CO emission survey of asymptotic giant branch stars with ultraviolet excesses

Context . The transition from the spherically symmetric envelopes around asymptotic giant branch (AGB) stars to the asymmetric morphologies observed in planetary nebulae is still not well understood, and the shaping mechanisms are a subject of debate. Even though binarity is widely accepted as a pro...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 684; p. A77
Main Authors Alonso-Hernández, J., Sánchez Contreras, C., Sahai, R.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.04.2024
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
DOI10.1051/0004-6361/202347317

Cover

Loading…
Abstract Context . The transition from the spherically symmetric envelopes around asymptotic giant branch (AGB) stars to the asymmetric morphologies observed in planetary nebulae is still not well understood, and the shaping mechanisms are a subject of debate. Even though binarity is widely accepted as a promising option, it is limited by the complication of identifying binary AGB stars observationally. Recently, the presence of ultraviolet excesses in AGB stars has been suggested as a potential indicator of binarity. Aims . Our main goals are to characterise the properties of the circumstellar envelopes (CSEs) around candidate AGB binary stars, specifically those selected based on their UV excess emission, and to compare these properties with those derived from previous CO-based studies of AGB stars. Methods . We observed the 12 CO ( J =1–0) and 12 CO ( J =2–1) millimetre-wavelength emission in a sample of 29 AGB binary candidates with the IRAM-30 m antenna. We measured the systemic velocities and the terminal expansion velocities from their line profiles. Population diagrams were used to interpret the results, enabling the estimation of excitation temperatures ( T ex ), mass-loss rates ( Ṁ ), and the characteristic sizes of the envelope layers where the CO millimetre emission originates ( R s ). We explored different trends between the envelope parameters deduced, multiwavelength flux measurements, and other properties of our sample, and compared them with those previously derived from larger samples of AGB stars found in the literature. Results . We detected 12 CO emission in 15 sources, of which 5 are first detections. We found relatively low expansion velocities (3 km s −1 ≲ V exp ≲ 20 km s −1 ) in our sample. We derived the average excitation temperature and column density of the CO-emitting layers, which we used to estimate self-consistently the average mass-loss rate (10 −8 M ⊙ yr −1 ≲ Ṁ ≲ 10 −5 M ⊙ yr −1 ) and the CO pho-todissociation radius (5 × 10 15 cm ≲ R CO ≲ 2 × 10 17 cm) of our targets. We find a correlation between CO intensity and IRAS 60 µm fluxes, revealing a CO-to-IRAS 60 µm ratio lower than for AGB stars and closer to that found for pre-planetary nebulae (pPNe). An anti-correlation is observed between 12 CO (and IRAS 60 µm) and the near-ultraviolet (NUV), but no such correlation is observed with the far-ultraviolet (FUV). It is also worth noting that there is no correlation between bolometric luminosity and NUV or FUV. Conclusions . For the first time we have studied the mass-loss properties of UV-excess AGB binary candidates and estimated their main CSE parameters. Our sample of uvAGB stars shows similarities with the broader category of AGB stars, except for a distinct CO-to-IRAS 60 µm trend suggesting enhanced CO photodissociation. Our findings, based on single-dish low- J CO line emission observations, support the dust-driven wind scenario and indicate that alternative mass-loss mechanisms are not necessary (in principle) to explain the ~200–2000 yr old mass-loss ejecta in uvAGBs. The different relationships between 12 CO and IRAS 60 µm, with NUV and FUV are consistent with an intrinsic origin of NUV emission, but potential dominance of an extrinsic process (e.g. presence of a binary companion) in FUV emission.
AbstractList Context . The transition from the spherically symmetric envelopes around asymptotic giant branch (AGB) stars to the asymmetric morphologies observed in planetary nebulae is still not well understood, and the shaping mechanisms are a subject of debate. Even though binarity is widely accepted as a promising option, it is limited by the complication of identifying binary AGB stars observationally. Recently, the presence of ultraviolet excesses in AGB stars has been suggested as a potential indicator of binarity. Aims . Our main goals are to characterise the properties of the circumstellar envelopes (CSEs) around candidate AGB binary stars, specifically those selected based on their UV excess emission, and to compare these properties with those derived from previous CO-based studies of AGB stars. Methods . We observed the 12 CO ( J =1–0) and 12 CO ( J =2–1) millimetre-wavelength emission in a sample of 29 AGB binary candidates with the IRAM-30 m antenna. We measured the systemic velocities and the terminal expansion velocities from their line profiles. Population diagrams were used to interpret the results, enabling the estimation of excitation temperatures ( T ex ), mass-loss rates ( Ṁ ), and the characteristic sizes of the envelope layers where the CO millimetre emission originates ( R s ). We explored different trends between the envelope parameters deduced, multiwavelength flux measurements, and other properties of our sample, and compared them with those previously derived from larger samples of AGB stars found in the literature. Results . We detected 12 CO emission in 15 sources, of which 5 are first detections. We found relatively low expansion velocities (3 km s −1 ≲ V exp ≲ 20 km s −1 ) in our sample. We derived the average excitation temperature and column density of the CO-emitting layers, which we used to estimate self-consistently the average mass-loss rate (10 −8 M ⊙ yr −1 ≲ Ṁ ≲ 10 −5 M ⊙ yr −1 ) and the CO pho-todissociation radius (5 × 10 15 cm ≲ R CO ≲ 2 × 10 17 cm) of our targets. We find a correlation between CO intensity and IRAS 60 µm fluxes, revealing a CO-to-IRAS 60 µm ratio lower than for AGB stars and closer to that found for pre-planetary nebulae (pPNe). An anti-correlation is observed between 12 CO (and IRAS 60 µm) and the near-ultraviolet (NUV), but no such correlation is observed with the far-ultraviolet (FUV). It is also worth noting that there is no correlation between bolometric luminosity and NUV or FUV. Conclusions . For the first time we have studied the mass-loss properties of UV-excess AGB binary candidates and estimated their main CSE parameters. Our sample of uvAGB stars shows similarities with the broader category of AGB stars, except for a distinct CO-to-IRAS 60 µm trend suggesting enhanced CO photodissociation. Our findings, based on single-dish low- J CO line emission observations, support the dust-driven wind scenario and indicate that alternative mass-loss mechanisms are not necessary (in principle) to explain the ~200–2000 yr old mass-loss ejecta in uvAGBs. The different relationships between 12 CO and IRAS 60 µm, with NUV and FUV are consistent with an intrinsic origin of NUV emission, but potential dominance of an extrinsic process (e.g. presence of a binary companion) in FUV emission.
Context. The transition from the spherically symmetric envelopes around asymptotic giant branch (AGB) stars to the asymmetric morphologies observed in planetary nebulae is still not well understood, and the shaping mechanisms are a subject of debate. Even though binarity is widely accepted as a promising option, it is limited by the complication of identifying binary AGB stars observationally. Recently, the presence of ultraviolet excesses in AGB stars has been suggested as a potential indicator of binarity. Aims. Our main goals are to characterise the properties of the circumstellar envelopes (CSEs) around candidate AGB binary stars, specifically those selected based on their UV excess emission, and to compare these properties with those derived from previous CO-based studies of AGB stars. Methods. We observed the 12CO (J=1–0) and 12CO (J=2–1) millimetre-wavelength emission in a sample of 29 AGB binary candidates with the IRAM-30 m antenna. We measured the systemic velocities and the terminal expansion velocities from their line profiles. Population diagrams were used to interpret the results, enabling the estimation of excitation temperatures (Tex), mass-loss rates (Ṁ), and the characteristic sizes of the envelope layers where the CO millimetre emission originates (Rs). We explored different trends between the envelope parameters deduced, multiwavelength flux measurements, and other properties of our sample, and compared them with those previously derived from larger samples of AGB stars found in the literature. Results. We detected 12CO emission in 15 sources, of which 5 are first detections. We found relatively low expansion velocities (3 km s−1 ≲ Vexp ≲ 20 km s−1) in our sample. We derived the average excitation temperature and column density of the CO-emitting layers, which we used to estimate self-consistently the average mass-loss rate (10−8 M⊙ yr−1 ≲ Ṁ ≲ 10−5 M⊙ yr−1) and the CO pho-todissociation radius (5 × 1015 cm ≲ RCO ≲ 2 × 1017 cm) of our targets. We find a correlation between CO intensity and IRAS 60 µm fluxes, revealing a CO-to-IRAS 60 µm ratio lower than for AGB stars and closer to that found for pre-planetary nebulae (pPNe). An anti-correlation is observed between 12CO (and IRAS 60 µm) and the near-ultraviolet (NUV), but no such correlation is observed with the far-ultraviolet (FUV). It is also worth noting that there is no correlation between bolometric luminosity and NUV or FUV. Conclusions. For the first time we have studied the mass-loss properties of UV-excess AGB binary candidates and estimated their main CSE parameters. Our sample of uvAGB stars shows similarities with the broader category of AGB stars, except for a distinct CO-to-IRAS 60 µm trend suggesting enhanced CO photodissociation. Our findings, based on single-dish low-J CO line emission observations, support the dust-driven wind scenario and indicate that alternative mass-loss mechanisms are not necessary (in principle) to explain the ~200–2000 yr old mass-loss ejecta in uvAGBs. The different relationships between 12CO and IRAS 60 µm, with NUV and FUV are consistent with an intrinsic origin of NUV emission, but potential dominance of an extrinsic process (e.g. presence of a binary companion) in FUV emission.
Author Sánchez Contreras, C.
Alonso-Hernández, J.
Sahai, R.
Author_xml – sequence: 1
  givenname: J.
  orcidid: 0009-0003-6193-5184
  surname: Alonso-Hernández
  fullname: Alonso-Hernández, J.
– sequence: 2
  givenname: C.
  surname: Sánchez Contreras
  fullname: Sánchez Contreras, C.
– sequence: 3
  givenname: R.
  surname: Sahai
  fullname: Sahai, R.
BookMark eNp9UMtOwzAQtBBItIUv4GKJc6jtdeLkiCpeUlEvcLYc16Gu0qR4nUL_HldFPXDgtLPSzOzsjMl513eOkBvO7jjL-ZQxJrMCCj4VTIBUwNUZGXEJImNKFudkdGJckjHiOq2ClzAir7MFdRuP6PuO4hB2bk_7hhrcb7axj97SD2-6SOtgOruiGE1A-uXjig5tDGbn-9ZF6r6tQ3R4RS4a06K7_p0T8v748DZ7zuaLp5fZ_TyzIETMHEBVqJIB5FzmorZLqBO2y6aWLgVzlTVMKJmAFKXKZdWIMi_SCnXZMAsTcnv03Yb-c3AY9bofQpdOamAyeeagVGJVR5YNPWJwjbY-mpg-Tcl9qznTh_b0oRt96Eaf2kta-KPdBr8xYf-v6gdCiXK2
CitedBy_id crossref_primary_10_1051_0004_6361_202452929e
Cites_doi 10.1093/mnras/stab2860
10.1086/184209
10.3847/1538-4365/ac1274
10.1086/166338
10.1146/annurev.astro.40.060401.093849
10.1051/0004-6361/202039657
10.1134/S1063772917010085
10.1093/mnras/sty3076
10.1086/307195
10.1093/mnras/stw1547
10.1051/0004-6361/201936874
10.1051/0004-6361:20031110
10.1051/aas:1999501
10.1086/426387
10.1051/0004-6361:20020728
10.3847/1538-4357/aac3d7
10.1088/0067-0049/203/1/16
10.1007/s10509-011-0667-0
10.1007/s00159-017-0106-5
10.1051/0004-6361/202243670
10.1093/mnras/stab323
10.1086/163197
10.1086/305772
10.1093/mnras/staa3689
10.1088/2041-8205/740/2/L39
10.1088/0004-637X/744/2/136
10.1051/0004-6361/201118452
10.1086/592559
10.1088/1742-6596/728/4/042003
10.1086/175747
10.1093/mnras/stab2248
10.1051/0004-6361/201731639
10.1051/aas:2000332
10.1051/0004-6361:20020841
10.1051/0004-6361/201731089
10.1051/0004-6361/201833177
10.1086/173033
10.3847/1538-4357/abefd7
10.1126/science.abb1229
10.3390/galaxies6030085
10.1051/0004-6361/201526705
10.3847/1538-4357/ab5362
10.1051/0004-6361:20020727
10.1086/172787
10.1051/aas:1998213
10.1086/168461
10.1051/0004-6361/201014755
10.1086/597765
10.1086/169231
10.1051/0004-6361:20010072
10.1051/0004-6361/201118516
10.1051/aas:2000169
10.3847/1538-4357/aa704d
10.1051/0004-6361/201834141
10.1086/522944
10.1086/172064
10.1086/164173
10.1086/313111
10.1093/mnras/270.4.774
10.1086/164811
10.1086/191804
10.1051/0004-6361:20011090
10.1051/0004-6361/201936087
10.1051/0004-6361/201834371
10.1088/0004-637X/810/1/77
10.3390/galaxies10030062
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1051/0004-6361/202347317
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_202347317
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
ID FETCH-LOGICAL-c322t-e33967803351452bcd3b335cdfb4e021e9ca02741e94287549f28561e93b8f0c3
ISSN 0004-6361
IngestDate Mon Jun 30 02:36:48 EDT 2025
Tue Jul 01 03:54:15 EDT 2025
Thu Apr 24 23:05:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-e33967803351452bcd3b335cdfb4e021e9ca02741e94287549f28561e93b8f0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-6193-5184
OpenAccessLink https://www.aanda.org/10.1051/0004-6361/202347317/pdf
PQID 3041455377
PQPubID 1796397
ParticipantIDs proquest_journals_3041455377
crossref_citationtrail_10_1051_0004_6361_202347317
crossref_primary_10_1051_0004_6361_202347317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2024
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Kerschbaum (R33) 1999; 138
Neri (R47) 1998; 130
Hillwig (R27) 2018; 6
Lefevre (R40) 1989; 219
Schlegel (R71) 1998; 500
Sahai (R63) 2008; 689
Wenger (R80) 2000; 143
Margulis (R44) 1990; 361
Sahai (R68) 2022; 10
Zuckerman (R83) 1986; 304
Brown (R19) 2021; 649
Mamon (R43) 1988; 328
Groenewegen (R24) 2002; 390
Sahai (R65) 2015; 810
Vassiliadis (R79) 1993; 413
Kervella (R35) 2019; 623
Ramos-Medina (R59) 2018; 618
Sahai (R66) 2016; 728
Goldsmith (R20) 1999; 517
Sahai (R62) 2007; 134
Scicluna (R73) 2022; 512
Groenewegen (R25) 2002; 390
Beichman (R4) 1988; 1
Bujarrabal (R5) 1986; 162
Díaz-Luis (R16) 2019; 629
Ortiz (R56) 2021; 912
Kerschbaum (R34) 1996; 311
Sahai (R64) 2011; 740
Kahane (R31) 1994; 290
Nyman (R50) 1992; 93
Sánchez Contreras (R70) 2012; 203
Soker (R74) 1994; 270
Bujarrabal (R8) 2001; 377
Duquennoy (R17) 1991; 248
Justtanont (R30) 2000; 360
Samus (R69) 2017; 61
Olofsson (R54) 2002; 391
Young (R82) 1995; 445
Olofsson (R53) 1993; 87
Lima (R41) 2022; 15332
Martin (R45) 2005; 619
Andriantsaralaza (R2) 2022; 667
Balick (R3) 2002; 40
Ramstedt (R60) 2012; 543
Ortiz (R55) 2016; 461
Höfner (R28) 2018; 26
Sahai (R67) 2018; 860
Bujarrabal (R6) 1989; 219
Netzer (R48) 1993; 410
van der Veen (R78) 1988; 194
Ramstedt (R61) 2020; 640
Groenewegen (R23) 2018; 609
Knapp (R39) 1998; 117
Hunsch (R29) 1998; 330
Olofsson (R52) 1987; 183
Bujarrabal (R7) 1992; 257
Montez, Rodolfo (R46) 2017; 841
Castro-Carrizo (R10) 2010; 523
De Marco (R14) 2009; 121
Decin (R15) 2020; 369
Neugebauer (R49) 1984; 278
Danilovich (R13) 2015; 581
Habing (R26) 1994; 286
Ochsenbein (R51) 2000; 143
Carter (R9) 2012; 538
Knapp (R37) 1986; 311
Green (R21) 2019; 887
Kastner (R32) 1992; 401
Schöier (R72) 2001; 368
Knapp (R38) 1985; 292
Ortiz (R57) 2019; 482
El-Badry (R18) 2021; 506
Planesas (R58) 1990; 351
Taylor (R76) 2005; 347
Suh (R75) 2021; 256
Winters (R81) 2003; 409
Kim (R36) 2012; 744
da Silva Santos (R12) 2019; 622
Groenewegen (R22) 2017; 606
Loup (R42) 1993; 99
Van de Sande (R77) 2021; 501
Amôres (R1) 2021; 508
Conti (R11) 2011; 335
References_xml – volume: 512
  start-page: 1091
  year: 2022
  ident: R73
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2860
– volume: 278
  start-page: L1
  year: 1984
  ident: R49
  publication-title: ApJ
  doi: 10.1086/184209
– volume: 256
  start-page: 43
  year: 2021
  ident: R75
  publication-title: ApJS
  doi: 10.3847/1538-4365/ac1274
– volume: 328
  start-page: 797
  year: 1988
  ident: R43
  publication-title: ApJ
  doi: 10.1086/166338
– volume: 40
  start-page: 439
  year: 2002
  ident: R3
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.40.060401.093849
– volume: 649
  start-page: A1
  year: 2021
  ident: R19
  publication-title: A&A
  doi: 10.1051/0004-6361/202039657
– volume: 61
  start-page: 80
  year: 2017
  ident: R69
  publication-title: Astron. Rep.
  doi: 10.1134/S1063772917010085
– volume: 482
  start-page: 4697
  year: 2019
  ident: R57
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3076
– volume: 517
  start-page: 209
  year: 1999
  ident: R20
  publication-title: ApJ
  doi: 10.1086/307195
– volume: 461
  start-page: 3036
  year: 2016
  ident: R55
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1547
– volume: 640
  start-page: A133
  year: 2020
  ident: R61
  publication-title: A&A
  doi: 10.1051/0004-6361/201936874
– volume: 99
  start-page: 291
  year: 1993
  ident: R42
  publication-title: A&AS
– volume: 409
  start-page: 715
  year: 2003
  ident: R81
  publication-title: A&A
  doi: 10.1051/0004-6361:20031110
– volume: 138
  start-page: 299
  year: 1999
  ident: R33
  publication-title: A&AS
  doi: 10.1051/aas:1999501
– volume: 93
  start-page: 121
  year: 1992
  ident: R50
  publication-title: A&AS
– volume: 619
  start-page: L1
  year: 2005
  ident: R45
  publication-title: ApJ
  doi: 10.1086/426387
– volume: 183
  start-page: L13
  year: 1987
  ident: R52
  publication-title: A&A
– volume: 1
  start-page: 1
  year: 1988
  ident: R4
  publication-title: Explanatory Supplement.
– volume: 390
  start-page: 511
  year: 2002
  ident: R25
  publication-title: A&A
  doi: 10.1051/0004-6361:20020728
– volume: 860
  start-page: 105
  year: 2018
  ident: R67
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac3d7
– volume: 203
  start-page: 16
  year: 2012
  ident: R70
  publication-title: ApJS
  doi: 10.1088/0067-0049/203/1/16
– volume: 335
  start-page: 329
  year: 2011
  ident: R11
  publication-title: Ap&SS
  doi: 10.1007/s10509-011-0667-0
– volume: 219
  start-page: 256
  year: 1989
  ident: R6
  publication-title: A&A
– volume: 26
  start-page: 1
  year: 2018
  ident: R28
  publication-title: A&A Rev.
  doi: 10.1007/s00159-017-0106-5
– volume: 667
  start-page: A74
  year: 2022
  ident: R2
  publication-title: A&A
  doi: 10.1051/0004-6361/202243670
– volume: 506
  start-page: 2269
  year: 2021
  ident: R18
  publication-title: MNRAS
  doi: 10.1093/mnras/stab323
– volume: 292
  start-page: 640
  year: 1985
  ident: R38
  publication-title: ApJ
  doi: 10.1086/163197
– volume: 500
  start-page: 525
  year: 1998
  ident: R71
  publication-title: ApJ
  doi: 10.1086/305772
– volume: 501
  start-page: 491
  year: 2021
  ident: R77
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3689
– volume: 740
  start-page: L39
  year: 2011
  ident: R64
  publication-title: ApJ
  doi: 10.1088/2041-8205/740/2/L39
– volume: 744
  start-page: 136
  year: 2012
  ident: R36
  publication-title: ApJ
  doi: 10.1088/0004-637X/744/2/136
– volume: 538
  start-page: A89
  year: 2012
  ident: R9
  publication-title: A&A
  doi: 10.1051/0004-6361/201118452
– volume: 219
  start-page: 265
  year: 1989
  ident: R40
  publication-title: A&A
– volume: 689
  start-page: 1274
  year: 2008
  ident: R63
  publication-title: ApJ
  doi: 10.1086/592559
– volume: 728
  start-page: 042003
  year: 2016
  ident: R66
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/728/4/042003
– volume: 445
  start-page: 872
  year: 1995
  ident: R82
  publication-title: ApJ
  doi: 10.1086/175747
– volume: 508
  start-page: 1788
  year: 2021
  ident: R1
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2248
– volume: 286
  start-page: 523
  year: 1994
  ident: R26
  publication-title: A&A
– volume: 248
  start-page: 485
  year: 1991
  ident: R17
  publication-title: A&A
– volume: 606
  start-page: A67
  year: 2017
  ident: R22
  publication-title: A&A
  doi: 10.1051/0004-6361/201731639
– volume: 143
  start-page: 9
  year: 2000
  ident: R80
  publication-title: A&AS
  doi: 10.1051/aas:2000332
– volume: 330
  start-page: 225
  year: 1998
  ident: R29
  publication-title: A&A
– volume: 391
  start-page: 1053
  year: 2002
  ident: R54
  publication-title: A&A
  doi: 10.1051/0004-6361:20020841
– volume: 609
  start-page: A114
  year: 2018
  ident: R23
  publication-title: A&A
  doi: 10.1051/0004-6361/201731089
– volume: 311
  start-page: 273
  year: 1996
  ident: R34
  publication-title: A&A
– volume: 618
  start-page: A171
  year: 2018
  ident: R59
  publication-title: A&A
  doi: 10.1051/0004-6361/201833177
– volume: 413
  start-page: 641
  year: 1993
  ident: R79
  publication-title: ApJ
  doi: 10.1086/173033
– volume: 912
  start-page: 93
  year: 2021
  ident: R56
  publication-title: ApJ
  doi: 10.3847/1538-4357/abefd7
– volume: 347
  start-page: 29
  year: 2005
  ident: R76
  publication-title: ASP Conf. Ser.
– volume: 369
  start-page: 1497
  year: 2020
  ident: R15
  publication-title: Science
  doi: 10.1126/science.abb1229
– volume: 6
  start-page: 85
  year: 2018
  ident: R27
  publication-title: Galaxies
  doi: 10.3390/galaxies6030085
– volume: 360
  start-page: 1117
  year: 2000
  ident: R30
  publication-title: A&A
– volume: 15332
  start-page: 1
  year: 2022
  ident: R41
  publication-title: ATel
– volume: 581
  start-page: A60
  year: 2015
  ident: R13
  publication-title: A&A
  doi: 10.1051/0004-6361/201526705
– volume: 887
  start-page: 93
  year: 2019
  ident: R21
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab5362
– volume: 390
  start-page: 501
  year: 2002
  ident: R24
  publication-title: A&A
  doi: 10.1051/0004-6361:20020727
– volume: 410
  start-page: 701
  year: 1993
  ident: R48
  publication-title: ApJ
  doi: 10.1086/172787
– volume: 130
  start-page: 1
  year: 1998
  ident: R47
  publication-title: A&AS
  doi: 10.1051/aas:1998213
– volume: 351
  start-page: 263
  year: 1990
  ident: R58
  publication-title: ApJ
  doi: 10.1086/168461
– volume: 523
  start-page: A59
  year: 2010
  ident: R10
  publication-title: A&A
  doi: 10.1051/0004-6361/201014755
– volume: 121
  start-page: 316
  year: 2009
  ident: R14
  publication-title: PASP
  doi: 10.1086/597765
– volume: 361
  start-page: 673
  year: 1990
  ident: R44
  publication-title: ApJ
  doi: 10.1086/169231
– volume: 368
  start-page: 969
  year: 2001
  ident: R72
  publication-title: A&A
  doi: 10.1051/0004-6361:20010072
– volume: 162
  start-page: 157
  year: 1986
  ident: R5
  publication-title: A&A
– volume: 543
  start-page: A147
  year: 2012
  ident: R60
  publication-title: A&A
  doi: 10.1051/0004-6361/201118516
– volume: 143
  start-page: 23
  year: 2000
  ident: R51
  publication-title: A&AS
  doi: 10.1051/aas:2000169
– volume: 841
  start-page: 33
  year: 2017
  ident: R46
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa704d
– volume: 257
  start-page: 701
  year: 1992
  ident: R7
  publication-title: A&A
– volume: 622
  start-page: A123
  year: 2019
  ident: R12
  publication-title: A&A
  doi: 10.1051/0004-6361/201834141
– volume: 134
  start-page: 2200
  year: 2007
  ident: R62
  publication-title: AJ
  doi: 10.1086/522944
– volume: 401
  start-page: 337
  year: 1992
  ident: R32
  publication-title: ApJ
  doi: 10.1086/172064
– volume: 304
  start-page: 394
  year: 1986
  ident: R83
  publication-title: ApJ
  doi: 10.1086/164173
– volume: 290
  start-page: 183
  year: 1994
  ident: R31
  publication-title: A&A
– volume: 117
  start-page: 209
  year: 1998
  ident: R39
  publication-title: ApJS
  doi: 10.1086/313111
– volume: 270
  start-page: 774
  year: 1994
  ident: R74
  publication-title: MNRAS
  doi: 10.1093/mnras/270.4.774
– volume: 311
  start-page: 731
  year: 1986
  ident: R37
  publication-title: ApJ
  doi: 10.1086/164811
– volume: 87
  start-page: 267
  year: 1993
  ident: R53
  publication-title: ApJS
  doi: 10.1086/191804
– volume: 377
  start-page: 868
  year: 2001
  ident: R8
  publication-title: A&A
  doi: 10.1051/0004-6361:20011090
– volume: 629
  start-page: A94
  year: 2019
  ident: R16
  publication-title: A&A
  doi: 10.1051/0004-6361/201936087
– volume: 623
  start-page: A72
  year: 2019
  ident: R35
  publication-title: A&A
  doi: 10.1051/0004-6361/201834371
– volume: 810
  start-page: 77
  year: 2015
  ident: R65
  publication-title: ApJ
  doi: 10.1088/0004-637X/810/1/77
– volume: 10
  start-page: 62
  year: 2022
  ident: R68
  publication-title: Galaxies
  doi: 10.3390/galaxies10030062
– volume: 194
  start-page: 125
  year: 1988
  ident: R78
  publication-title: A&A
SSID ssj0002183
Score 2.4666872
Snippet Context . The transition from the spherically symmetric envelopes around asymptotic giant branch (AGB) stars to the asymmetric morphologies observed in...
Context. The transition from the spherically symmetric envelopes around asymptotic giant branch (AGB) stars to the asymmetric morphologies observed in...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage A77
SubjectTerms Asymptotic giant branch stars
Binary stars
Companion stars
Correlation
Ejecta
Emission
Excitation
Luminosity
Parameters
Photodissociation
Planetary nebulae
Stellar envelopes
Title CO emission survey of asymptotic giant branch stars with ultraviolet excesses
URI https://www.proquest.com/docview/3041455377
Volume 684
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKEBIvaAzQBhvyA-KluGtiJ04eq2pQJo0htEl7ixLHYQ9dM6XuBHvgt-_OdtIU0MR4iVw3vaq5r-fz-e47Qt6JUpVRVElWyEgzEeSa5aGKmUpkHsTg7weWu_PkSzw7F8cX0cVgcNPLWlqZYqRu_1pX8j9ahTnQK1bJPkCznVCYgDHoF66gYbj-k46np0Ns14YBr-Fy1dxoe1yeL39eXZsamVi_g_LNsMDmGZcYNWh8Mdtqbprcnsmbof6BlQI-lbDlo11ihLy-cuRMOb5yIRAbo3UUWf0Ywhx-Yc1mulnYg_egDUwfj7oIjn8DMHKLZYam0Y2rJZuu78l9c-xvo34wIuznsLQGVrCYO371kXY2VXBMcPWRRm9040T0zObEtXL5w5yDxXD5j04oVq-AjyEkd_Wem_TZvy1rXbKhPWaPAjxmFxmKyTohj8jjELYX2Pni0-df3QqObqPbNrnvbdmqouCwmzvshGx6NJsLuvVSzrbJM7-9oBOHledkoBc7ZLdTJ31PJz1l7pAnX93oBTmZntIWTNSBidYVXYOJWjBRByZqwUQRTLQHJtqC6SU5_3h0Np0x32uDKTDphmnOU_BbxhwrO6KwUCUvYKzKqhAaHohOVW6pjnSKm-xIpFWYgO-tU14k1VjxV2RrUS_0LqGhqsqkUDyRcC8sGGmZw55ag0UYS6mieI-E7fPKlCeix34o8-weTe2RD92Hrh0Py_2377eKyPwfdpnxsUBafi7l64dJe0OersG-T7ZMs9IH4Iua4q0Fzh1-in8U
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO+emission+survey+of+asymptotic+giant+branch+stars+with+ultraviolet+excesses&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Alonso-Hern%C3%A1ndez%2C+J.&rft.au=S%C3%A1nchez+Contreras%2C+C.&rft.au=Sahai%2C+R.&rft.date=2024-04-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=684&rft.spage=A77&rft_id=info:doi/10.1051%2F0004-6361%2F202347317&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202347317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon