Cross-Day EEG-Based Emotion Recognition Using Transfer Component Analysis
EEG-based emotion recognition can help achieve more natural human-computer interaction, but the temporal non-stationarity of EEG signals affects the robustness of EEG-based emotion recognition models. Most existing studies use the emotional EEG data collected in the same trial to train and test mode...
Saved in:
Published in | Electronics (Basel) Vol. 11; no. 4; p. 651 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | EEG-based emotion recognition can help achieve more natural human-computer interaction, but the temporal non-stationarity of EEG signals affects the robustness of EEG-based emotion recognition models. Most existing studies use the emotional EEG data collected in the same trial to train and test models, once this kind of model is applied to the data collected at different times of the same subject, its recognition accuracy will decrease significantly. To address the problem of EEG-based cross-day emotion recognition, this paper has constructed a database of emotional EEG signals collected over six days for each subject using the Chinese Affective Video System and self-built video library stimuli materials, and the database is the largest number of days collected for a single subject so far. To study the neural patterns of emotions based on EEG signals cross-day, the brain topography has been analyzed in this paper, which show there is a stable neural pattern of emotions cross-day. Then, Transfer Component Analysis (TCA) algorithm is used to adaptively determine the optimal dimensionality of the TCA transformation and match domains of the best correlated motion features in multiple time domains by using EEG signals from different time (days). The experimental results show that the TCA-based domain adaptation strategy can effectively improve the accuracy of cross-day emotion recognition by 3.55% and 2.34%, respectively, in the classification of joy-sadness and joy-anger emotions. The emotion recognition model and brain topography in this paper, verify that the database can provide a reliable data basis for emotion recognition across different time domains. This EEG database will be open to more researchers to promote the practical application of emotion recognition. |
---|---|
AbstractList | EEG-based emotion recognition can help achieve more natural human-computer interaction, but the temporal non-stationarity of EEG signals affects the robustness of EEG-based emotion recognition models. Most existing studies use the emotional EEG data collected in the same trial to train and test models, once this kind of model is applied to the data collected at different times of the same subject, its recognition accuracy will decrease significantly. To address the problem of EEG-based cross-day emotion recognition, this paper has constructed a database of emotional EEG signals collected over six days for each subject using the Chinese Affective Video System and self-built video library stimuli materials, and the database is the largest number of days collected for a single subject so far. To study the neural patterns of emotions based on EEG signals cross-day, the brain topography has been analyzed in this paper, which show there is a stable neural pattern of emotions cross-day. Then, Transfer Component Analysis (TCA) algorithm is used to adaptively determine the optimal dimensionality of the TCA transformation and match domains of the best correlated motion features in multiple time domains by using EEG signals from different time (days). The experimental results show that the TCA-based domain adaptation strategy can effectively improve the accuracy of cross-day emotion recognition by 3.55% and 2.34%, respectively, in the classification of joy-sadness and joy-anger emotions. The emotion recognition model and brain topography in this paper, verify that the database can provide a reliable data basis for emotion recognition across different time domains. This EEG database will be open to more researchers to promote the practical application of emotion recognition. |
Author | Zhuang, Ning He, Zhongyang Yan, Bin Bao, Guangcheng Zeng, Ying |
Author_xml | – sequence: 1 givenname: Zhongyang surname: He fullname: He, Zhongyang – sequence: 2 givenname: Ning orcidid: 0000-0002-6815-3121 surname: Zhuang fullname: Zhuang, Ning – sequence: 3 givenname: Guangcheng surname: Bao fullname: Bao, Guangcheng – sequence: 4 givenname: Ying surname: Zeng fullname: Zeng, Ying – sequence: 5 givenname: Bin surname: Yan fullname: Yan, Bin |
BookMark | eNp9kEFLAzEQhYNUsNb-Ai8LnleTTHeTHOu6VqEgSHtekmy2pGyTmqSH_nu31oOIOJd5h_cN7801GjnvDEK3BN8DCPxgeqNT8M7qSAie4bIgF2hMMRO5oIKOfugrNI1xi4cRBDjgMXqtgo8xf5LHrK4X-aOMps3qnU_Wu-zdaL9x9kuvo3WbbBWki50JWeV3-yGGS9ncyf4YbbxBl53so5l-7wlaP9er6iVfvi1eq_ky10Bpyg3TALNWCuCaKakZgYKrErgigjJJGC9KabAqJBjRMmo4bpUcEKOU6AoFE3R3vrsP_uNgYmq2_hCGELGhJdBScE7Y4BJnlz71C6ZrtE3y1CQFafuG4Ob0vOaP5w0s_GL3we5kOP5LfQLzqniO |
CitedBy_id | crossref_primary_10_3233_JIFS_223456 crossref_primary_10_1155_2022_9288896 crossref_primary_10_1016_j_bspc_2024_106261 crossref_primary_10_1145_3712259 crossref_primary_10_1007_s10462_023_10690_2 crossref_primary_10_1109_TIM_2023_3284926 crossref_primary_10_1016_j_neucom_2024_128354 crossref_primary_10_1007_s13042_023_01957_9 |
Cites_doi | 10.1038/s41593-019-0488-y 10.1016/0013-4694(70)90143-4 10.1002/acr.20561 10.1109/TBME.2010.2048568 10.1109/TCDS.2017.2685338 10.1098/rspa.1998.0193 10.1109/TCYB.2017.2788081 10.1002/da.1033 10.1109/72.761722 10.1007/s12559-017-9533-x 10.1109/34.954607 10.1109/T-AFFC.2011.15 10.1001/archpsyc.1988.01800320058007 10.1080/2326263X.2014.912881 10.1109/T-AFFC.2011.25 10.1109/ICSMC.2007.4413638 10.1109/TITB.2009.2034649 10.3233/BME-130919 10.3389/fnbot.2019.00037 10.1109/TNN.2010.2091281 10.1109/TAFFC.2017.2660485 10.1007/s40708-017-0069-3 10.1109/NER.2013.6695876 10.1109/SMC.2014.6974415 10.1088/0967-3334/22/4/305 10.1007/s10044-016-0567-6 10.7551/mitpress/1140.001.0001 10.3389/fncom.2017.00064 10.1109/ICPAIR.2011.5976886 10.3389/fnhum.2020.605246 10.1016/B978-0-12-805390-4.00007-8 10.1109/TAMD.2015.2431497 10.1109/TAFFC.2017.2712143 10.1109/BHI.2012.6211551 10.3389/fnhum.2018.00267 10.1007/s10548-019-00707-x 10.1080/02699939508408966 10.1007/s00521-015-2149-8 10.1007/978-3-642-24571-8_58 10.1109/JCSSE.2014.6841851 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/electronics11040651 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | 10_3390_electronics11040651 |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c322t-e7c334da938c7bac71358b638b1927a17856ae0b5a3e9d72e80dba334ebb9f5b3 |
IEDL.DBID | BENPR |
ISSN | 2079-9292 |
IngestDate | Mon Jul 14 08:22:24 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Tue Jul 01 01:47:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-e7c334da938c7bac71358b638b1927a17856ae0b5a3e9d72e80dba334ebb9f5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6815-3121 |
OpenAccessLink | https://www.proquest.com/docview/2632698817?pq-origsite=%requestingapplication% |
PQID | 2632698817 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_2632698817 crossref_citationtrail_10_3390_electronics11040651 crossref_primary_10_3390_electronics11040651 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Hjorth (ref_18) 1970; 29 ref_14 Mohammadi (ref_26) 2017; 28 Ning (ref_30) 2017; 2017 Takahashi (ref_13) 2010; 3 Julian (ref_40) 2011; 63 Liu (ref_38) 2018; 12 Huang (ref_24) 1998; 454 ref_17 Bao (ref_39) 2021; 14 Li (ref_34) 2017; 10 ref_15 Pan (ref_47) 2011; 22 Hyvarinen (ref_45) 2002; 10 Allison (ref_4) 2014; 1 Jie (ref_16) 2014; 24 Mert (ref_29) 2016; 21 Yao (ref_44) 2019; 32 Liu (ref_46) 2018; 9 Williams (ref_42) 1988; 45 Xing (ref_35) 2019; 13 Zheng (ref_12) 2017; 10 Liu (ref_9) 2006; 2 Koelstra (ref_10) 2012; 3 Picard (ref_36) 2001; 23 Lin (ref_21) 2010; 57 Shear (ref_41) 2001; 13 Yao (ref_43) 2001; 22 Gross (ref_8) 1995; 9 ref_23 ref_22 Polat (ref_25) 2017; 4 ref_20 Lin (ref_37) 2017; 11 ref_1 Petrantonakis (ref_19) 2010; 14 ref_3 ref_2 Shanechi (ref_5) 2019; 22 Zhang (ref_33) 2018; 49 ref_28 ref_27 Zheng (ref_31) 2015; 7 Yang (ref_32) 2018; 10 Soleymani (ref_11) 2012; 3 ref_7 ref_6 |
References_xml | – volume: 22 start-page: 1554 year: 2019 ident: ref_5 article-title: Brain–machine interfaces from motor to mood publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0488-y – ident: ref_7 – volume: 29 start-page: 306 year: 1970 ident: ref_18 article-title: EEG analysis based on time domain properties publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(70)90143-4 – volume: 63 start-page: S467 year: 2011 ident: ref_40 article-title: Measures of anxiety: State-Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale-Anxiety (HADS-A) publication-title: Arthritis Care Res. doi: 10.1002/acr.20561 – volume: 3 start-page: 1138 year: 2010 ident: ref_13 article-title: Remarks on emotion recognition from multi-modal bio potential signals publication-title: JES Ergon. – volume: 57 start-page: 1798 year: 2010 ident: ref_21 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2048568 – volume: 10 start-page: 408 year: 2018 ident: ref_32 article-title: EEG-Based Emotion Recognition Using Hierarchical Network with Subnetwork Nodes publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2017.2685338 – volume: 454 start-page: 903 year: 1998 ident: ref_24 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 49 start-page: 839 year: 2018 ident: ref_33 article-title: Spatial–Temporal Recurrent Neural Network for Emotion Recognition publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2788081 – volume: 13 start-page: 166 year: 2001 ident: ref_41 article-title: Reliability and validity of a structured interview guide for the Hamilton Anxiety Rating Scale (SIGH-A) publication-title: Depress. Anxiety doi: 10.1002/da.1033 – volume: 10 start-page: 626 year: 2002 ident: ref_45 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.761722 – volume: 10 start-page: 368 year: 2017 ident: ref_34 article-title: Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition publication-title: Cogn. Comput. doi: 10.1007/s12559-017-9533-x – volume: 2017 start-page: 8317357 year: 2017 ident: ref_30 article-title: Emotion Recognition from EEG Signals Using Multidimensional Information in EMD Domain publication-title: BioMed Res. Int. – ident: ref_14 – volume: 23 start-page: 1175 year: 2001 ident: ref_36 article-title: Toward machine emotional intelligence: Analysis of affective physiological state publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.954607 – volume: 3 start-page: 18 year: 2012 ident: ref_10 article-title: DEAP: A Database for Emotion Analysis; Using Physiological Signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 45 start-page: 742 year: 1988 ident: ref_42 article-title: A structured interview guide for the Hamilton Depression Rating Scale publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.1988.01800320058007 – volume: 1 start-page: 66 year: 2014 ident: ref_4 article-title: A survey of affective brain computer interfaces: Principles, state-of-the-art, and challenges publication-title: Brain Comput. Interfaces doi: 10.1080/2326263X.2014.912881 – volume: 3 start-page: 42 year: 2012 ident: ref_11 article-title: A Multimodal Database for Affect Recognition and Implicit Tagging publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.25 – ident: ref_22 doi: 10.1109/ICSMC.2007.4413638 – volume: 2 start-page: 406 year: 2006 ident: ref_9 article-title: The establishment and assessment of a native affective sound system publication-title: Psychol. Sci. – volume: 14 start-page: 186 year: 2010 ident: ref_19 article-title: Emotion Recognition from EEG Using Higher Order Crossings publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2034649 – ident: ref_6 – volume: 24 start-page: 1185 year: 2014 ident: ref_16 article-title: Emotion recognition based on the sample entropy of EEG publication-title: Bio-Med. Mater. Eng. doi: 10.3233/BME-130919 – volume: 13 start-page: 37 year: 2019 ident: ref_35 article-title: SAE+LSTM: A New Framework for Emotion Recognition from Multi-Channel EEG publication-title: Front. Neurorobotics doi: 10.3389/fnbot.2019.00037 – volume: 22 start-page: 199 year: 2011 ident: ref_47 article-title: Domain Adaptation via Transfer Component Analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2091281 – volume: 9 start-page: 550 year: 2018 ident: ref_46 article-title: Real-Time Movie-Induced Discrete Emotion Recognition from EEG Signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2660485 – volume: 4 start-page: 241 year: 2017 ident: ref_25 article-title: Emotion recognition based on EEG features in movie clips with channel selection publication-title: Brain Inform. doi: 10.1007/s40708-017-0069-3 – ident: ref_20 doi: 10.1109/NER.2013.6695876 – ident: ref_15 doi: 10.1109/SMC.2014.6974415 – ident: ref_2 – volume: 22 start-page: 693 year: 2001 ident: ref_43 article-title: A method to standardize a reference of scalp EEG recordings to a point at infinity publication-title: Physiol. Meas. doi: 10.1088/0967-3334/22/4/305 – volume: 21 start-page: 81 year: 2016 ident: ref_29 article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-016-0567-6 – ident: ref_1 doi: 10.7551/mitpress/1140.001.0001 – volume: 11 start-page: 64 year: 2017 ident: ref_37 article-title: Improving Cross-Day EEG-Based Emotion Classification Using Robust Principal Component Analysis publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2017.00064 – ident: ref_27 doi: 10.1109/ICPAIR.2011.5976886 – volume: 14 start-page: 605246 year: 2021 ident: ref_39 article-title: Two-Level Domain Adaptation Neural Network for EEG-Based Emotion Recognition publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2020.605246 – ident: ref_3 doi: 10.1016/B978-0-12-805390-4.00007-8 – volume: 7 start-page: 162 year: 2015 ident: ref_31 article-title: Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 10 start-page: 417 year: 2017 ident: ref_12 article-title: Identifying Stable Patterns over Time for Emotion Recognition from EEG publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2712143 – ident: ref_23 doi: 10.1109/BHI.2012.6211551 – volume: 12 start-page: 267 year: 2018 ident: ref_38 article-title: Incorporation of Multiple-Days Information to Improve the Generalization of EEG-Based Emotion Recognition Over Time publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00267 – volume: 32 start-page: 530 year: 2019 ident: ref_44 article-title: Which Reference Should We Use for EEG and ERP practice? publication-title: Brain Topogr. doi: 10.1007/s10548-019-00707-x – volume: 9 start-page: 87 year: 1995 ident: ref_8 article-title: Emotion elicitation using films: Cognition and Emotion publication-title: Cogn. Emot. doi: 10.1080/02699939508408966 – volume: 28 start-page: 1985 year: 2017 ident: ref_26 article-title: Wavelet-based emotion recognition system using EEG signal publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2149-8 – ident: ref_17 doi: 10.1007/978-3-642-24571-8_58 – ident: ref_28 doi: 10.1109/JCSSE.2014.6841851 |
SSID | ssj0000913830 |
Score | 2.2952216 |
Snippet | EEG-based emotion recognition can help achieve more natural human-computer interaction, but the temporal non-stationarity of EEG signals affects the robustness... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 651 |
SubjectTerms | Accuracy Algorithms Anxiety Brain Domains Electroencephalography Emotion recognition Emotions Experiments Human-computer interaction Libraries Neural networks Topography Wavelet transforms |
Title | Cross-Day EEG-Based Emotion Recognition Using Transfer Component Analysis |
URI | https://www.proquest.com/docview/2632698817 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4IXPRgfEYUSQ8e3UC7Lbt7MjwKaIQYlIRbs6-eDCDgwX_vbLsFSQy3Ju22yWxnvpnd2e9D6IEBZHBuwL-J0hgQL8BC8hQTplMA-NCQ7KDwaNwaTsOXWTRzC25r11ZZxMQsUOuFsmvkDcsr3uKM-fRp-YWtapTdXXUSGiVUgRDMoPiqdOLx22S7ymJZLxlp5nRDBOr7xk5dZg3IB3AW-fuQtB-RM5jpn6FTlx967XxCz9GRmV-gkz-sgZfouWtfg3vix4vjAe4ADmkvzuV4vEnREATXWTuAl6FRalaedf3FHEDGK5hIrtC0H390h9gpImAFjrfBhipCQi04YYpKoay-HpPgQhISNSp8yqKWME0ZCWK4poFhTS0FDDESJiCS5BqV5_ClG3tWmxrOlZFUpGGoQgHgrbkk0tfcZ5RWUVAYJVGOLtyqVnwmUDZYSyb_WLKKHreDljlbxuHHa4W1E-c662Q30beHb9-h48CeRchaqGuovFl9m3vIEDayjkqsP6ijSrs3en2vu5_iF1CLwGU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4gHtSD8RlR1B705oa2W9jdgzHKWx4HAwm3uq-eDCBgDH_K3-hsS0ESw41bk-1u0-nMfLPbmfkQumMAGZwbsG-iNAbE87GQPMKE6QgAPjAkLhTudEuNfvA6KA4y6CethbFplalPjB21Hil7Rl6wfcVLnDGPPo0_sWWNsn9XUwqNRC1aZv4NW7bpY7MC3_fe92vVXrmBF6wCWIHyzrChipBAC06YolIoy1HHJKihhGCHCstWXxLGlUVBDNfUN8zVUsAUI-ElipLAujtoNyCEW4titfryTMf22GTETZobwbhbWHHZTAFnATyL3joArvv_GNRqR-hwEY06z4n6HKOMGZ6ggz89Ck9Rs2yXwRUxd6rVOn4B1NNONSH_cd7S9CO4jpMPnBj7IjNxrKMZDQHSnLTvyRnqb0VS5yg7hCdd2MpwajhXRlIRBYEKBIQKmksiPc09RmkO-alQQrVoTm45Mj5C2KRYSYb_SDKHHpaTxklvjs2351NphwtDnYYrtbrcPHyL9hq9TjtsN7utK7Tv2yqIOHk7j7KzyZe5hthkJm9ihXDQ-7Y18Bd7c_nr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BkRAcEKtYCuQAN6ymcVrbB4SAplAKVVVRiVvwlhMqS4tQf42vY5ylpRLqjVukxI4yefYb2zPzAE44UoYQFsc31YYg4wVEKpEQyk2CBB9amiYKP3Tqt_3w7qn2tADfRS6MC6ss5sR0ojav2u2RV1xd8brgvMoqSR4W0W00L97eiVOQciethZxGBpG2HX_h8m143mrgvz4Ngmb0eH1LcoUBohHII2KZpjQ0UlCumZLa6dVxhZBU6Pgw6ZTr69L6qiapFYYFlvtGSWxiFX5QTVHsdxGWGK6K_BIsXUWdbm-yw-MqbnLqZ6WOKBV-ZapsM0TWRSqtVWfpcJYNUoprrsNa7pt6lxmYNmDBDjZh9VfFwi1oXbtuSEOOvSi6IVfIgcaLMikgr1cEI-F1GorgpUyY2A_PTTuvAyQ4r6iCsg39f7HVDpQG-KZdlyfOrBDaKiaTMNShRMfBCEVV1YgqZ2wPgsIosc5LlTvFjJcYlyzOkvEfltyDs0mjt6xSx_zHy4W143zYDuMpyPbn3z6GZURffN_qtA9gJXApEWkkdxlKo49Pe4iOykgd5Yjw4Pm_QfgD4wT_fQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Day+EEG-Based+Emotion+Recognition+Using+Transfer+Component+Analysis&rft.jtitle=Electronics+%28Basel%29&rft.au=He%2C+Zhongyang&rft.au=Zhuang%2C+Ning&rft.au=Bao%2C+Guangcheng&rft.au=Zeng%2C+Ying&rft.date=2022-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=4&rft.spage=651&rft_id=info:doi/10.3390%2Felectronics11040651&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11040651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |