Cross-Day EEG-Based Emotion Recognition Using Transfer Component Analysis

EEG-based emotion recognition can help achieve more natural human-computer interaction, but the temporal non-stationarity of EEG signals affects the robustness of EEG-based emotion recognition models. Most existing studies use the emotional EEG data collected in the same trial to train and test mode...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 11; no. 4; p. 651
Main Authors He, Zhongyang, Zhuang, Ning, Bao, Guangcheng, Zeng, Ying, Yan, Bin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract EEG-based emotion recognition can help achieve more natural human-computer interaction, but the temporal non-stationarity of EEG signals affects the robustness of EEG-based emotion recognition models. Most existing studies use the emotional EEG data collected in the same trial to train and test models, once this kind of model is applied to the data collected at different times of the same subject, its recognition accuracy will decrease significantly. To address the problem of EEG-based cross-day emotion recognition, this paper has constructed a database of emotional EEG signals collected over six days for each subject using the Chinese Affective Video System and self-built video library stimuli materials, and the database is the largest number of days collected for a single subject so far. To study the neural patterns of emotions based on EEG signals cross-day, the brain topography has been analyzed in this paper, which show there is a stable neural pattern of emotions cross-day. Then, Transfer Component Analysis (TCA) algorithm is used to adaptively determine the optimal dimensionality of the TCA transformation and match domains of the best correlated motion features in multiple time domains by using EEG signals from different time (days). The experimental results show that the TCA-based domain adaptation strategy can effectively improve the accuracy of cross-day emotion recognition by 3.55% and 2.34%, respectively, in the classification of joy-sadness and joy-anger emotions. The emotion recognition model and brain topography in this paper, verify that the database can provide a reliable data basis for emotion recognition across different time domains. This EEG database will be open to more researchers to promote the practical application of emotion recognition.
AbstractList EEG-based emotion recognition can help achieve more natural human-computer interaction, but the temporal non-stationarity of EEG signals affects the robustness of EEG-based emotion recognition models. Most existing studies use the emotional EEG data collected in the same trial to train and test models, once this kind of model is applied to the data collected at different times of the same subject, its recognition accuracy will decrease significantly. To address the problem of EEG-based cross-day emotion recognition, this paper has constructed a database of emotional EEG signals collected over six days for each subject using the Chinese Affective Video System and self-built video library stimuli materials, and the database is the largest number of days collected for a single subject so far. To study the neural patterns of emotions based on EEG signals cross-day, the brain topography has been analyzed in this paper, which show there is a stable neural pattern of emotions cross-day. Then, Transfer Component Analysis (TCA) algorithm is used to adaptively determine the optimal dimensionality of the TCA transformation and match domains of the best correlated motion features in multiple time domains by using EEG signals from different time (days). The experimental results show that the TCA-based domain adaptation strategy can effectively improve the accuracy of cross-day emotion recognition by 3.55% and 2.34%, respectively, in the classification of joy-sadness and joy-anger emotions. The emotion recognition model and brain topography in this paper, verify that the database can provide a reliable data basis for emotion recognition across different time domains. This EEG database will be open to more researchers to promote the practical application of emotion recognition.
Author Zhuang, Ning
He, Zhongyang
Yan, Bin
Bao, Guangcheng
Zeng, Ying
Author_xml – sequence: 1
  givenname: Zhongyang
  surname: He
  fullname: He, Zhongyang
– sequence: 2
  givenname: Ning
  orcidid: 0000-0002-6815-3121
  surname: Zhuang
  fullname: Zhuang, Ning
– sequence: 3
  givenname: Guangcheng
  surname: Bao
  fullname: Bao, Guangcheng
– sequence: 4
  givenname: Ying
  surname: Zeng
  fullname: Zeng, Ying
– sequence: 5
  givenname: Bin
  surname: Yan
  fullname: Yan, Bin
BookMark eNp9kEFLAzEQhYNUsNb-Ai8LnleTTHeTHOu6VqEgSHtekmy2pGyTmqSH_nu31oOIOJd5h_cN7801GjnvDEK3BN8DCPxgeqNT8M7qSAie4bIgF2hMMRO5oIKOfugrNI1xi4cRBDjgMXqtgo8xf5LHrK4X-aOMps3qnU_Wu-zdaL9x9kuvo3WbbBWki50JWeV3-yGGS9ncyf4YbbxBl53so5l-7wlaP9er6iVfvi1eq_ky10Bpyg3TALNWCuCaKakZgYKrErgigjJJGC9KabAqJBjRMmo4bpUcEKOU6AoFE3R3vrsP_uNgYmq2_hCGELGhJdBScE7Y4BJnlz71C6ZrtE3y1CQFafuG4Ob0vOaP5w0s_GL3we5kOP5LfQLzqniO
CitedBy_id crossref_primary_10_3233_JIFS_223456
crossref_primary_10_1155_2022_9288896
crossref_primary_10_1016_j_bspc_2024_106261
crossref_primary_10_1145_3712259
crossref_primary_10_1007_s10462_023_10690_2
crossref_primary_10_1109_TIM_2023_3284926
crossref_primary_10_1016_j_neucom_2024_128354
crossref_primary_10_1007_s13042_023_01957_9
Cites_doi 10.1038/s41593-019-0488-y
10.1016/0013-4694(70)90143-4
10.1002/acr.20561
10.1109/TBME.2010.2048568
10.1109/TCDS.2017.2685338
10.1098/rspa.1998.0193
10.1109/TCYB.2017.2788081
10.1002/da.1033
10.1109/72.761722
10.1007/s12559-017-9533-x
10.1109/34.954607
10.1109/T-AFFC.2011.15
10.1001/archpsyc.1988.01800320058007
10.1080/2326263X.2014.912881
10.1109/T-AFFC.2011.25
10.1109/ICSMC.2007.4413638
10.1109/TITB.2009.2034649
10.3233/BME-130919
10.3389/fnbot.2019.00037
10.1109/TNN.2010.2091281
10.1109/TAFFC.2017.2660485
10.1007/s40708-017-0069-3
10.1109/NER.2013.6695876
10.1109/SMC.2014.6974415
10.1088/0967-3334/22/4/305
10.1007/s10044-016-0567-6
10.7551/mitpress/1140.001.0001
10.3389/fncom.2017.00064
10.1109/ICPAIR.2011.5976886
10.3389/fnhum.2020.605246
10.1016/B978-0-12-805390-4.00007-8
10.1109/TAMD.2015.2431497
10.1109/TAFFC.2017.2712143
10.1109/BHI.2012.6211551
10.3389/fnhum.2018.00267
10.1007/s10548-019-00707-x
10.1080/02699939508408966
10.1007/s00521-015-2149-8
10.1007/978-3-642-24571-8_58
10.1109/JCSSE.2014.6841851
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics11040651
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics11040651
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c322t-e7c334da938c7bac71358b638b1927a17856ae0b5a3e9d72e80dba334ebb9f5b3
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Mon Jul 14 08:22:24 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Tue Jul 01 01:47:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-e7c334da938c7bac71358b638b1927a17856ae0b5a3e9d72e80dba334ebb9f5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6815-3121
OpenAccessLink https://www.proquest.com/docview/2632698817?pq-origsite=%requestingapplication%
PQID 2632698817
PQPubID 2032404
ParticipantIDs proquest_journals_2632698817
crossref_citationtrail_10_3390_electronics11040651
crossref_primary_10_3390_electronics11040651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hjorth (ref_18) 1970; 29
ref_14
Mohammadi (ref_26) 2017; 28
Ning (ref_30) 2017; 2017
Takahashi (ref_13) 2010; 3
Julian (ref_40) 2011; 63
Liu (ref_38) 2018; 12
Huang (ref_24) 1998; 454
ref_17
Bao (ref_39) 2021; 14
Li (ref_34) 2017; 10
ref_15
Pan (ref_47) 2011; 22
Hyvarinen (ref_45) 2002; 10
Allison (ref_4) 2014; 1
Jie (ref_16) 2014; 24
Mert (ref_29) 2016; 21
Yao (ref_44) 2019; 32
Liu (ref_46) 2018; 9
Williams (ref_42) 1988; 45
Xing (ref_35) 2019; 13
Zheng (ref_12) 2017; 10
Liu (ref_9) 2006; 2
Koelstra (ref_10) 2012; 3
Picard (ref_36) 2001; 23
Lin (ref_21) 2010; 57
Shear (ref_41) 2001; 13
Yao (ref_43) 2001; 22
Gross (ref_8) 1995; 9
ref_23
ref_22
Polat (ref_25) 2017; 4
ref_20
Lin (ref_37) 2017; 11
ref_1
Petrantonakis (ref_19) 2010; 14
ref_3
ref_2
Shanechi (ref_5) 2019; 22
Zhang (ref_33) 2018; 49
ref_28
ref_27
Zheng (ref_31) 2015; 7
Yang (ref_32) 2018; 10
Soleymani (ref_11) 2012; 3
ref_7
ref_6
References_xml – volume: 22
  start-page: 1554
  year: 2019
  ident: ref_5
  article-title: Brain–machine interfaces from motor to mood
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0488-y
– ident: ref_7
– volume: 29
  start-page: 306
  year: 1970
  ident: ref_18
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(70)90143-4
– volume: 63
  start-page: S467
  year: 2011
  ident: ref_40
  article-title: Measures of anxiety: State-Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale-Anxiety (HADS-A)
  publication-title: Arthritis Care Res.
  doi: 10.1002/acr.20561
– volume: 3
  start-page: 1138
  year: 2010
  ident: ref_13
  article-title: Remarks on emotion recognition from multi-modal bio potential signals
  publication-title: JES Ergon.
– volume: 57
  start-page: 1798
  year: 2010
  ident: ref_21
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2048568
– volume: 10
  start-page: 408
  year: 2018
  ident: ref_32
  article-title: EEG-Based Emotion Recognition Using Hierarchical Network with Subnetwork Nodes
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2017.2685338
– volume: 454
  start-page: 903
  year: 1998
  ident: ref_24
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 49
  start-page: 839
  year: 2018
  ident: ref_33
  article-title: Spatial–Temporal Recurrent Neural Network for Emotion Recognition
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2788081
– volume: 13
  start-page: 166
  year: 2001
  ident: ref_41
  article-title: Reliability and validity of a structured interview guide for the Hamilton Anxiety Rating Scale (SIGH-A)
  publication-title: Depress. Anxiety
  doi: 10.1002/da.1033
– volume: 10
  start-page: 626
  year: 2002
  ident: ref_45
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.761722
– volume: 10
  start-page: 368
  year: 2017
  ident: ref_34
  article-title: Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-017-9533-x
– volume: 2017
  start-page: 8317357
  year: 2017
  ident: ref_30
  article-title: Emotion Recognition from EEG Signals Using Multidimensional Information in EMD Domain
  publication-title: BioMed Res. Int.
– ident: ref_14
– volume: 23
  start-page: 1175
  year: 2001
  ident: ref_36
  article-title: Toward machine emotional intelligence: Analysis of affective physiological state
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.954607
– volume: 3
  start-page: 18
  year: 2012
  ident: ref_10
  article-title: DEAP: A Database for Emotion Analysis; Using Physiological Signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 45
  start-page: 742
  year: 1988
  ident: ref_42
  article-title: A structured interview guide for the Hamilton Depression Rating Scale
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.1988.01800320058007
– volume: 1
  start-page: 66
  year: 2014
  ident: ref_4
  article-title: A survey of affective brain computer interfaces: Principles, state-of-the-art, and challenges
  publication-title: Brain Comput. Interfaces
  doi: 10.1080/2326263X.2014.912881
– volume: 3
  start-page: 42
  year: 2012
  ident: ref_11
  article-title: A Multimodal Database for Affect Recognition and Implicit Tagging
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.25
– ident: ref_22
  doi: 10.1109/ICSMC.2007.4413638
– volume: 2
  start-page: 406
  year: 2006
  ident: ref_9
  article-title: The establishment and assessment of a native affective sound system
  publication-title: Psychol. Sci.
– volume: 14
  start-page: 186
  year: 2010
  ident: ref_19
  article-title: Emotion Recognition from EEG Using Higher Order Crossings
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2034649
– ident: ref_6
– volume: 24
  start-page: 1185
  year: 2014
  ident: ref_16
  article-title: Emotion recognition based on the sample entropy of EEG
  publication-title: Bio-Med. Mater. Eng.
  doi: 10.3233/BME-130919
– volume: 13
  start-page: 37
  year: 2019
  ident: ref_35
  article-title: SAE+LSTM: A New Framework for Emotion Recognition from Multi-Channel EEG
  publication-title: Front. Neurorobotics
  doi: 10.3389/fnbot.2019.00037
– volume: 22
  start-page: 199
  year: 2011
  ident: ref_47
  article-title: Domain Adaptation via Transfer Component Analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2091281
– volume: 9
  start-page: 550
  year: 2018
  ident: ref_46
  article-title: Real-Time Movie-Induced Discrete Emotion Recognition from EEG Signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2660485
– volume: 4
  start-page: 241
  year: 2017
  ident: ref_25
  article-title: Emotion recognition based on EEG features in movie clips with channel selection
  publication-title: Brain Inform.
  doi: 10.1007/s40708-017-0069-3
– ident: ref_20
  doi: 10.1109/NER.2013.6695876
– ident: ref_15
  doi: 10.1109/SMC.2014.6974415
– ident: ref_2
– volume: 22
  start-page: 693
  year: 2001
  ident: ref_43
  article-title: A method to standardize a reference of scalp EEG recordings to a point at infinity
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/22/4/305
– volume: 21
  start-page: 81
  year: 2016
  ident: ref_29
  article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-016-0567-6
– ident: ref_1
  doi: 10.7551/mitpress/1140.001.0001
– volume: 11
  start-page: 64
  year: 2017
  ident: ref_37
  article-title: Improving Cross-Day EEG-Based Emotion Classification Using Robust Principal Component Analysis
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2017.00064
– ident: ref_27
  doi: 10.1109/ICPAIR.2011.5976886
– volume: 14
  start-page: 605246
  year: 2021
  ident: ref_39
  article-title: Two-Level Domain Adaptation Neural Network for EEG-Based Emotion Recognition
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.605246
– ident: ref_3
  doi: 10.1016/B978-0-12-805390-4.00007-8
– volume: 7
  start-page: 162
  year: 2015
  ident: ref_31
  article-title: Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 10
  start-page: 417
  year: 2017
  ident: ref_12
  article-title: Identifying Stable Patterns over Time for Emotion Recognition from EEG
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2712143
– ident: ref_23
  doi: 10.1109/BHI.2012.6211551
– volume: 12
  start-page: 267
  year: 2018
  ident: ref_38
  article-title: Incorporation of Multiple-Days Information to Improve the Generalization of EEG-Based Emotion Recognition Over Time
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00267
– volume: 32
  start-page: 530
  year: 2019
  ident: ref_44
  article-title: Which Reference Should We Use for EEG and ERP practice?
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-019-00707-x
– volume: 9
  start-page: 87
  year: 1995
  ident: ref_8
  article-title: Emotion elicitation using films: Cognition and Emotion
  publication-title: Cogn. Emot.
  doi: 10.1080/02699939508408966
– volume: 28
  start-page: 1985
  year: 2017
  ident: ref_26
  article-title: Wavelet-based emotion recognition system using EEG signal
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2149-8
– ident: ref_17
  doi: 10.1007/978-3-642-24571-8_58
– ident: ref_28
  doi: 10.1109/JCSSE.2014.6841851
SSID ssj0000913830
Score 2.2952216
Snippet EEG-based emotion recognition can help achieve more natural human-computer interaction, but the temporal non-stationarity of EEG signals affects the robustness...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 651
SubjectTerms Accuracy
Algorithms
Anxiety
Brain
Domains
Electroencephalography
Emotion recognition
Emotions
Experiments
Human-computer interaction
Libraries
Neural networks
Topography
Wavelet transforms
Title Cross-Day EEG-Based Emotion Recognition Using Transfer Component Analysis
URI https://www.proquest.com/docview/2632698817
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4IXPRgfEYUSQ8e3UC7Lbt7MjwKaIQYlIRbs6-eDCDgwX_vbLsFSQy3Ju22yWxnvpnd2e9D6IEBZHBuwL-J0hgQL8BC8hQTplMA-NCQ7KDwaNwaTsOXWTRzC25r11ZZxMQsUOuFsmvkDcsr3uKM-fRp-YWtapTdXXUSGiVUgRDMoPiqdOLx22S7ymJZLxlp5nRDBOr7xk5dZg3IB3AW-fuQtB-RM5jpn6FTlx967XxCz9GRmV-gkz-sgZfouWtfg3vix4vjAe4ADmkvzuV4vEnREATXWTuAl6FRalaedf3FHEDGK5hIrtC0H390h9gpImAFjrfBhipCQi04YYpKoay-HpPgQhISNSp8yqKWME0ZCWK4poFhTS0FDDESJiCS5BqV5_ClG3tWmxrOlZFUpGGoQgHgrbkk0tfcZ5RWUVAYJVGOLtyqVnwmUDZYSyb_WLKKHreDljlbxuHHa4W1E-c662Q30beHb9-h48CeRchaqGuovFl9m3vIEDayjkqsP6ijSrs3en2vu5_iF1CLwGU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4gHtSD8RlR1B705oa2W9jdgzHKWx4HAwm3uq-eDCBgDH_K3-hsS0ESw41bk-1u0-nMfLPbmfkQumMAGZwbsG-iNAbE87GQPMKE6QgAPjAkLhTudEuNfvA6KA4y6CethbFplalPjB21Hil7Rl6wfcVLnDGPPo0_sWWNsn9XUwqNRC1aZv4NW7bpY7MC3_fe92vVXrmBF6wCWIHyzrChipBAC06YolIoy1HHJKihhGCHCstWXxLGlUVBDNfUN8zVUsAUI-ElipLAujtoNyCEW4titfryTMf22GTETZobwbhbWHHZTAFnATyL3joArvv_GNRqR-hwEY06z4n6HKOMGZ6ggz89Ck9Rs2yXwRUxd6rVOn4B1NNONSH_cd7S9CO4jpMPnBj7IjNxrKMZDQHSnLTvyRnqb0VS5yg7hCdd2MpwajhXRlIRBYEKBIQKmksiPc09RmkO-alQQrVoTm45Mj5C2KRYSYb_SDKHHpaTxklvjs2351NphwtDnYYrtbrcPHyL9hq9TjtsN7utK7Tv2yqIOHk7j7KzyZe5hthkJm9ihXDQ-7Y18Bd7c_nr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BkRAcEKtYCuQAN6ymcVrbB4SAplAKVVVRiVvwlhMqS4tQf42vY5ylpRLqjVukxI4yefYb2zPzAE44UoYQFsc31YYg4wVEKpEQyk2CBB9amiYKP3Tqt_3w7qn2tADfRS6MC6ss5sR0ojav2u2RV1xd8brgvMoqSR4W0W00L97eiVOQciethZxGBpG2HX_h8m143mrgvz4Ngmb0eH1LcoUBohHII2KZpjQ0UlCumZLa6dVxhZBU6Pgw6ZTr69L6qiapFYYFlvtGSWxiFX5QTVHsdxGWGK6K_BIsXUWdbm-yw-MqbnLqZ6WOKBV-ZapsM0TWRSqtVWfpcJYNUoprrsNa7pt6lxmYNmDBDjZh9VfFwi1oXbtuSEOOvSi6IVfIgcaLMikgr1cEI-F1GorgpUyY2A_PTTuvAyQ4r6iCsg39f7HVDpQG-KZdlyfOrBDaKiaTMNShRMfBCEVV1YgqZ2wPgsIosc5LlTvFjJcYlyzOkvEfltyDs0mjt6xSx_zHy4W143zYDuMpyPbn3z6GZURffN_qtA9gJXApEWkkdxlKo49Pe4iOykgd5Yjw4Pm_QfgD4wT_fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Day+EEG-Based+Emotion+Recognition+Using+Transfer+Component+Analysis&rft.jtitle=Electronics+%28Basel%29&rft.au=He%2C+Zhongyang&rft.au=Zhuang%2C+Ning&rft.au=Bao%2C+Guangcheng&rft.au=Zeng%2C+Ying&rft.date=2022-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=4&rft.spage=651&rft_id=info:doi/10.3390%2Felectronics11040651&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11040651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon