A Multiview Brain Network Transformer Fusing Individualized Information for Autism Spectrum Disorder Diagnosis

Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD sy...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 8; pp. 4854 - 4865
Main Authors Dong, Qunxi, Cai, Hongxin, Li, Zhigang, Liu, Jingyu, Hu, Bin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2024
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2024.3396457

Cover

Loading…
Abstract Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD symptoms, the fusion of individualized information into diagnosis becomes essential. However, this aspect is overlooked in most methods. Furthermore, the existing methods typically focus on studying direct pairwise connections between brain ROIs, while disregarding interactions between indirectly connected neighbors. To overcome above challenges, we build common FC and individualized FC by tangent pearson embedding (TP) and common orthogonal basis extraction (COBE) respectively, and present a novel multiview brain transformer (MBT) aimed at effectively fusing common and indivinformation of subjects. MBT is mainly constructed by transformer layers with diffusion kernel (DK), fusion quality-inspired weighting module (FQW), similarity loss and orthonormal clustering fusion readout module (OCFRead). DK transformer can incorporate higher-order random walk methods to capture wider interactions among indirectly connected brain regions. FQW promotes adaptive fusion of features between views, and similarity loss and OCFRead are placed on the last layer to accomplish the ultimate integration of information. In our method, TP, DK and FQW modules all help to model wider connectivity in the brain that make up for the shortcomings of traditional methods. We conducted experiments on the public ABIDE dataset based on AAL and CC200 respectively. Our framework has shown promising results, outperforming state-of-the-art methods on both templates. This suggests its potential as a valuable approach for clinical ASD diagnosis.
AbstractList Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD symptoms, the fusion of individualized information into diagnosis becomes essential. However, this aspect is overlooked in most methods. Furthermore, the existing methods typically focus on studying direct pairwise connections between brain ROIs, while disregarding interactions between indirectly connected neighbors. To overcome above challenges, we build common FC and individualized FC by tangent pearson embedding (TP) and common orthogonal basis extraction (COBE) respectively, and present a novel multiview brain transformer (MBT) aimed at effectively fusing common and indivinformation of subjects. MBT is mainly constructed by transformer layers with diffusion kernel (DK), fusion quality-inspired weighting module (FQW), similarity loss and orthonormal clustering fusion readout module (OCFRead). DK transformer can incorporate higher-order random walk methods to capture wider interactions among indirectly connected brain regions. FQW promotes adaptive fusion of features between views, and similarity loss and OCFRead are placed on the last layer to accomplish the ultimate integration of information. In our method, TP, DK and FQW modules all help to model wider connectivity in the brain that make up for the shortcomings of traditional methods. We conducted experiments on the public ABIDE dataset based on AAL and CC200 respectively. Our framework has shown promising results, outperforming state-of-the-art methods on both templates. This suggests its potential as a valuable approach for clinical ASD diagnosis.
Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD symptoms, the fusion of individualized information into diagnosis becomes essential. However, this aspect is overlooked in most methods. Furthermore, the existing methods typically focus on studying direct pairwise connections between brain ROIs, while disregarding interactions between indirectly connected neighbors. To overcome above challenges, we build common FC and individualized FC by tangent pearson embedding (TP) and common orthogonal basis extraction (COBE) respectively, and present a novel multiview brain transformer (MBT) aimed at effectively fusing common and indivinformation of subjects. MBT is mainly constructed by transformer layers with diffusion kernel (DK), fusion quality-inspired weighting module (FQW), similarity loss and orthonormal clustering fusion readout module (OCFRead). DK transformer can incorporate higher-order random walk methods to capture wider interactions among indirectly connected brain regions. FQW promotes adaptive fusion of features between views, and similarity loss and OCFRead are placed on the last layer to accomplish the ultimate integration of information. In our method, TP, DK and FQW modules all help to model wider connectivity in the brain that make up for the shortcomings of traditional methods. We conducted experiments on the public ABIDE dataset based on AAL and CC200 respectively. Our framework has shown promising results, outperforming state-of-the-art methods on both templates. This suggests its potential as a valuable approach for clinical ASD diagnosis.Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD symptoms, the fusion of individualized information into diagnosis becomes essential. However, this aspect is overlooked in most methods. Furthermore, the existing methods typically focus on studying direct pairwise connections between brain ROIs, while disregarding interactions between indirectly connected neighbors. To overcome above challenges, we build common FC and individualized FC by tangent pearson embedding (TP) and common orthogonal basis extraction (COBE) respectively, and present a novel multiview brain transformer (MBT) aimed at effectively fusing common and indivinformation of subjects. MBT is mainly constructed by transformer layers with diffusion kernel (DK), fusion quality-inspired weighting module (FQW), similarity loss and orthonormal clustering fusion readout module (OCFRead). DK transformer can incorporate higher-order random walk methods to capture wider interactions among indirectly connected brain regions. FQW promotes adaptive fusion of features between views, and similarity loss and OCFRead are placed on the last layer to accomplish the ultimate integration of information. In our method, TP, DK and FQW modules all help to model wider connectivity in the brain that make up for the shortcomings of traditional methods. We conducted experiments on the public ABIDE dataset based on AAL and CC200 respectively. Our framework has shown promising results, outperforming state-of-the-art methods on both templates. This suggests its potential as a valuable approach for clinical ASD diagnosis.
Author Li, Zhigang
Liu, Jingyu
Cai, Hongxin
Dong, Qunxi
Hu, Bin
Author_xml – sequence: 1
  givenname: Qunxi
  orcidid: 0000-0002-0484-3019
  surname: Dong
  fullname: Dong, Qunxi
  email: dongqx@bit.edu.cn
  organization: Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Hongxin
  orcidid: 0009-0005-4041-0770
  surname: Cai
  fullname: Cai, Hongxin
  email: chx@bit.edu.cn
  organization: Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Zhigang
  orcidid: 0000-0003-1435-8671
  surname: Li
  fullname: Li, Zhigang
  email: lzg2021@bit.edu.cn
  organization: Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Jingyu
  orcidid: 0000-0002-1646-637X
  surname: Liu
  fullname: Liu, Jingyu
  email: liujingyu@bit.edu.cn
  organization: Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Bin
  orcidid: 0000-0003-3514-5413
  surname: Hu
  fullname: Hu, Bin
  email: bh@bit.edu.cn
  organization: Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38700974$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvGyEURlGUqknT_IBIVcUyG7s8BmZYOm9XeSyarhGB64hmBlxgErW_vji2pSqLsOEC51yJ-31CuyEGQOiIkimlRH37fnI1nzLCminnSjai3UH7jMpuwhjpdrc1Vc0eOsz5F6mrq1dKfkR7vGsJUW2zj8IM34x98c8eXvBJMj7gWygvMT3h-2RCXsQ0QMIXY_bhEc-Dq6QbTe__gqvH1bMpPgZcKzwbi88D_rEEW9I44DOfY3JVP_PmMcTs82f0YWH6DIeb_QD9vDi_P72aXN9dzk9n1xPLGSsTYIaC5ZQwIkVnnTQLaJwRquFta62gAtqOuAfGuXOdbCxXVgnpOEguJLP8AB2v-y5T_D1CLnrw2ULfmwBxzJoTQRRvGRMV_bpBx4cBnF4mP5j0R29nVIF2DdgUc06w0NaX10-XOq9eU6JXgehVIHoViN4EUk36xtw2f8_5snY8APzHC9pRyvg_1OeWow
CODEN IJBHA9
CitedBy_id crossref_primary_10_1109_TNSRE_2025_3543177
crossref_primary_10_1109_ACCESS_2025_3532302
Cites_doi 10.1109/TMI.2022.3199032
10.1016/j.mri.2019.05.031
10.1109/TCYB.2015.2403356
10.1371/journal.pone.0289735
10.1038/s41380-023-01958-8
10.1145/3474085.3475240
10.1109/TMI.2022.3201974
10.1002/hbm.24021
10.1093/cercor/bhac513
10.3389/fnsys.2011.00010
10.1038/nbt1206-1565
10.1016/j.compbiomed.2022.105239
10.1038/mp.2013.78
10.1006/nimg.2001.0978
10.1109/TCYB.2022.3223918
10.3389/fnins.2020.00258
10.1016/j.media.2023.102756
10.1016/j.celrep.2013.10.003
10.1109/TMI.2020.2976825
10.1109/CVPR52688.2022.00333
10.3389/fnins.2022.1087176
10.1002/hbm.24415
10.1109/TMI.2022.3170701
10.1109/TIM.2023.3318748
10.7554/eLife.44890
10.1109/TMI.2021.3110829
10.1109/TMI.2022.3203899
10.1016/j.media.2021.102233
10.1109/TCYB.2018.2839693
10.1109/CVPR.2016.90
10.1109/TMI.2022.3218745
10.1002/hbm.21333
10.1109/JBHI.2023.3274531
10.1016/j.neuron.2011.09.006
10.3389/fninf.2019.00070
10.3389/conf.fninf.2013.09.00042
10.1109/JBHI.2022.3232550
10.3389/fnins.2016.00191
10.1109/TNNLS.2015.2487364
10.1093/cercor/bhy123
10.1016/j.biopsych.2015.06.029
10.1016/j.bbr.2010.09.010
10.1080/02643290500443250
10.18653/v1/D19-1443
10.1016/j.compbiomed.2022.106320
10.1038/nn.4164
10.1016/j.neuron.2020.01.029
10.15585/mmwr.ss6706a1
10.1109/JBHI.2019.2925710
10.1007/s12264-017-0118-1
10.1002/hbm.20324
10.1016/j.neuroimage.2009.12.120
10.1002/aur.1858
10.1109/TCYB.2020.3016953
10.1109/TMI.2023.3325261
10.1109/JBHI.2020.2983456
10.1371/journal.pone.0068910
10.1109/TMI.2020.2973650
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/JBHI.2024.3396457
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 4865
ExternalDocumentID 38700974
10_1109_JBHI_2024_3396457
10518112
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2019YFA0706200
– fundername: Scientific and technological innovation 2030 project of MOST
  grantid: 2021ZD0201900; 2021ZD0200601
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M720434
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 62227807; 62302044; 62376030
  funderid: 10.13039/501100001809
– fundername: Beijing Institute of Technology Research Fund Program for Young Scholars
  funderid: 10.13039/501100012236
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c322t-e2a1ec31020658cd6afe4da594377cc515e780db233dd864c39c956d3e63562c3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 03:27:04 EDT 2025
Mon Jul 21 05:51:31 EDT 2025
Thu Apr 24 23:11:29 EDT 2025
Tue Jul 01 03:00:09 EDT 2025
Wed Aug 27 01:57:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-e2a1ec31020658cd6afe4da594377cc515e780db233dd864c39c956d3e63562c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1646-637X
0000-0002-0484-3019
0009-0005-4041-0770
0000-0003-1435-8671
0000-0003-3514-5413
PMID 38700974
PQID 3050937225
PQPubID 23479
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JBHI_2024_3396457
ieee_primary_10518112
crossref_primary_10_1109_JBHI_2024_3396457
proquest_miscellaneous_3050937225
pubmed_primary_38700974
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
Kan (ref37)
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref31
ref30
Kan (ref27) 2022; 35
ref33
ref32
ref2
ref1
ref39
ref38
Kingma (ref48) 2015
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref60
ref61
References_xml – ident: ref28
  doi: 10.1109/TMI.2022.3199032
– ident: ref8
  doi: 10.1016/j.mri.2019.05.031
– ident: ref20
  doi: 10.1109/TCYB.2015.2403356
– ident: ref56
  doi: 10.1371/journal.pone.0289735
– ident: ref18
  doi: 10.1038/s41380-023-01958-8
– ident: ref39
  doi: 10.1145/3474085.3475240
– ident: ref42
  doi: 10.1109/TMI.2022.3201974
– ident: ref12
  doi: 10.1002/hbm.24021
– ident: ref19
  doi: 10.1093/cercor/bhac513
– ident: ref58
  doi: 10.3389/fnsys.2011.00010
– ident: ref49
  doi: 10.1038/nbt1206-1565
– ident: ref4
  doi: 10.1016/j.compbiomed.2022.105239
– ident: ref44
  doi: 10.1038/mp.2013.78
– ident: ref46
  doi: 10.1006/nimg.2001.0978
– ident: ref30
  doi: 10.1109/TCYB.2022.3223918
– ident: ref11
  doi: 10.3389/fnins.2020.00258
– ident: ref17
  doi: 10.1016/j.media.2023.102756
– ident: ref52
  doi: 10.1016/j.celrep.2013.10.003
– ident: ref5
  doi: 10.1109/TMI.2020.2976825
– ident: ref31
  doi: 10.1109/CVPR52688.2022.00333
– ident: ref26
  doi: 10.3389/fnins.2022.1087176
– start-page: 1
  volume-title: Proc. ICLR
  year: 2015
  ident: ref48
  article-title: Adam: A method for stochastic optimization
– ident: ref24
  doi: 10.1002/hbm.24415
– ident: ref29
  doi: 10.1109/TMI.2022.3170701
– ident: ref40
  doi: 10.1109/TIM.2023.3318748
– ident: ref14
  doi: 10.7554/eLife.44890
– ident: ref6
  doi: 10.1109/TMI.2021.3110829
– ident: ref34
  doi: 10.1109/TMI.2022.3203899
– ident: ref50
  doi: 10.1016/j.media.2021.102233
– ident: ref22
  doi: 10.1109/TCYB.2018.2839693
– start-page: 618
  volume-title: Proc. Int. Conf. Med. Imag. With Deep Learn.
  ident: ref37
  article-title: FBNETGEN: Task-aware GNN-based fMRI analysis via functional brain network generation
– ident: ref41
  doi: 10.1109/CVPR.2016.90
– ident: ref36
  doi: 10.1109/TMI.2022.3218745
– ident: ref47
  doi: 10.1002/hbm.21333
– ident: ref7
  doi: 10.1109/JBHI.2023.3274531
– ident: ref10
  doi: 10.1016/j.neuron.2011.09.006
– ident: ref51
  doi: 10.3389/fninf.2019.00070
– ident: ref45
  doi: 10.3389/conf.fninf.2013.09.00042
– ident: ref9
  doi: 10.1109/JBHI.2022.3232550
– ident: ref59
  doi: 10.3389/fnins.2016.00191
– ident: ref35
  doi: 10.1109/TNNLS.2015.2487364
– ident: ref16
  doi: 10.1093/cercor/bhy123
– ident: ref53
  doi: 10.1016/j.biopsych.2015.06.029
– ident: ref61
  doi: 10.1016/j.bbr.2010.09.010
– ident: ref43
  doi: 10.1080/02643290500443250
– ident: ref38
  doi: 10.18653/v1/D19-1443
– ident: ref25
  doi: 10.1016/j.compbiomed.2022.106320
– ident: ref15
  doi: 10.1038/nn.4164
– ident: ref13
  doi: 10.1016/j.neuron.2020.01.029
– ident: ref1
  doi: 10.15585/mmwr.ss6706a1
– ident: ref3
  doi: 10.1109/JBHI.2019.2925710
– ident: ref54
  doi: 10.1007/s12264-017-0118-1
– ident: ref60
  doi: 10.1002/hbm.20324
– ident: ref32
  doi: 10.1016/j.neuroimage.2009.12.120
– ident: ref57
  doi: 10.1002/aur.1858
– ident: ref21
  doi: 10.1109/TCYB.2020.3016953
– ident: ref23
  doi: 10.1109/TMI.2023.3325261
– volume: 35
  start-page: 25586
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2022
  ident: ref27
  article-title: Brain network transformer
– ident: ref2
  doi: 10.1109/JBHI.2020.2983456
– ident: ref55
  doi: 10.1371/journal.pone.0068910
– ident: ref33
  doi: 10.1109/TMI.2020.2973650
SSID ssj0000816896
Score 2.4547825
Snippet Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4854
SubjectTerms Algorithms
Attention network
Autism
autism spectrum diso rder
Autism Spectrum Disorder - diagnostic imaging
Autism Spectrum Disorder - physiopathology
Biomarkers
Brain - diagnostic imaging
Brain modeling
brain network
Child
Computer aided diagnosis
Data models
Feature extraction
fusion
Humans
Image Interpretation, Computer-Assisted - methods
individualized
Magnetic Resonance Imaging - methods
Male
transformer
Transformers
Title A Multiview Brain Network Transformer Fusing Individualized Information for Autism Spectrum Disorder Diagnosis
URI https://ieeexplore.ieee.org/document/10518112
https://www.ncbi.nlm.nih.gov/pubmed/38700974
https://www.proquest.com/docview/3050937225
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7Ug3jxWTW-WMGTkJpkN0lzbMVShfZUwVtIZici2lT6uPjrndkkRQXF2xx28_pmM7M7j0-Iq4JMrsoLdAETPq3S6Gbg-27mB5kfq5x8cj7QH46iwaN-eAqf6mJ1WwuDiDb5DNss2li-mcKSj8pohYdkkJhTeJ12blWx1upAxTJIWD6ugASXVqKuo5i-l9w89Ab3tBsMdFupJNIhk-8p0lUvifU3k2Q5Vn53N63Z6e-IUfPAVbbJa3u5yNvw8aOX47_faFds1w6o7FYasyfWsNwXm8M6xH4gyq60RbkcMpA9JpCQoypVXI4bJxdnss8J88_yflXP9fKBRtbFTQy2JEl2Sa3nE8kk94vZciKbXp8k2Ay_l3lLPPbvxrcDtyZlcIHW_sJFwhCBnMKAnRcwUVagNlmYaBXHAOQeYdzxTB4oZUwn0qASoD2YUcid8AJQh2KjnJZ4LGSURRHkHmKoQHdyJOUA1FAoo4qiyMARXoNLCnXHcibOeEvtzsVLUkY1ZVTTGlVHXK-mvFftOv4a3GJEvgyswHDEZYN-SouNIyhZidPlPFXcLUfF9A90xFGlFqvZjTad_HLVU7HFN6-SB8_EBn12PCeHZpFfWEX-BAKM77I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5VVCpcKOVR0tJ2kTghOdjetR0fA2qUUJJTkLhZ9uwYRYBTkeTCr-_M2o4KEojbHNbWWt-MZ3bn8QGclOxydVGSh5TKbZUhL8cg8PIgzINEFxyTy4X-eBIPr83lTXTTNKu7XhgicsVn1BXR5fLtHFdyVcYWHrFDEk7hj-z4TVq3a62vVByHhGPkClnw2BZNk8cM_PTs8nw44vNgaLpap7GJhH5Ps7b6aWKeOSXHsvJ6wOkcz-AzTNot1_Umd93Vsuji04tpju_-ph3YbkJQ1a915gt8oGoXPo2bJPseVH3l2nIlaaDOhUJCTepicTVtw1x6VAMpmb9Vo3VH1-yJrGramwRuxZLqs2IvHpTQ3C8fVw-qnfbJgqvxmy324Xrwe3ox9BpaBg_Z-pceMYqEHBaGEr6gjfOSjM2j1OgkQeQAiZKeb4tQa2t7sUGdIp_CrCaZhReiPoCNal7RIag4j2MsfKJIo-kVxOqBZLDUVpdlmWMH_BaXDJuZ5UKdcZ-5s4ufZoJqJqhmDaodOF0_8rce2PHW4n1B5L-FNRgdOG7Rz9jcJIeSVzRfLTIt83J0wn_BDnyt1WL9dKtN31556y_YHE7HV9nVaPLnO2zJRupSwiPYYAjoB4c3y-KnU-p_vbbzAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multiview+Brain+Network+Transformer+Fusing+Individualized+Information+for+Autism+Spectrum+Disorder+Diagnosis&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Dong%2C+Qunxi&rft.au=Cai%2C+Hongxin&rft.au=Li%2C+Zhigang&rft.au=Liu%2C+Jingyu&rft.date=2024-08-01&rft.eissn=2168-2208&rft.volume=28&rft.issue=8&rft.spage=4854&rft_id=info:doi/10.1109%2FJBHI.2024.3396457&rft_id=info%3Apmid%2F38700974&rft.externalDocID=38700974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon