EEG Temporal-Spatial Feature Learning for Automated Selection of Stimulus Parameters in Electroconvulsive Therapy
The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the necessary generalized seizure (GS); Conversely, inadequate stimulus results in failure. Recent efforts to automate this task can facilitate stat...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 29; no. 2; pp. 960 - 969 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2024.3489221 |
Cover
Abstract | The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the necessary generalized seizure (GS); Conversely, inadequate stimulus results in failure. Recent efforts to automate this task can facilitate statistical analyses on individual parameters or qualitative predictions. However, this automation still significantly lags behind the requirements in clinical practices. This study addresses this issue by predicting the probability of GS induction under the joint restriction of a patient's EEG (electroencephalogram) and the stimulus parameters, sustained by a two-stage learning model (namely ECTnet): 1) Temporal-Spatial Feature Learning . Channel-wise convolution via multiple convolution kernels first learns the deep features of the EEG, followed by a "ConvLSTM" constructing the temporal-spatial features aided with the enforced convolution operations at the LSTM gates; 2) GS Prediction . The probability of seizure induction is predicted based on the EEG features fused with stimulus parameters, through which the optimal parameter setting(s) may be obtained by minimizing the stimulus charge while ensuring the probability above a threshold. Experiments have been conducted on EEG data from 96 subjects with mental disorders to examine the performance and design of ECTnet. These experiments indicate that ECTnet can effectively automate the selection of optimal stimulus parameters: 1) an AUC of 0.746, F1-score of 0.90, a precision of 89% and a recall of 93% in the prediction of seizure induction have been achieved, outperforming the state-of-the-art counterpart, and 2) inclusion of parameter features increases the F1-score by 0.054. |
---|---|
AbstractList | The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the necessary generalized seizure (GS); Conversely, inadequate stimulus results in failure. Recent efforts to automate this task can facilitate statistical analyses on individual parameters or qualitative predictions. However, this automation still significantly lags behind the requirements in clinical practices. This study addresses this issue by predicting the probability of GS induction under the joint restriction of a patient's EEG (electroencephalogram) and the stimulus parameters, sustained by a two-stage learning model (namely ECTnet): 1) Temporal-Spatial Feature Learning . Channel-wise convolution via multiple convolution kernels first learns the deep features of the EEG, followed by a "ConvLSTM" constructing the temporal-spatial features aided with the enforced convolution operations at the LSTM gates; 2) GS Prediction . The probability of seizure induction is predicted based on the EEG features fused with stimulus parameters, through which the optimal parameter setting(s) may be obtained by minimizing the stimulus charge while ensuring the probability above a threshold. Experiments have been conducted on EEG data from 96 subjects with mental disorders to examine the performance and design of ECTnet. These experiments indicate that ECTnet can effectively automate the selection of optimal stimulus parameters: 1) an AUC of 0.746, F1-score of 0.90, a precision of 89% and a recall of 93% in the prediction of seizure induction have been achieved, outperforming the state-of-the-art counterpart, and 2) inclusion of parameter features increases the F1-score by 0.054. The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the necessary generalized seizure (GS); Conversely, inadequate stimulus results in failure. Recent efforts to automate this task can facilitate statistical analyses on individual parameters or qualitative predictions. However, this automation still significantly lags behind the requirements in clinical practices. This study addresses this issue by predicting the probability of GS induction under the joint restriction of a patient's EEG (electroencephalogram) and the stimulus parameters, sustained by a two-stage learning model (namely ECTnet): 1) Temporal-Spatial Feature Learning. Channel-wise convolution via multiple convolution kernels first learns the deep features of the EEG, followed by a "ConvLSTM" constructing the temporal-spatial features aided with the enforced convolution operations at the LSTM gates; 2) GS Prediction. The probability of seizure induction is predicted based on the EEG features fused with stimulus parameters, through which the optimal parameter setting(s) may be obtained by minimizing the stimulus charge while ensuring the probability above a threshold. Experiments have been conducted on EEG data from 96 subjects with mental disorders to examine the performance and design of ECTnet. These experiments indicate that ECTnet can effectively automate the selection of optimal stimulus parameters: 1) an AUC of 0.746, F1-score of 0.90, a precision of 89% and a recall of 93% in the prediction of seizure induction have been achieved, outperforming the state-of-the-art counterpart, and 2) inclusion of parameter features increases the F1-score by 0.054.The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the necessary generalized seizure (GS); Conversely, inadequate stimulus results in failure. Recent efforts to automate this task can facilitate statistical analyses on individual parameters or qualitative predictions. However, this automation still significantly lags behind the requirements in clinical practices. This study addresses this issue by predicting the probability of GS induction under the joint restriction of a patient's EEG (electroencephalogram) and the stimulus parameters, sustained by a two-stage learning model (namely ECTnet): 1) Temporal-Spatial Feature Learning. Channel-wise convolution via multiple convolution kernels first learns the deep features of the EEG, followed by a "ConvLSTM" constructing the temporal-spatial features aided with the enforced convolution operations at the LSTM gates; 2) GS Prediction. The probability of seizure induction is predicted based on the EEG features fused with stimulus parameters, through which the optimal parameter setting(s) may be obtained by minimizing the stimulus charge while ensuring the probability above a threshold. Experiments have been conducted on EEG data from 96 subjects with mental disorders to examine the performance and design of ECTnet. These experiments indicate that ECTnet can effectively automate the selection of optimal stimulus parameters: 1) an AUC of 0.746, F1-score of 0.90, a precision of 89% and a recall of 93% in the prediction of seizure induction have been achieved, outperforming the state-of-the-art counterpart, and 2) inclusion of parameter features increases the F1-score by 0.054. |
Author | Weng, Shenhong Zuo, Yiping Zheng, Yuntao Wang, Fan Chen, Dan Gao, Tengfei |
Author_xml | – sequence: 1 givenname: Fan surname: Wang fullname: Wang, Fan email: wangfan@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan, China – sequence: 2 givenname: Dan orcidid: 0000-0002-7055-141X surname: Chen fullname: Chen, Dan email: dan.chen@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan, China – sequence: 3 givenname: Shenhong orcidid: 0000-0002-3579-1290 surname: Weng fullname: Weng, Shenhong email: wengshenhong@whu.edu.cn organization: Psychiatry Department of Renmin Hospital of Wuhan University, Wuhan, China – sequence: 4 givenname: Tengfei orcidid: 0000-0002-1929-012X surname: Gao fullname: Gao, Tengfei email: tengfei.gao@ccnu.edu.cn organization: Faculty of Artificial Intelligence in Education of Central China Normal University and, Hubei Provincial Key Laboratory of Multimedia and Network Communication Engineering, Wuhan, China – sequence: 5 givenname: Yiping orcidid: 0000-0002-5998-5866 surname: Zuo fullname: Zuo, Yiping email: yp.zuo@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan, China – sequence: 6 givenname: Yuntao orcidid: 0009-0008-1408-1266 surname: Zheng fullname: Zheng, Yuntao email: yuntaozh@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39480724$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVtr4zAQhUVp6W37Awql6HFfnNXFia3HtqSXJdCFpM9iLI93VWTLleRC__3aJIHSh87LDMN3BuacM3LY-Q4JueRsxjlTv37fPj7NBBP5TOalEoIfkFPBF2UmBCsP9zNX-Qm5iPGVjVWOK7U4JidS5SUrRH5K3pbLB7rBtvcBXLbuIVlw9B4hDQHpCiF0tvtLGx_ozZB8CwlrukaHJlnfUd_QdbLt4IZI_0CAFhOGSG1HlxMSvPHd--CifUe6-YcB-o8f5KgBF_Fi18_Jy_1yc_eYrZ4fnu5uVpmRQqQM51zwqmEK67rhOD41z6WpasGasjbKVGohC2MEopI1w1IBNOWiqgtWKSiUkOfk5_ZuH_zbgDHp1kaDzkGHfohaciFHD2QxH9HrHTpULda6D7aF8KH3No1AsQVM8DEGbLSxCSYHUgDrNGd6ykRPmegpE73LZFTyL8r98e80V1uNRcRPfJEzljP5HzRSmGI |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_3389_fpsyt_2024_1538534 |
Cites_doi | 10.1016/j.psc.2013.08.007 10.1007/s41666-024-00160-x 10.3389/fpsyt.2018.00092 10.1016/j.jagp.2020.06.008 10.1109/BIBM49941.2020.9313499 10.1176/appi.ajp.2020.20030238 10.1016/j.nicl.2019.102080 10.1109/ICECCME57830.2023.10252726 10.2147/NDT.S134503 10.1097/00124509-200403000-00003 10.1109/JBHI.2022.3227320 10.1097/01.yct.0000235922.14623.39 10.1111/acps.13075 10.4103/jmss.jmss_59_22 10.1016/j.psc.2018.04.001 10.1038/tp.2016.54 10.1016/j.schres.2019.12.012 10.32473/flairs.v34i1.128367 10.1016/j.brs.2017.08.003 10.1088/1741-2552/aace8c 10.1056/NEJMra2034954 10.1111/acps.13071 10.1097/00124509-200312000-00005 10.1002/npr2.12224 10.1016/j.eswa.2023.120348 10.3389/fpsyg.2020.00080 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/JBHI.2024.3489221 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 969 |
ExternalDocumentID | 39480724 10_1109_JBHI_2024_3489221 10740040 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: China Guanghua Foundation grantid: GHKJJJ20220702 – fundername: Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University grantid: JCRCZN-2022-012 – fundername: National Natural Science Foundation of China grantid: 62477035; 62172304; 61977027 funderid: 10.13039/501100001809 – fundername: Self-Determined Research Funds of CCNU from the Collegesâ Basic Research and Operation of MOE grantid: CCNU24XJ018 – fundername: Open Project of Hubei Provincial Key Laboratory of Multimedia Network Communication Engineering – fundername: STI2030-Major Projects grantid: 2021ZD0204300 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c322t-e5121bf09eddf1e220543cbd20f8dc9cb9637cc2ee93d0e89aaf86bd70b9a7923 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 06:03:03 EDT 2025 Fri Jul 25 01:49:09 EDT 2025 Tue Jul 01 05:27:45 EDT 2025 Thu Apr 24 23:12:14 EDT 2025 Wed Aug 27 01:50:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-e5121bf09eddf1e220543cbd20f8dc9cb9637cc2ee93d0e89aaf86bd70b9a7923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7055-141X 0000-0002-5998-5866 0009-0008-1408-1266 0000-0002-1929-012X 0000-0002-3579-1290 |
PMID | 39480724 |
PQID | 3123072375 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3123072375 crossref_citationtrail_10_1109_JBHI_2024_3489221 crossref_primary_10_1109_JBHI_2024_3489221 pubmed_primary_39480724 ieee_primary_10740040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 Howard (ref24) 2017 Shah (ref7) 2013; 6 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref23 Shi (ref25) 2015; 28 ref26 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref3 doi: 10.1016/j.psc.2013.08.007 – ident: ref29 doi: 10.1007/s41666-024-00160-x – ident: ref10 doi: 10.3389/fpsyt.2018.00092 – ident: ref18 doi: 10.1016/j.jagp.2020.06.008 – ident: ref23 doi: 10.1109/BIBM49941.2020.9313499 – ident: ref20 doi: 10.1176/appi.ajp.2020.20030238 – ident: ref11 doi: 10.1016/j.nicl.2019.102080 – ident: ref19 doi: 10.1109/ICECCME57830.2023.10252726 – ident: ref14 doi: 10.2147/NDT.S134503 – ident: ref16 doi: 10.1097/00124509-200403000-00003 – ident: ref22 doi: 10.1109/JBHI.2022.3227320 – year: 2017 ident: ref24 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications – ident: ref4 doi: 10.1097/01.yct.0000235922.14623.39 – ident: ref5 doi: 10.1111/acps.13075 – volume: 28 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2015 ident: ref25 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting – ident: ref28 doi: 10.4103/jmss.jmss_59_22 – ident: ref1 doi: 10.1016/j.psc.2018.04.001 – ident: ref9 doi: 10.1038/tp.2016.54 – ident: ref12 doi: 10.1016/j.schres.2019.12.012 – ident: ref13 doi: 10.32473/flairs.v34i1.128367 – ident: ref8 doi: 10.1016/j.brs.2017.08.003 – volume: 6 issue: 4 year: 2013 ident: ref7 article-title: Electroconvulsive therapy (ECT): Important parameters which influence its effectiveness publication-title: Brit. J. Med. Practitioners – ident: ref26 doi: 10.1088/1741-2552/aace8c – ident: ref6 doi: 10.1056/NEJMra2034954 – ident: ref2 doi: 10.1111/acps.13071 – ident: ref15 doi: 10.1097/00124509-200312000-00005 – ident: ref17 doi: 10.1002/npr2.12224 – ident: ref27 doi: 10.1016/j.eswa.2023.120348 – ident: ref21 doi: 10.3389/fpsyg.2020.00080 |
SSID | ssj0000816896 |
Score | 2.4319475 |
Snippet | The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 960 |
SubjectTerms | Accuracy Adult Brain modeling Convolution Convolutional LSTM EEG electroconvul- sive therapy Electroconvulsive Therapy - methods Electroencephalography Electroencephalography - methods featuring learning Female Functional magnetic resonance imaging Humans Long short term memory Machine Learning Male Mental disorders Middle Aged Optimization Predictive models Seizures - physiopathology Signal Processing, Computer-Assisted Statistical analysis stimulus parameters |
Title | EEG Temporal-Spatial Feature Learning for Automated Selection of Stimulus Parameters in Electroconvulsive Therapy |
URI | https://ieeexplore.ieee.org/document/10740040 https://www.ncbi.nlm.nih.gov/pubmed/39480724 https://www.proquest.com/docview/3123072375 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RHhAXKKXAAq2MxAkp28R2NvGxRdtuK1EhdSv1FvljgiqWBNr4wq_HY2dXUKmImw9OlGhm5Gf7zXsAH1zFS1eVZcb1rM2klCozWtswKmxbVhhWpKj2eTFbXMnz6_J6bFaPvTCIGMlnOKVhvMt3vfV0VHZI5EHKui3YCnmWmrU2ByrRQSL6cfEwyEIlyvEWs8jV4fnx4izsBrmcClkrzskhRijqp-byryUpeqw8DDfjsnPyDC7WH5zYJt-mfjBT--ueluN__9EOPB0BKDtKGfMcHmG3C48_j1fsL-DnfH7KlkmwapWRY3HIUEZI0d8iG-VYv7KAddmRH_oAeNGxy-imE0LM-pZdDjff_crfsS-amF8k38luOjZPhjtEc_crIs2zZVI02IOrk_ny0yIbfRkyG8p_yDCAhMK0uULn2gKpVVcKaxzP29pZZU0o6spajqiEy7FWWrf1zLgqN0qTXuFL2O76Dl8Dq0WhK61EQDFOCqeUFtzklTau1DPFzQTydWgaO4qWk3fGqombl1w1FNiGAtuMgZ3Ax80jP5Jix78m71FQ_piY4jGB9-sEaEK90SWK7rD3d40oiDrPRVVO4FXKjM3T64R688Bb38ITTvbBkfT9DraHW4_7AdMM5iDm8m9viO-u |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RKrW90C9olxZwpZ4qZTexnU18pNXCQmFViUXiFvkrFeqSUIgv_Ho8dnbVVqLi5oMdJZpx5tkz8x7AZ1PQ3BR5nlA5rhPOuUiUlNqPMl3nhfURKbB9zsbTc358kV_0zeqhF8ZaG4rP7BCHIZdvWu3wqmyExYPodU_gqQ_8PI_tWqsrlaAhERS5qB8kfi_yPo-ZpWJ0_HV65M-DlA8ZLwWlqBHDBHZUU_5XUAoqKw8DzhB4Dl7CbPnKsd7k19B1aqjv_mFzfPQ3vYKNHoKS_egzr2HNNm_g2WmfZH8LvyeTQzKPlFWLBDWLvY8SxIruxpKekPUn8WiX7Luu9ZDXGnIW9HS8kUlbk7Pu8sot3C35IbH2Cwk8yWVDJlFyBwvd3QLL5sk8chpswvnBZP5tmvTKDIn2P4AusR4mZKpOhTWmziw263KmlaFpXRottPLbutCaWiuYSW0ppKzLsTJFqoRExsItWG_axr4HUrJMFlIwj2MMZ0YIyahKC6lMLseCqgGkS9NUuqctR_WMRRWOL6mo0LAVGrbqDTuAL6sl15Gz43-TN9Eof0yM9hjAp6UDVH7HYRpFNrZ1txXLsHiesiIfwLvoGavVS4fafuCpe_B8Oj89qU6OZt8_wAuKYsKhBPwjrHc3zu54hNOp3eDX9yL48vs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Temporal-Spatial+Feature+Learning+for+Automated+Selection+of+Stimulus+Parameters+in+Electroconvulsive+Therapy&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Wang%2C+Fan&rft.au=Chen%2C+Dan&rft.au=Weng%2C+Shenhong&rft.au=Gao%2C+Tengfei&rft.date=2025-02-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=29&rft.issue=2&rft.spage=960&rft.epage=969&rft_id=info:doi/10.1109%2FJBHI.2024.3489221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2024_3489221 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |