CO emission survey of asymptotic giant branch stars with ultraviolet excesses
Context . The transition from the spherically symmetric envelopes around asymptotic giant branch (AGB) stars to the asymmetric morphologies observed in planetary nebulae is still not well understood, and the shaping mechanisms are a subject of debate. Even though binarity is widely accepted as a pro...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 684; p. A77 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 |
DOI | 10.1051/0004-6361/202347317 |
Cover
Loading…
Abstract | Context
. The transition from the spherically symmetric envelopes around asymptotic giant branch (AGB) stars to the asymmetric morphologies observed in planetary nebulae is still not well understood, and the shaping mechanisms are a subject of debate. Even though binarity is widely accepted as a promising option, it is limited by the complication of identifying binary AGB stars observationally. Recently, the presence of ultraviolet excesses in AGB stars has been suggested as a potential indicator of binarity.
Aims
. Our main goals are to characterise the properties of the circumstellar envelopes (CSEs) around candidate AGB binary stars, specifically those selected based on their UV excess emission, and to compare these properties with those derived from previous CO-based studies of AGB stars.
Methods
. We observed the
12
CO (
J
=1–0) and
12
CO (
J
=2–1) millimetre-wavelength emission in a sample of 29 AGB binary candidates with the IRAM-30 m antenna. We measured the systemic velocities and the terminal expansion velocities from their line profiles. Population diagrams were used to interpret the results, enabling the estimation of excitation temperatures (
T
ex
), mass-loss rates (
Ṁ
), and the characteristic sizes of the envelope layers where the CO millimetre emission originates (
R
s
). We explored different trends between the envelope parameters deduced, multiwavelength flux measurements, and other properties of our sample, and compared them with those previously derived from larger samples of AGB stars found in the literature.
Results
. We detected
12
CO emission in 15 sources, of which 5 are first detections. We found relatively low expansion velocities (3 km s
−1
≲
V
exp
≲ 20 km s
−1
) in our sample. We derived the average excitation temperature and column density of the CO-emitting layers, which we used to estimate self-consistently the average mass-loss rate (10
−8
M
⊙
yr
−1
≲
Ṁ
≲ 10
−5
M
⊙
yr
−1
) and the CO pho-todissociation radius (5 × 10
15
cm ≲
R
CO
≲ 2 × 10
17
cm) of our targets. We find a correlation between CO intensity and IRAS 60 µm fluxes, revealing a CO-to-IRAS 60 µm ratio lower than for AGB stars and closer to that found for pre-planetary nebulae (pPNe). An anti-correlation is observed between
12
CO (and IRAS 60 µm) and the near-ultraviolet (NUV), but no such correlation is observed with the far-ultraviolet (FUV). It is also worth noting that there is no correlation between bolometric luminosity and NUV or FUV.
Conclusions
. For the first time we have studied the mass-loss properties of UV-excess AGB binary candidates and estimated their main CSE parameters. Our sample of uvAGB stars shows similarities with the broader category of AGB stars, except for a distinct CO-to-IRAS 60 µm trend suggesting enhanced CO photodissociation. Our findings, based on single-dish low-
J
CO line emission observations, support the dust-driven wind scenario and indicate that alternative mass-loss mechanisms are not necessary (in principle) to explain the ~200–2000 yr old mass-loss ejecta in uvAGBs. The different relationships between
12
CO and IRAS 60 µm, with NUV and FUV are consistent with an intrinsic origin of NUV emission, but potential dominance of an extrinsic process (e.g. presence of a binary companion) in FUV emission. |
---|---|
AbstractList | Context
. The transition from the spherically symmetric envelopes around asymptotic giant branch (AGB) stars to the asymmetric morphologies observed in planetary nebulae is still not well understood, and the shaping mechanisms are a subject of debate. Even though binarity is widely accepted as a promising option, it is limited by the complication of identifying binary AGB stars observationally. Recently, the presence of ultraviolet excesses in AGB stars has been suggested as a potential indicator of binarity.
Aims
. Our main goals are to characterise the properties of the circumstellar envelopes (CSEs) around candidate AGB binary stars, specifically those selected based on their UV excess emission, and to compare these properties with those derived from previous CO-based studies of AGB stars.
Methods
. We observed the
12
CO (
J
=1–0) and
12
CO (
J
=2–1) millimetre-wavelength emission in a sample of 29 AGB binary candidates with the IRAM-30 m antenna. We measured the systemic velocities and the terminal expansion velocities from their line profiles. Population diagrams were used to interpret the results, enabling the estimation of excitation temperatures (
T
ex
), mass-loss rates (
Ṁ
), and the characteristic sizes of the envelope layers where the CO millimetre emission originates (
R
s
). We explored different trends between the envelope parameters deduced, multiwavelength flux measurements, and other properties of our sample, and compared them with those previously derived from larger samples of AGB stars found in the literature.
Results
. We detected
12
CO emission in 15 sources, of which 5 are first detections. We found relatively low expansion velocities (3 km s
−1
≲
V
exp
≲ 20 km s
−1
) in our sample. We derived the average excitation temperature and column density of the CO-emitting layers, which we used to estimate self-consistently the average mass-loss rate (10
−8
M
⊙
yr
−1
≲
Ṁ
≲ 10
−5
M
⊙
yr
−1
) and the CO pho-todissociation radius (5 × 10
15
cm ≲
R
CO
≲ 2 × 10
17
cm) of our targets. We find a correlation between CO intensity and IRAS 60 µm fluxes, revealing a CO-to-IRAS 60 µm ratio lower than for AGB stars and closer to that found for pre-planetary nebulae (pPNe). An anti-correlation is observed between
12
CO (and IRAS 60 µm) and the near-ultraviolet (NUV), but no such correlation is observed with the far-ultraviolet (FUV). It is also worth noting that there is no correlation between bolometric luminosity and NUV or FUV.
Conclusions
. For the first time we have studied the mass-loss properties of UV-excess AGB binary candidates and estimated their main CSE parameters. Our sample of uvAGB stars shows similarities with the broader category of AGB stars, except for a distinct CO-to-IRAS 60 µm trend suggesting enhanced CO photodissociation. Our findings, based on single-dish low-
J
CO line emission observations, support the dust-driven wind scenario and indicate that alternative mass-loss mechanisms are not necessary (in principle) to explain the ~200–2000 yr old mass-loss ejecta in uvAGBs. The different relationships between
12
CO and IRAS 60 µm, with NUV and FUV are consistent with an intrinsic origin of NUV emission, but potential dominance of an extrinsic process (e.g. presence of a binary companion) in FUV emission. Context. The transition from the spherically symmetric envelopes around asymptotic giant branch (AGB) stars to the asymmetric morphologies observed in planetary nebulae is still not well understood, and the shaping mechanisms are a subject of debate. Even though binarity is widely accepted as a promising option, it is limited by the complication of identifying binary AGB stars observationally. Recently, the presence of ultraviolet excesses in AGB stars has been suggested as a potential indicator of binarity. Aims. Our main goals are to characterise the properties of the circumstellar envelopes (CSEs) around candidate AGB binary stars, specifically those selected based on their UV excess emission, and to compare these properties with those derived from previous CO-based studies of AGB stars. Methods. We observed the 12CO (J=1–0) and 12CO (J=2–1) millimetre-wavelength emission in a sample of 29 AGB binary candidates with the IRAM-30 m antenna. We measured the systemic velocities and the terminal expansion velocities from their line profiles. Population diagrams were used to interpret the results, enabling the estimation of excitation temperatures (Tex), mass-loss rates (Ṁ), and the characteristic sizes of the envelope layers where the CO millimetre emission originates (Rs). We explored different trends between the envelope parameters deduced, multiwavelength flux measurements, and other properties of our sample, and compared them with those previously derived from larger samples of AGB stars found in the literature. Results. We detected 12CO emission in 15 sources, of which 5 are first detections. We found relatively low expansion velocities (3 km s−1 ≲ Vexp ≲ 20 km s−1) in our sample. We derived the average excitation temperature and column density of the CO-emitting layers, which we used to estimate self-consistently the average mass-loss rate (10−8 M⊙ yr−1 ≲ Ṁ ≲ 10−5 M⊙ yr−1) and the CO pho-todissociation radius (5 × 1015 cm ≲ RCO ≲ 2 × 1017 cm) of our targets. We find a correlation between CO intensity and IRAS 60 µm fluxes, revealing a CO-to-IRAS 60 µm ratio lower than for AGB stars and closer to that found for pre-planetary nebulae (pPNe). An anti-correlation is observed between 12CO (and IRAS 60 µm) and the near-ultraviolet (NUV), but no such correlation is observed with the far-ultraviolet (FUV). It is also worth noting that there is no correlation between bolometric luminosity and NUV or FUV. Conclusions. For the first time we have studied the mass-loss properties of UV-excess AGB binary candidates and estimated their main CSE parameters. Our sample of uvAGB stars shows similarities with the broader category of AGB stars, except for a distinct CO-to-IRAS 60 µm trend suggesting enhanced CO photodissociation. Our findings, based on single-dish low-J CO line emission observations, support the dust-driven wind scenario and indicate that alternative mass-loss mechanisms are not necessary (in principle) to explain the ~200–2000 yr old mass-loss ejecta in uvAGBs. The different relationships between 12CO and IRAS 60 µm, with NUV and FUV are consistent with an intrinsic origin of NUV emission, but potential dominance of an extrinsic process (e.g. presence of a binary companion) in FUV emission. |
Author | Sánchez Contreras, C. Alonso-Hernández, J. Sahai, R. |
Author_xml | – sequence: 1 givenname: J. orcidid: 0009-0003-6193-5184 surname: Alonso-Hernández fullname: Alonso-Hernández, J. – sequence: 2 givenname: C. surname: Sánchez Contreras fullname: Sánchez Contreras, C. – sequence: 3 givenname: R. surname: Sahai fullname: Sahai, R. |
BookMark | eNp9UMtOwzAQtBBItIUv4GKJc6jtdeLkiCpeUlEvcLYc16Gu0qR4nUL_HldFPXDgtLPSzOzsjMl513eOkBvO7jjL-ZQxJrMCCj4VTIBUwNUZGXEJImNKFudkdGJckjHiOq2ClzAir7MFdRuP6PuO4hB2bk_7hhrcb7axj97SD2-6SOtgOruiGE1A-uXjig5tDGbn-9ZF6r6tQ3R4RS4a06K7_p0T8v748DZ7zuaLp5fZ_TyzIETMHEBVqJIB5FzmorZLqBO2y6aWLgVzlTVMKJmAFKXKZdWIMi_SCnXZMAsTcnv03Yb-c3AY9bofQpdOamAyeeagVGJVR5YNPWJwjbY-mpg-Tcl9qznTh_b0oRt96Eaf2kta-KPdBr8xYf-v6gdCiXK2 |
CitedBy_id | crossref_primary_10_1051_0004_6361_202452929e |
Cites_doi | 10.1093/mnras/stab2860 10.1086/184209 10.3847/1538-4365/ac1274 10.1086/166338 10.1146/annurev.astro.40.060401.093849 10.1051/0004-6361/202039657 10.1134/S1063772917010085 10.1093/mnras/sty3076 10.1086/307195 10.1093/mnras/stw1547 10.1051/0004-6361/201936874 10.1051/0004-6361:20031110 10.1051/aas:1999501 10.1086/426387 10.1051/0004-6361:20020728 10.3847/1538-4357/aac3d7 10.1088/0067-0049/203/1/16 10.1007/s10509-011-0667-0 10.1007/s00159-017-0106-5 10.1051/0004-6361/202243670 10.1093/mnras/stab323 10.1086/163197 10.1086/305772 10.1093/mnras/staa3689 10.1088/2041-8205/740/2/L39 10.1088/0004-637X/744/2/136 10.1051/0004-6361/201118452 10.1086/592559 10.1088/1742-6596/728/4/042003 10.1086/175747 10.1093/mnras/stab2248 10.1051/0004-6361/201731639 10.1051/aas:2000332 10.1051/0004-6361:20020841 10.1051/0004-6361/201731089 10.1051/0004-6361/201833177 10.1086/173033 10.3847/1538-4357/abefd7 10.1126/science.abb1229 10.3390/galaxies6030085 10.1051/0004-6361/201526705 10.3847/1538-4357/ab5362 10.1051/0004-6361:20020727 10.1086/172787 10.1051/aas:1998213 10.1086/168461 10.1051/0004-6361/201014755 10.1086/597765 10.1086/169231 10.1051/0004-6361:20010072 10.1051/0004-6361/201118516 10.1051/aas:2000169 10.3847/1538-4357/aa704d 10.1051/0004-6361/201834141 10.1086/522944 10.1086/172064 10.1086/164173 10.1086/313111 10.1093/mnras/270.4.774 10.1086/164811 10.1086/191804 10.1051/0004-6361:20011090 10.1051/0004-6361/201936087 10.1051/0004-6361/201834371 10.1088/0004-637X/810/1/77 10.3390/galaxies10030062 |
ContentType | Journal Article |
Copyright | 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1051/0004-6361/202347317 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_202347317 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD H8D L7M |
ID | FETCH-LOGICAL-c322t-e33967803351452bcd3b335cdfb4e021e9ca02741e94287549f28561e93b8f0c3 |
ISSN | 0004-6361 |
IngestDate | Mon Jun 30 02:36:48 EDT 2025 Tue Jul 01 03:54:15 EDT 2025 Thu Apr 24 23:05:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c322t-e33967803351452bcd3b335cdfb4e021e9ca02741e94287549f28561e93b8f0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-6193-5184 |
OpenAccessLink | https://www.aanda.org/10.1051/0004-6361/202347317/pdf |
PQID | 3041455377 |
PQPubID | 1796397 |
ParticipantIDs | proquest_journals_3041455377 crossref_citationtrail_10_1051_0004_6361_202347317 crossref_primary_10_1051_0004_6361_202347317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2024 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Kerschbaum (R33) 1999; 138 Neri (R47) 1998; 130 Hillwig (R27) 2018; 6 Lefevre (R40) 1989; 219 Schlegel (R71) 1998; 500 Sahai (R63) 2008; 689 Wenger (R80) 2000; 143 Margulis (R44) 1990; 361 Sahai (R68) 2022; 10 Zuckerman (R83) 1986; 304 Brown (R19) 2021; 649 Mamon (R43) 1988; 328 Groenewegen (R24) 2002; 390 Sahai (R65) 2015; 810 Vassiliadis (R79) 1993; 413 Kervella (R35) 2019; 623 Ramos-Medina (R59) 2018; 618 Sahai (R66) 2016; 728 Goldsmith (R20) 1999; 517 Sahai (R62) 2007; 134 Scicluna (R73) 2022; 512 Groenewegen (R25) 2002; 390 Beichman (R4) 1988; 1 Bujarrabal (R5) 1986; 162 Díaz-Luis (R16) 2019; 629 Ortiz (R56) 2021; 912 Kerschbaum (R34) 1996; 311 Sahai (R64) 2011; 740 Kahane (R31) 1994; 290 Nyman (R50) 1992; 93 Sánchez Contreras (R70) 2012; 203 Soker (R74) 1994; 270 Bujarrabal (R8) 2001; 377 Duquennoy (R17) 1991; 248 Justtanont (R30) 2000; 360 Samus (R69) 2017; 61 Olofsson (R54) 2002; 391 Young (R82) 1995; 445 Olofsson (R53) 1993; 87 Lima (R41) 2022; 15332 Martin (R45) 2005; 619 Andriantsaralaza (R2) 2022; 667 Balick (R3) 2002; 40 Ramstedt (R60) 2012; 543 Ortiz (R55) 2016; 461 Höfner (R28) 2018; 26 Sahai (R67) 2018; 860 Bujarrabal (R6) 1989; 219 Netzer (R48) 1993; 410 van der Veen (R78) 1988; 194 Ramstedt (R61) 2020; 640 Groenewegen (R23) 2018; 609 Knapp (R39) 1998; 117 Hunsch (R29) 1998; 330 Olofsson (R52) 1987; 183 Bujarrabal (R7) 1992; 257 Montez, Rodolfo (R46) 2017; 841 Castro-Carrizo (R10) 2010; 523 De Marco (R14) 2009; 121 Decin (R15) 2020; 369 Neugebauer (R49) 1984; 278 Danilovich (R13) 2015; 581 Habing (R26) 1994; 286 Ochsenbein (R51) 2000; 143 Carter (R9) 2012; 538 Knapp (R37) 1986; 311 Green (R21) 2019; 887 Kastner (R32) 1992; 401 Schöier (R72) 2001; 368 Knapp (R38) 1985; 292 Ortiz (R57) 2019; 482 El-Badry (R18) 2021; 506 Planesas (R58) 1990; 351 Taylor (R76) 2005; 347 Suh (R75) 2021; 256 Winters (R81) 2003; 409 Kim (R36) 2012; 744 da Silva Santos (R12) 2019; 622 Groenewegen (R22) 2017; 606 Loup (R42) 1993; 99 Van de Sande (R77) 2021; 501 Amôres (R1) 2021; 508 Conti (R11) 2011; 335 |
References_xml | – volume: 512 start-page: 1091 year: 2022 ident: R73 publication-title: MNRAS doi: 10.1093/mnras/stab2860 – volume: 278 start-page: L1 year: 1984 ident: R49 publication-title: ApJ doi: 10.1086/184209 – volume: 256 start-page: 43 year: 2021 ident: R75 publication-title: ApJS doi: 10.3847/1538-4365/ac1274 – volume: 328 start-page: 797 year: 1988 ident: R43 publication-title: ApJ doi: 10.1086/166338 – volume: 40 start-page: 439 year: 2002 ident: R3 publication-title: ARA&A doi: 10.1146/annurev.astro.40.060401.093849 – volume: 649 start-page: A1 year: 2021 ident: R19 publication-title: A&A doi: 10.1051/0004-6361/202039657 – volume: 61 start-page: 80 year: 2017 ident: R69 publication-title: Astron. Rep. doi: 10.1134/S1063772917010085 – volume: 482 start-page: 4697 year: 2019 ident: R57 publication-title: MNRAS doi: 10.1093/mnras/sty3076 – volume: 517 start-page: 209 year: 1999 ident: R20 publication-title: ApJ doi: 10.1086/307195 – volume: 461 start-page: 3036 year: 2016 ident: R55 publication-title: MNRAS doi: 10.1093/mnras/stw1547 – volume: 640 start-page: A133 year: 2020 ident: R61 publication-title: A&A doi: 10.1051/0004-6361/201936874 – volume: 99 start-page: 291 year: 1993 ident: R42 publication-title: A&AS – volume: 409 start-page: 715 year: 2003 ident: R81 publication-title: A&A doi: 10.1051/0004-6361:20031110 – volume: 138 start-page: 299 year: 1999 ident: R33 publication-title: A&AS doi: 10.1051/aas:1999501 – volume: 93 start-page: 121 year: 1992 ident: R50 publication-title: A&AS – volume: 619 start-page: L1 year: 2005 ident: R45 publication-title: ApJ doi: 10.1086/426387 – volume: 183 start-page: L13 year: 1987 ident: R52 publication-title: A&A – volume: 1 start-page: 1 year: 1988 ident: R4 publication-title: Explanatory Supplement. – volume: 390 start-page: 511 year: 2002 ident: R25 publication-title: A&A doi: 10.1051/0004-6361:20020728 – volume: 860 start-page: 105 year: 2018 ident: R67 publication-title: ApJ doi: 10.3847/1538-4357/aac3d7 – volume: 203 start-page: 16 year: 2012 ident: R70 publication-title: ApJS doi: 10.1088/0067-0049/203/1/16 – volume: 335 start-page: 329 year: 2011 ident: R11 publication-title: Ap&SS doi: 10.1007/s10509-011-0667-0 – volume: 219 start-page: 256 year: 1989 ident: R6 publication-title: A&A – volume: 26 start-page: 1 year: 2018 ident: R28 publication-title: A&A Rev. doi: 10.1007/s00159-017-0106-5 – volume: 667 start-page: A74 year: 2022 ident: R2 publication-title: A&A doi: 10.1051/0004-6361/202243670 – volume: 506 start-page: 2269 year: 2021 ident: R18 publication-title: MNRAS doi: 10.1093/mnras/stab323 – volume: 292 start-page: 640 year: 1985 ident: R38 publication-title: ApJ doi: 10.1086/163197 – volume: 500 start-page: 525 year: 1998 ident: R71 publication-title: ApJ doi: 10.1086/305772 – volume: 501 start-page: 491 year: 2021 ident: R77 publication-title: MNRAS doi: 10.1093/mnras/staa3689 – volume: 740 start-page: L39 year: 2011 ident: R64 publication-title: ApJ doi: 10.1088/2041-8205/740/2/L39 – volume: 744 start-page: 136 year: 2012 ident: R36 publication-title: ApJ doi: 10.1088/0004-637X/744/2/136 – volume: 538 start-page: A89 year: 2012 ident: R9 publication-title: A&A doi: 10.1051/0004-6361/201118452 – volume: 219 start-page: 265 year: 1989 ident: R40 publication-title: A&A – volume: 689 start-page: 1274 year: 2008 ident: R63 publication-title: ApJ doi: 10.1086/592559 – volume: 728 start-page: 042003 year: 2016 ident: R66 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/728/4/042003 – volume: 445 start-page: 872 year: 1995 ident: R82 publication-title: ApJ doi: 10.1086/175747 – volume: 508 start-page: 1788 year: 2021 ident: R1 publication-title: MNRAS doi: 10.1093/mnras/stab2248 – volume: 286 start-page: 523 year: 1994 ident: R26 publication-title: A&A – volume: 248 start-page: 485 year: 1991 ident: R17 publication-title: A&A – volume: 606 start-page: A67 year: 2017 ident: R22 publication-title: A&A doi: 10.1051/0004-6361/201731639 – volume: 143 start-page: 9 year: 2000 ident: R80 publication-title: A&AS doi: 10.1051/aas:2000332 – volume: 330 start-page: 225 year: 1998 ident: R29 publication-title: A&A – volume: 391 start-page: 1053 year: 2002 ident: R54 publication-title: A&A doi: 10.1051/0004-6361:20020841 – volume: 609 start-page: A114 year: 2018 ident: R23 publication-title: A&A doi: 10.1051/0004-6361/201731089 – volume: 311 start-page: 273 year: 1996 ident: R34 publication-title: A&A – volume: 618 start-page: A171 year: 2018 ident: R59 publication-title: A&A doi: 10.1051/0004-6361/201833177 – volume: 413 start-page: 641 year: 1993 ident: R79 publication-title: ApJ doi: 10.1086/173033 – volume: 912 start-page: 93 year: 2021 ident: R56 publication-title: ApJ doi: 10.3847/1538-4357/abefd7 – volume: 347 start-page: 29 year: 2005 ident: R76 publication-title: ASP Conf. Ser. – volume: 369 start-page: 1497 year: 2020 ident: R15 publication-title: Science doi: 10.1126/science.abb1229 – volume: 6 start-page: 85 year: 2018 ident: R27 publication-title: Galaxies doi: 10.3390/galaxies6030085 – volume: 360 start-page: 1117 year: 2000 ident: R30 publication-title: A&A – volume: 15332 start-page: 1 year: 2022 ident: R41 publication-title: ATel – volume: 581 start-page: A60 year: 2015 ident: R13 publication-title: A&A doi: 10.1051/0004-6361/201526705 – volume: 887 start-page: 93 year: 2019 ident: R21 publication-title: ApJ doi: 10.3847/1538-4357/ab5362 – volume: 390 start-page: 501 year: 2002 ident: R24 publication-title: A&A doi: 10.1051/0004-6361:20020727 – volume: 410 start-page: 701 year: 1993 ident: R48 publication-title: ApJ doi: 10.1086/172787 – volume: 130 start-page: 1 year: 1998 ident: R47 publication-title: A&AS doi: 10.1051/aas:1998213 – volume: 351 start-page: 263 year: 1990 ident: R58 publication-title: ApJ doi: 10.1086/168461 – volume: 523 start-page: A59 year: 2010 ident: R10 publication-title: A&A doi: 10.1051/0004-6361/201014755 – volume: 121 start-page: 316 year: 2009 ident: R14 publication-title: PASP doi: 10.1086/597765 – volume: 361 start-page: 673 year: 1990 ident: R44 publication-title: ApJ doi: 10.1086/169231 – volume: 368 start-page: 969 year: 2001 ident: R72 publication-title: A&A doi: 10.1051/0004-6361:20010072 – volume: 162 start-page: 157 year: 1986 ident: R5 publication-title: A&A – volume: 543 start-page: A147 year: 2012 ident: R60 publication-title: A&A doi: 10.1051/0004-6361/201118516 – volume: 143 start-page: 23 year: 2000 ident: R51 publication-title: A&AS doi: 10.1051/aas:2000169 – volume: 841 start-page: 33 year: 2017 ident: R46 publication-title: ApJ doi: 10.3847/1538-4357/aa704d – volume: 257 start-page: 701 year: 1992 ident: R7 publication-title: A&A – volume: 622 start-page: A123 year: 2019 ident: R12 publication-title: A&A doi: 10.1051/0004-6361/201834141 – volume: 134 start-page: 2200 year: 2007 ident: R62 publication-title: AJ doi: 10.1086/522944 – volume: 401 start-page: 337 year: 1992 ident: R32 publication-title: ApJ doi: 10.1086/172064 – volume: 304 start-page: 394 year: 1986 ident: R83 publication-title: ApJ doi: 10.1086/164173 – volume: 290 start-page: 183 year: 1994 ident: R31 publication-title: A&A – volume: 117 start-page: 209 year: 1998 ident: R39 publication-title: ApJS doi: 10.1086/313111 – volume: 270 start-page: 774 year: 1994 ident: R74 publication-title: MNRAS doi: 10.1093/mnras/270.4.774 – volume: 311 start-page: 731 year: 1986 ident: R37 publication-title: ApJ doi: 10.1086/164811 – volume: 87 start-page: 267 year: 1993 ident: R53 publication-title: ApJS doi: 10.1086/191804 – volume: 377 start-page: 868 year: 2001 ident: R8 publication-title: A&A doi: 10.1051/0004-6361:20011090 – volume: 629 start-page: A94 year: 2019 ident: R16 publication-title: A&A doi: 10.1051/0004-6361/201936087 – volume: 623 start-page: A72 year: 2019 ident: R35 publication-title: A&A doi: 10.1051/0004-6361/201834371 – volume: 810 start-page: 77 year: 2015 ident: R65 publication-title: ApJ doi: 10.1088/0004-637X/810/1/77 – volume: 10 start-page: 62 year: 2022 ident: R68 publication-title: Galaxies doi: 10.3390/galaxies10030062 – volume: 194 start-page: 125 year: 1988 ident: R78 publication-title: A&A |
SSID | ssj0002183 |
Score | 2.4666872 |
Snippet | Context
. The transition from the spherically symmetric envelopes around asymptotic giant branch (AGB) stars to the asymmetric morphologies observed in... Context. The transition from the spherically symmetric envelopes around asymptotic giant branch (AGB) stars to the asymmetric morphologies observed in... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | A77 |
SubjectTerms | Asymptotic giant branch stars Binary stars Companion stars Correlation Ejecta Emission Excitation Luminosity Parameters Photodissociation Planetary nebulae Stellar envelopes |
Title | CO emission survey of asymptotic giant branch stars with ultraviolet excesses |
URI | https://www.proquest.com/docview/3041455377 |
Volume | 684 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKEBIvaAzQBhvyA-KluGtiJ04eq2pQJo0htEl7ixLHYQ9dM6XuBHvgt-_OdtIU0MR4iVw3vaq5r-fz-e47Qt6JUpVRVElWyEgzEeSa5aGKmUpkHsTg7weWu_PkSzw7F8cX0cVgcNPLWlqZYqRu_1pX8j9ahTnQK1bJPkCznVCYgDHoF66gYbj-k46np0Ns14YBr-Fy1dxoe1yeL39eXZsamVi_g_LNsMDmGZcYNWh8Mdtqbprcnsmbof6BlQI-lbDlo11ihLy-cuRMOb5yIRAbo3UUWf0Ywhx-Yc1mulnYg_egDUwfj7oIjn8DMHKLZYam0Y2rJZuu78l9c-xvo34wIuznsLQGVrCYO371kXY2VXBMcPWRRm9040T0zObEtXL5w5yDxXD5j04oVq-AjyEkd_Wem_TZvy1rXbKhPWaPAjxmFxmKyTohj8jjELYX2Pni0-df3QqObqPbNrnvbdmqouCwmzvshGx6NJsLuvVSzrbJM7-9oBOHledkoBc7ZLdTJ31PJz1l7pAnX93oBTmZntIWTNSBidYVXYOJWjBRByZqwUQRTLQHJtqC6SU5_3h0Np0x32uDKTDphmnOU_BbxhwrO6KwUCUvYKzKqhAaHohOVW6pjnSKm-xIpFWYgO-tU14k1VjxV2RrUS_0LqGhqsqkUDyRcC8sGGmZw55ag0UYS6mieI-E7fPKlCeix34o8-weTe2RD92Hrh0Py_2377eKyPwfdpnxsUBafi7l64dJe0OersG-T7ZMs9IH4Iua4q0Fzh1-in8U |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO+emission+survey+of+asymptotic+giant+branch+stars+with+ultraviolet+excesses&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Alonso-Hern%C3%A1ndez%2C+J.&rft.au=S%C3%A1nchez+Contreras%2C+C.&rft.au=Sahai%2C+R.&rft.date=2024-04-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=684&rft.spage=A77&rft_id=info:doi/10.1051%2F0004-6361%2F202347317&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202347317 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |