/btw768 10.1016/j.compbiolchem.2009.07.001 10.1038/nmeth.1818 10.1093/bioinformatics/btz040 10.1002/prot.20308 10.18632/oncotarget.14524 10.1038/srep32333 10.1109/ACCESS.2019.2929363 10.1093/nar/25.17.3389 10.1016/j.artmed.2017.03.006 10.1093/bioinformatics/btt709 10.1093/bioinformatics/btx514 10.1002/(SICI)1097-0134(19990701)36:1<68::AID-PROT6>3.0.CO;2-1 10.1023/A:1018628609742 10.1002/pro.5560040613 10.1109/TCBB.2018.2789880 10.1186/1471-2105-15-S11-S14 10.1093/bioinformatics/btx429 10.1093/bib/bbw108 10.1002/prot.23025 10.1038/358086a0 10.1371/journal.pcbi.1003500 10.1093/bioinformatics/bti125 10.1142/S0219720003000186 10.1006/jmbi.1999.3377 10.1162/neco.1997.9.8.1735 10.1089/106652703322756113 10.1093/bioinformatics/btl102 10.1006/jmbi.2001.4762 10.1101/gad.262766.115 10.1093/nar/gki408 10.1093/bioinformatics/btu500 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbz098 |
DatabaseName | CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 1741 |
ExternalDocumentID | 10_1093_bib_bbz098 10.1093/bib/bbz098 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c322t-ed46ae62cd46dd360efeaf1f99567614fe074b11aebfce67e6199447120e18853 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Jul 10 18:53:14 EDT 2025 Mon Jun 30 08:53:46 EDT 2025 Tue Jul 01 03:39:28 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Wed Aug 28 03:17:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | support vector machine pairwise sequence similarity scores convolutional neural network protein fold recognition long short-term memory |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-ed46ae62cd46dd360efeaf1f99567614fe074b11aebfce67e6199447120e18853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2466348037 |
PQPubID | 26846 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2310719491 proquest_journals_2466348037 crossref_citationtrail_10_1093_bib_bbz098 crossref_primary_10_1093_bib_bbz098 oup_primary_10_1093_bib_bbz098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationYear | 2020 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Yan (2021031111363161000_ref2) 2017; 79 Remmert (2021031111363161000_ref19) 2011; 9 Alrfou (2021031111363161000_ref26) 2016 Peng (2021031111363161000_ref49) 2009; 5541 Chen (2021031111363161000_ref34) 2017; 33 Pearson (2021031111363161000_ref38) 1995; 4 Liu (2021031111363161000_ref21) 2019; 7 Cheng (2021031111363161000_ref12) 2006; 22 Hargbo (2021031111363161000_ref39) 1999; 36 Liu (2021031111363161000_ref46) 2007; 68 Xu (2021031111363161000_ref50) 2014; 30 Hochreiter (2021031111363161000_ref25) 1997; 9 Liu (2021031111363161000_ref20) 2014; 30 Liu (2021031111363161000_ref23) 2017; 8 Altschul (2021031111363161000_ref4) 1997; 25 Liu (2021031111363161000_ref15) 2008; 9 Chen (2021031111363161000_ref3) 2018; 9 Zhang (2021031111363161000_ref47) 2008; 3 Karplus (2021031111363161000_ref37) 1998; 14 Seemayer (2021031111363161000_ref17) 2014; 30 Yue (2021031111363161000_ref1) 2015; 29 Lindahl (2021031111363161000_ref16) 2000; 295 Hou (2021031111363161000_ref10) 2018; 34 Xu (2021031111363161000_ref42) 2003; 1 Shi (2021031111363161000_ref41) 2001; 310 Liu (2021031111363161000_ref8) 2009; 33 Jo (2021031111363161000_ref14) 2015; 5 Jones (2021031111363161000_ref40) 1992; 358 Li (2021031111363161000_ref18) 2017; 18 Soding (2021031111363161000_ref5) 2005; 21 Liu (2021031111363161000_ref52) Zhou (2021031111363161000_ref45) 2005; 58 Xia (2021031111363161000_ref9) 2017; 33 Liao (2021031111363161000_ref31) 2003; 10 Liu (2021031111363161000_ref36) Krizhevsky (2021031111363161000_ref24) 2012 Quang (2021031111363161000_ref29) 2016; 44 Liu (2021031111363161000_ref7) 2019 Suykens (2021031111363161000_ref32) 1999; 9 Pedregosa (2021031111363161000_ref33) 2011; 12 Yang (2021031111363161000_ref44) 2011; 79 Liu (2021031111363161000_ref53) 2019; 20 Yan (2021031111363161000_ref35) 2019 Jo (2021031111363161000_ref13) 2014; 15 Zhou (2021031111363161000_ref43) 2004; 55 Ma (2021031111363161000_ref6) 2014; 10 Zou (2021031111363161000_ref30) 2019 Ioffe (2021031111363161000_ref27) 2015 Soding (2021031111363161000_ref48) 2005; 33 Zhu (2021031111363161000_ref11) 2017; 33 Srivastava (2021031111363161000_ref28) 2014; 15 Liu (2021031111363161000_ref22) 2019; 16 Chen (2021031111363161000_ref51) 2016; 6 |
References_xml | – volume: 5541 start-page: 31−+ year: 2009 ident: 2021031111363161000_ref49 article-title: Boosting protein threading accuracy publication-title: Res Comput Mol Biol doi: 10.1007/978-3-642-02008-7_3 – volume: 14 start-page: 846 year: 1998 ident: 2021031111363161000_ref37 article-title: Hidden Markov models for detecting remote protein homologies publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.10.846 – volume: 30 start-page: 660 year: 2014 ident: 2021031111363161000_ref50 article-title: FFAS-3D: improving fold recognition by including optimized structural features and template re-ranking publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt578 – volume: 34 start-page: 1295 year: 2018 ident: 2021031111363161000_ref10 article-title: DeepSF: deep convolutional neural network for mapping protein sequences to folds publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx780 – volume: 68 start-page: 636 year: 2007 ident: 2021031111363161000_ref46 article-title: Fold recognition by concurrent use of solvent accessibility and residue depth publication-title: Proteins doi: 10.1002/prot.21459 – volume: 9 start-page: 510 year: 2008 ident: 2021031111363161000_ref15 article-title: A discriminative method for protein remote homology detection and fold recognition combining top-n-grams and latent semantic analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-510 – volume: 44 start-page: e107 year: 2016 ident: 2021031111363161000_ref29 article-title: DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw226 – volume: 20 start-page: 330 year: 2019 ident: 2021031111363161000_ref53 article-title: A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction publication-title: Brief Bioinform doi: 10.1093/bib/bbx126 – start-page: 292 volume-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics year: 2019 ident: 2021031111363161000_ref7 article-title: Protein remote homology detection and fold recognition based on Sequence-Order Frequency Matrix – volume: 55 start-page: 1005 year: 2004 ident: 2021031111363161000_ref43 article-title: Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition publication-title: Proteins doi: 10.1002/prot.20007 – volume: 18 start-page: 443 year: 2017 ident: 2021031111363161000_ref18 article-title: Protein remote homology detection based on bidirectional long short-term memory publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1842-2 – start-page: 1097 year: 2012 ident: 2021031111363161000_ref24 article-title: In Imagenet classification with deep convolutional neural networks publication-title: Neural Inf Process Syst – volume: 12 start-page: 2825 year: 2011 ident: 2021031111363161000_ref33 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res – volume: 5 start-page: 17573 year: 2015 ident: 2021031111363161000_ref14 article-title: Improving protein fold recognition by deep learning networks publication-title: Sci Rep doi: 10.1038/srep17573 – volume: 3 year: 2008 ident: 2021031111363161000_ref47 article-title: SP5: improving protein fold recognition by using torsion angle profiles and profile-based gap penalty model publication-title: PLoS One doi: 10.1371/journal.pone.0002325 – volume: 33 start-page: 863 year: 2017 ident: 2021031111363161000_ref9 article-title: An ensemble approach to protein fold classification by integration of template-based assignment and support vector machine classifier publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw768 – volume: 33 start-page: 303 year: 2009 ident: 2021031111363161000_ref8 article-title: Exploiting three kinds of interface propensities to identify protein binding sites publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2009.07.001 – start-page: 205 volume-title: RNA year: 2019 ident: 2021031111363161000_ref30 article-title: Gene2vec: Gene Subsequence Embedding for Prediction of Mammalian N6-Methyladenosine Sites from mRNA – ident: 2021031111363161000_ref52 article-title: BioSeq-analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches publication-title: Brief Bioinform – volume: 9 start-page: 173 year: 2011 ident: 2021031111363161000_ref19 article-title: HHblits: lightning-fast iterative protein sequence searching by HMM–HMM alignment publication-title: Nat Methods doi: 10.1038/nmeth.1818 – year: 2019 ident: 2021031111363161000_ref35 article-title: Protein fold recognition based on multi-view Modeling publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz040 – volume: 58 start-page: 321 year: 2005 ident: 2021031111363161000_ref45 article-title: Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments publication-title: Proteins doi: 10.1002/prot.20308 – volume: 8 start-page: 13338 year: 2017 ident: 2021031111363161000_ref23 article-title: Pse-Analysis: a python package for DNA, RNA and protein peptide sequence analysis based on pseudo components and kernel methods publication-title: Oncotarget doi: 10.18632/oncotarget.14524 – volume: 6 start-page: 32333 year: 2016 ident: 2021031111363161000_ref51 article-title: dRHP-PseRA: detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation publication-title: Sci Rep doi: 10.1038/srep32333 – ident: 2021031111363161000_ref36 article-title: BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA, and protein sequences at sequence level and residue level based on machine learning approaches publication-title: Nucleic Acids Research – volume: 7 start-page: 102499 year: 2019 ident: 2021031111363161000_ref21 article-title: ProtDec-LTR3.0: protein remote homology detection by incorporating profile-based features into Learning to Rank publication-title: IEEE ACCESS doi: 10.1109/ACCESS.2019.2929363 – volume: 25 start-page: 3389 year: 1997 ident: 2021031111363161000_ref4 article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res doi: 10.1093/nar/25.17.3389 – volume: 79 start-page: 1 year: 2017 ident: 2021031111363161000_ref2 article-title: Protein fold recognition based on sparse representation based classification publication-title: Artif Intell Med doi: 10.1016/j.artmed.2017.03.006 – volume: 30 start-page: 472 year: 2014 ident: 2021031111363161000_ref20 article-title: Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt709 – volume: 33 start-page: 3749 year: 2017 ident: 2021031111363161000_ref11 article-title: Improving protein fold recognition by extracting fold-specific features from predicted residue–residue contacts publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx514 – volume: 36 start-page: 68 year: 1999 ident: 2021031111363161000_ref39 article-title: Hidden Markov models that use predicted secondary structures for fold recognition publication-title: Proteins doi: 10.1002/(SICI)1097-0134(19990701)36:1<68::AID-PROT6>3.0.CO;2-1 – volume: 9 start-page: 293 year: 1999 ident: 2021031111363161000_ref32 article-title: Least squares support vector machine classifiers publication-title: Neural Process Lett doi: 10.1023/A:1018628609742 – volume: 4 start-page: 1145 year: 1995 ident: 2021031111363161000_ref38 article-title: Comparison of methods for searching protein sequence databases publication-title: Protein Sci doi: 10.1002/pro.5560040613 – volume: 16 start-page: 1203 year: 2019 ident: 2021031111363161000_ref22 article-title: ProtDet-CCH: protein remote homology detection by combining long short-term memory and ranking methods publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2018.2789880 – volume: 15 start-page: S14 issue: Suppl 11 year: 2014 ident: 2021031111363161000_ref13 article-title: Improving protein fold recognition by random forest publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-S11-S14 – volume: 15 start-page: 1929 year: 2014 ident: 2021031111363161000_ref28 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – volume: 33 start-page: 3473 year: 2017 ident: 2021031111363161000_ref34 article-title: ProtDec-LTR2.0: an improved method for protein remote homology detection by combining pseudo protein and supervised learning to rank publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx429 – volume: 9 start-page: 231 year: 2018 ident: 2021031111363161000_ref3 article-title: A comprehensive review and comparison of different computational methods for protein remote homology detection publication-title: Brief Bioinform doi: 10.1093/bib/bbw108 – volume: 79 start-page: 2053 year: 2011 ident: 2021031111363161000_ref44 article-title: Improving taxonomy-based protein fold recognition by using global and local features publication-title: Proteins doi: 10.1002/prot.23025 – start-page: 448 volume-title: International Conference on Machine Learning year: 2015 ident: 2021031111363161000_ref27 – volume: 358 start-page: 86 year: 1992 ident: 2021031111363161000_ref40 article-title: A new approach to protein fold recognition publication-title: Nature doi: 10.1038/358086a0 – volume: 10 year: 2014 ident: 2021031111363161000_ref6 article-title: MRFalign: protein homology detection through alignment of Markov random fields publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003500 – volume: 21 start-page: 951 year: 2005 ident: 2021031111363161000_ref5 article-title: Protein homology detection by HMM–HMM comparison publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti125 – volume: 1 start-page: 95 year: 2003 ident: 2021031111363161000_ref42 article-title: RAPTOR: optimal protein threading by linear programming publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720003000186 – volume: 295 start-page: 613 year: 2000 ident: 2021031111363161000_ref16 article-title: Identification of related proteins on family, superfamily and fold level publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3377 – volume: 9 start-page: 1735 year: 1997 ident: 2021031111363161000_ref25 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 10 start-page: 857 year: 2003 ident: 2021031111363161000_ref31 article-title: Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships publication-title: J Comput Biol doi: 10.1089/106652703322756113 – volume: 22 start-page: 1456 year: 2006 ident: 2021031111363161000_ref12 article-title: A machine learning information retrieval approach to protein fold recognition publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl102 – year: 2016 ident: 2021031111363161000_ref26 article-title: Theano: a Python framework for fast computation of mathematical expressions – volume: 310 start-page: 243 year: 2001 ident: 2021031111363161000_ref41 article-title: FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties publication-title: J Mol Biol doi: 10.1006/jmbi.2001.4762 – volume: 29 start-page: 1343 year: 2015 ident: 2021031111363161000_ref1 article-title: RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation publication-title: Genes Dev doi: 10.1101/gad.262766.115 – volume: 33 start-page: W244 year: 2005 ident: 2021031111363161000_ref48 article-title: The HHpred interactive server for protein homology detection and structure prediction publication-title: Nucleic Acids Res doi: 10.1093/nar/gki408 – volume: 30 start-page: 3128 year: 2014 ident: 2021031111363161000_ref17 article-title: CCMpred—fast and precise prediction of protein residue–residue contacts from correlated mutations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu500 |
SSID | ssj0020781 |
Score | 2.593784 |
Snippet | Abstract
Protein
fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to... Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1733 |
SubjectTerms | Computer applications Deep learning Feature extraction Mathematical analysis Protein folding Proteins Similarity Support vector machines Vector processing (computers) |
Title | DeepSVM-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks |
URI | https://www.proquest.com/docview/2466348037 https://www.proquest.com/docview/2310719491 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5EELyIT6wvRvTiIZhs0k3jTdQiQvXgg97CbnZWApoWt1X0j_h3nd0khYLoKYRMHmR2Mt9kZr5h7DgRkc5M0g00YX2fZiSbUzwQxiAPhYoL30g7uBXXj8nNsDtsimjsLyn8LD5VpTpV6ivMXEsveV_HkP9wN5yFVY6upu4hSgNH7t6SkM6dOud25lrZ2m-vdyj9VbbSIEE4r1W3xhawWmdL9WzIzw32fYk4vn8aBGb0os_A8ymUFbg9mFX9jCpQn0CLRvk5D2CnY4en4d3_i4dXXymJFmSlYSzLt4_SIrTV02DL15ICW8LhYB2bpYVnT0JNINRdVtMDQDNV4hmqul7cbrLH_tXDxXXQTFEICjLWSYA6ERIFL2irdSxCNChNZFxLa0rO2SChCBVFEpUpUKQoHF0w-SweYtQjb77FFqtRhdsMNCd4GSmJPZ4lsidl5tgGu4TpjOJpiB120r7kvGgoxt2ki5e8TnXHOSkkrxXSYUcz2XFNrPGr1AHp6k-BvVaNeWN9NucJ4aikF8Zphx3ODpPduGSIrHA0JRnCtWmUJVm08989dtkyd1G2ryzbY4uTtynuExSZqAO_En8AB13fgQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepSVM-fold%3A+protein+fold+recognition+by+combining+support+vector+machines+and+pairwise+sequence+similarity+scores+generated+by+deep+learning+networks&rft.jtitle=Briefings+in+bioinformatics&rft.au=Liu%2C+Bin&rft.au=Chen-Chen%2C+Li&rft.au=Yan%2C+Ke&rft.date=2020-09-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=21&rft.issue=5&rft.spage=1733&rft.epage=1741&rft_id=info:doi/10.1093%2Fbib%2Fbbz098&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |