EEG Temporal-Spatial Feature Learning for Automated Selection of Stimulus Parameters in Electroconvulsive Therapy

The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the necessary generalized seizure (GS); Conversely, inadequate stimulus results in failure. Recent efforts to automate this task can facilitate stat...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 29; no. 2; pp. 960 - 969
Main Authors Wang, Fan, Chen, Dan, Weng, Shenhong, Gao, Tengfei, Zuo, Yiping, Zheng, Yuntao
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2025
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2024.3489221

Cover

Abstract The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the necessary generalized seizure (GS); Conversely, inadequate stimulus results in failure. Recent efforts to automate this task can facilitate statistical analyses on individual parameters or qualitative predictions. However, this automation still significantly lags behind the requirements in clinical practices. This study addresses this issue by predicting the probability of GS induction under the joint restriction of a patient's EEG (electroencephalogram) and the stimulus parameters, sustained by a two-stage learning model (namely ECTnet): 1) Temporal-Spatial Feature Learning . Channel-wise convolution via multiple convolution kernels first learns the deep features of the EEG, followed by a "ConvLSTM" constructing the temporal-spatial features aided with the enforced convolution operations at the LSTM gates; 2) GS Prediction . The probability of seizure induction is predicted based on the EEG features fused with stimulus parameters, through which the optimal parameter setting(s) may be obtained by minimizing the stimulus charge while ensuring the probability above a threshold. Experiments have been conducted on EEG data from 96 subjects with mental disorders to examine the performance and design of ECTnet. These experiments indicate that ECTnet can effectively automate the selection of optimal stimulus parameters: 1) an AUC of 0.746, F1-score of 0.90, a precision of 89% and a recall of 93% in the prediction of seizure induction have been achieved, outperforming the state-of-the-art counterpart, and 2) inclusion of parameter features increases the F1-score by 0.054.
AbstractList The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the necessary generalized seizure (GS); Conversely, inadequate stimulus results in failure. Recent efforts to automate this task can facilitate statistical analyses on individual parameters or qualitative predictions. However, this automation still significantly lags behind the requirements in clinical practices. This study addresses this issue by predicting the probability of GS induction under the joint restriction of a patient's EEG (electroencephalogram) and the stimulus parameters, sustained by a two-stage learning model (namely ECTnet): 1) Temporal-Spatial Feature Learning . Channel-wise convolution via multiple convolution kernels first learns the deep features of the EEG, followed by a "ConvLSTM" constructing the temporal-spatial features aided with the enforced convolution operations at the LSTM gates; 2) GS Prediction . The probability of seizure induction is predicted based on the EEG features fused with stimulus parameters, through which the optimal parameter setting(s) may be obtained by minimizing the stimulus charge while ensuring the probability above a threshold. Experiments have been conducted on EEG data from 96 subjects with mental disorders to examine the performance and design of ECTnet. These experiments indicate that ECTnet can effectively automate the selection of optimal stimulus parameters: 1) an AUC of 0.746, F1-score of 0.90, a precision of 89% and a recall of 93% in the prediction of seizure induction have been achieved, outperforming the state-of-the-art counterpart, and 2) inclusion of parameter features increases the F1-score by 0.054.
The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the necessary generalized seizure (GS); Conversely, inadequate stimulus results in failure. Recent efforts to automate this task can facilitate statistical analyses on individual parameters or qualitative predictions. However, this automation still significantly lags behind the requirements in clinical practices. This study addresses this issue by predicting the probability of GS induction under the joint restriction of a patient's EEG (electroencephalogram) and the stimulus parameters, sustained by a two-stage learning model (namely ECTnet): 1) Temporal-Spatial Feature Learning. Channel-wise convolution via multiple convolution kernels first learns the deep features of the EEG, followed by a "ConvLSTM" constructing the temporal-spatial features aided with the enforced convolution operations at the LSTM gates; 2) GS Prediction. The probability of seizure induction is predicted based on the EEG features fused with stimulus parameters, through which the optimal parameter setting(s) may be obtained by minimizing the stimulus charge while ensuring the probability above a threshold. Experiments have been conducted on EEG data from 96 subjects with mental disorders to examine the performance and design of ECTnet. These experiments indicate that ECTnet can effectively automate the selection of optimal stimulus parameters: 1) an AUC of 0.746, F1-score of 0.90, a precision of 89% and a recall of 93% in the prediction of seizure induction have been achieved, outperforming the state-of-the-art counterpart, and 2) inclusion of parameter features increases the F1-score by 0.054.The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the necessary generalized seizure (GS); Conversely, inadequate stimulus results in failure. Recent efforts to automate this task can facilitate statistical analyses on individual parameters or qualitative predictions. However, this automation still significantly lags behind the requirements in clinical practices. This study addresses this issue by predicting the probability of GS induction under the joint restriction of a patient's EEG (electroencephalogram) and the stimulus parameters, sustained by a two-stage learning model (namely ECTnet): 1) Temporal-Spatial Feature Learning. Channel-wise convolution via multiple convolution kernels first learns the deep features of the EEG, followed by a "ConvLSTM" constructing the temporal-spatial features aided with the enforced convolution operations at the LSTM gates; 2) GS Prediction. The probability of seizure induction is predicted based on the EEG features fused with stimulus parameters, through which the optimal parameter setting(s) may be obtained by minimizing the stimulus charge while ensuring the probability above a threshold. Experiments have been conducted on EEG data from 96 subjects with mental disorders to examine the performance and design of ECTnet. These experiments indicate that ECTnet can effectively automate the selection of optimal stimulus parameters: 1) an AUC of 0.746, F1-score of 0.90, a precision of 89% and a recall of 93% in the prediction of seizure induction have been achieved, outperforming the state-of-the-art counterpart, and 2) inclusion of parameter features increases the F1-score by 0.054.
Author Weng, Shenhong
Zuo, Yiping
Zheng, Yuntao
Wang, Fan
Chen, Dan
Gao, Tengfei
Author_xml – sequence: 1
  givenname: Fan
  surname: Wang
  fullname: Wang, Fan
  email: wangfan@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Dan
  orcidid: 0000-0002-7055-141X
  surname: Chen
  fullname: Chen, Dan
  email: dan.chen@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Shenhong
  orcidid: 0000-0002-3579-1290
  surname: Weng
  fullname: Weng, Shenhong
  email: wengshenhong@whu.edu.cn
  organization: Psychiatry Department of Renmin Hospital of Wuhan University, Wuhan, China
– sequence: 4
  givenname: Tengfei
  orcidid: 0000-0002-1929-012X
  surname: Gao
  fullname: Gao, Tengfei
  email: tengfei.gao@ccnu.edu.cn
  organization: Faculty of Artificial Intelligence in Education of Central China Normal University and, Hubei Provincial Key Laboratory of Multimedia and Network Communication Engineering, Wuhan, China
– sequence: 5
  givenname: Yiping
  orcidid: 0000-0002-5998-5866
  surname: Zuo
  fullname: Zuo, Yiping
  email: yp.zuo@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 6
  givenname: Yuntao
  orcidid: 0009-0008-1408-1266
  surname: Zheng
  fullname: Zheng, Yuntao
  email: yuntaozh@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39480724$$D View this record in MEDLINE/PubMed
BookMark eNp9kVtr4zAQhUVp6W37Awql6HFfnNXFia3HtqSXJdCFpM9iLI93VWTLleRC__3aJIHSh87LDMN3BuacM3LY-Q4JueRsxjlTv37fPj7NBBP5TOalEoIfkFPBF2UmBCsP9zNX-Qm5iPGVjVWOK7U4JidS5SUrRH5K3pbLB7rBtvcBXLbuIVlw9B4hDQHpCiF0tvtLGx_ozZB8CwlrukaHJlnfUd_QdbLt4IZI_0CAFhOGSG1HlxMSvPHd--CifUe6-YcB-o8f5KgBF_Fi18_Jy_1yc_eYrZ4fnu5uVpmRQqQM51zwqmEK67rhOD41z6WpasGasjbKVGohC2MEopI1w1IBNOWiqgtWKSiUkOfk5_ZuH_zbgDHp1kaDzkGHfohaciFHD2QxH9HrHTpULda6D7aF8KH3No1AsQVM8DEGbLSxCSYHUgDrNGd6ykRPmegpE73LZFTyL8r98e80V1uNRcRPfJEzljP5HzRSmGI
CODEN IJBHA9
CitedBy_id crossref_primary_10_3389_fpsyt_2024_1538534
Cites_doi 10.1016/j.psc.2013.08.007
10.1007/s41666-024-00160-x
10.3389/fpsyt.2018.00092
10.1016/j.jagp.2020.06.008
10.1109/BIBM49941.2020.9313499
10.1176/appi.ajp.2020.20030238
10.1016/j.nicl.2019.102080
10.1109/ICECCME57830.2023.10252726
10.2147/NDT.S134503
10.1097/00124509-200403000-00003
10.1109/JBHI.2022.3227320
10.1097/01.yct.0000235922.14623.39
10.1111/acps.13075
10.4103/jmss.jmss_59_22
10.1016/j.psc.2018.04.001
10.1038/tp.2016.54
10.1016/j.schres.2019.12.012
10.32473/flairs.v34i1.128367
10.1016/j.brs.2017.08.003
10.1088/1741-2552/aace8c
10.1056/NEJMra2034954
10.1111/acps.13071
10.1097/00124509-200312000-00005
10.1002/npr2.12224
10.1016/j.eswa.2023.120348
10.3389/fpsyg.2020.00080
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/JBHI.2024.3489221
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 969
ExternalDocumentID 39480724
10_1109_JBHI_2024_3489221
10740040
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: China Guanghua Foundation
  grantid: GHKJJJ20220702
– fundername: Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University
  grantid: JCRCZN-2022-012
– fundername: National Natural Science Foundation of China
  grantid: 62477035; 62172304; 61977027
  funderid: 10.13039/501100001809
– fundername: Self-Determined Research Funds of CCNU from the Collegesâ Basic Research and Operation of MOE
  grantid: CCNU24XJ018
– fundername: Open Project of Hubei Provincial Key Laboratory of Multimedia Network Communication Engineering
– fundername: STI2030-Major Projects
  grantid: 2021ZD0204300
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c322t-e5121bf09eddf1e220543cbd20f8dc9cb9637cc2ee93d0e89aaf86bd70b9a7923
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 06:03:03 EDT 2025
Fri Jul 25 01:49:09 EDT 2025
Tue Jul 01 05:27:45 EDT 2025
Thu Apr 24 23:12:14 EDT 2025
Wed Aug 27 01:50:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-e5121bf09eddf1e220543cbd20f8dc9cb9637cc2ee93d0e89aaf86bd70b9a7923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7055-141X
0000-0002-5998-5866
0009-0008-1408-1266
0000-0002-1929-012X
0000-0002-3579-1290
PMID 39480724
PQID 3123072375
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3123072375
crossref_citationtrail_10_1109_JBHI_2024_3489221
crossref_primary_10_1109_JBHI_2024_3489221
pubmed_primary_39480724
ieee_primary_10740040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
Howard (ref24) 2017
Shah (ref7) 2013; 6
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref23
Shi (ref25) 2015; 28
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1016/j.psc.2013.08.007
– ident: ref29
  doi: 10.1007/s41666-024-00160-x
– ident: ref10
  doi: 10.3389/fpsyt.2018.00092
– ident: ref18
  doi: 10.1016/j.jagp.2020.06.008
– ident: ref23
  doi: 10.1109/BIBM49941.2020.9313499
– ident: ref20
  doi: 10.1176/appi.ajp.2020.20030238
– ident: ref11
  doi: 10.1016/j.nicl.2019.102080
– ident: ref19
  doi: 10.1109/ICECCME57830.2023.10252726
– ident: ref14
  doi: 10.2147/NDT.S134503
– ident: ref16
  doi: 10.1097/00124509-200403000-00003
– ident: ref22
  doi: 10.1109/JBHI.2022.3227320
– year: 2017
  ident: ref24
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
– ident: ref4
  doi: 10.1097/01.yct.0000235922.14623.39
– ident: ref5
  doi: 10.1111/acps.13075
– volume: 28
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2015
  ident: ref25
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
– ident: ref28
  doi: 10.4103/jmss.jmss_59_22
– ident: ref1
  doi: 10.1016/j.psc.2018.04.001
– ident: ref9
  doi: 10.1038/tp.2016.54
– ident: ref12
  doi: 10.1016/j.schres.2019.12.012
– ident: ref13
  doi: 10.32473/flairs.v34i1.128367
– ident: ref8
  doi: 10.1016/j.brs.2017.08.003
– volume: 6
  issue: 4
  year: 2013
  ident: ref7
  article-title: Electroconvulsive therapy (ECT): Important parameters which influence its effectiveness
  publication-title: Brit. J. Med. Practitioners
– ident: ref26
  doi: 10.1088/1741-2552/aace8c
– ident: ref6
  doi: 10.1056/NEJMra2034954
– ident: ref2
  doi: 10.1111/acps.13071
– ident: ref15
  doi: 10.1097/00124509-200312000-00005
– ident: ref17
  doi: 10.1002/npr2.12224
– ident: ref27
  doi: 10.1016/j.eswa.2023.120348
– ident: ref21
  doi: 10.3389/fpsyg.2020.00080
SSID ssj0000816896
Score 2.4319475
Snippet The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 960
SubjectTerms Accuracy
Adult
Brain modeling
Convolution
Convolutional LSTM
EEG
electroconvul- sive therapy
Electroconvulsive Therapy - methods
Electroencephalography
Electroencephalography - methods
featuring learning
Female
Functional magnetic resonance imaging
Humans
Long short term memory
Machine Learning
Male
Mental disorders
Middle Aged
Optimization
Predictive models
Seizures - physiopathology
Signal Processing, Computer-Assisted
Statistical analysis
stimulus parameters
Title EEG Temporal-Spatial Feature Learning for Automated Selection of Stimulus Parameters in Electroconvulsive Therapy
URI https://ieeexplore.ieee.org/document/10740040
https://www.ncbi.nlm.nih.gov/pubmed/39480724
https://www.proquest.com/docview/3123072375
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RHhAXKKXAAq2MxAkp28R2NvGxRdtuK1EhdSv1FvljgiqWBNr4wq_HY2dXUKmImw9OlGhm5Gf7zXsAH1zFS1eVZcb1rM2klCozWtswKmxbVhhWpKj2eTFbXMnz6_J6bFaPvTCIGMlnOKVhvMt3vfV0VHZI5EHKui3YCnmWmrU2ByrRQSL6cfEwyEIlyvEWs8jV4fnx4izsBrmcClkrzskhRijqp-byryUpeqw8DDfjsnPyDC7WH5zYJt-mfjBT--ueluN__9EOPB0BKDtKGfMcHmG3C48_j1fsL-DnfH7KlkmwapWRY3HIUEZI0d8iG-VYv7KAddmRH_oAeNGxy-imE0LM-pZdDjff_crfsS-amF8k38luOjZPhjtEc_crIs2zZVI02IOrk_ny0yIbfRkyG8p_yDCAhMK0uULn2gKpVVcKaxzP29pZZU0o6spajqiEy7FWWrf1zLgqN0qTXuFL2O76Dl8Dq0WhK61EQDFOCqeUFtzklTau1DPFzQTydWgaO4qWk3fGqombl1w1FNiGAtuMgZ3Ax80jP5Jix78m71FQ_piY4jGB9-sEaEK90SWK7rD3d40oiDrPRVVO4FXKjM3T64R688Bb38ITTvbBkfT9DraHW4_7AdMM5iDm8m9viO-u
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RKrW90C9olxZwpZ4qZTexnU18pNXCQmFViUXiFvkrFeqSUIgv_Ho8dnbVVqLi5oMdJZpx5tkz8x7AZ1PQ3BR5nlA5rhPOuUiUlNqPMl3nhfURKbB9zsbTc358kV_0zeqhF8ZaG4rP7BCHIZdvWu3wqmyExYPodU_gqQ_8PI_tWqsrlaAhERS5qB8kfi_yPo-ZpWJ0_HV65M-DlA8ZLwWlqBHDBHZUU_5XUAoqKw8DzhB4Dl7CbPnKsd7k19B1aqjv_mFzfPQ3vYKNHoKS_egzr2HNNm_g2WmfZH8LvyeTQzKPlFWLBDWLvY8SxIruxpKekPUn8WiX7Luu9ZDXGnIW9HS8kUlbk7Pu8sot3C35IbH2Cwk8yWVDJlFyBwvd3QLL5sk8chpswvnBZP5tmvTKDIn2P4AusR4mZKpOhTWmziw263KmlaFpXRottPLbutCaWiuYSW0ppKzLsTJFqoRExsItWG_axr4HUrJMFlIwj2MMZ0YIyahKC6lMLseCqgGkS9NUuqctR_WMRRWOL6mo0LAVGrbqDTuAL6sl15Gz43-TN9Eof0yM9hjAp6UDVH7HYRpFNrZ1txXLsHiesiIfwLvoGavVS4fafuCpe_B8Oj89qU6OZt8_wAuKYsKhBPwjrHc3zu54hNOp3eDX9yL48vs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Temporal-Spatial+Feature+Learning+for+Automated+Selection+of+Stimulus+Parameters+in+Electroconvulsive+Therapy&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Wang%2C+Fan&rft.au=Chen%2C+Dan&rft.au=Weng%2C+Shenhong&rft.au=Gao%2C+Tengfei&rft.date=2025-02-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=29&rft.issue=2&rft.spage=960&rft.epage=969&rft_id=info:doi/10.1109%2FJBHI.2024.3489221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2024_3489221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon