A Multiview Brain Network Transformer Fusing Individualized Information for Autism Spectrum Disorder Diagnosis
Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD sy...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 28; no. 8; pp. 4854 - 4865 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2024.3396457 |
Cover
Loading…
Abstract | Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD symptoms, the fusion of individualized information into diagnosis becomes essential. However, this aspect is overlooked in most methods. Furthermore, the existing methods typically focus on studying direct pairwise connections between brain ROIs, while disregarding interactions between indirectly connected neighbors. To overcome above challenges, we build common FC and individualized FC by tangent pearson embedding (TP) and common orthogonal basis extraction (COBE) respectively, and present a novel multiview brain transformer (MBT) aimed at effectively fusing common and indivinformation of subjects. MBT is mainly constructed by transformer layers with diffusion kernel (DK), fusion quality-inspired weighting module (FQW), similarity loss and orthonormal clustering fusion readout module (OCFRead). DK transformer can incorporate higher-order random walk methods to capture wider interactions among indirectly connected brain regions. FQW promotes adaptive fusion of features between views, and similarity loss and OCFRead are placed on the last layer to accomplish the ultimate integration of information. In our method, TP, DK and FQW modules all help to model wider connectivity in the brain that make up for the shortcomings of traditional methods. We conducted experiments on the public ABIDE dataset based on AAL and CC200 respectively. Our framework has shown promising results, outperforming state-of-the-art methods on both templates. This suggests its potential as a valuable approach for clinical ASD diagnosis. |
---|---|
AbstractList | Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD symptoms, the fusion of individualized information into diagnosis becomes essential. However, this aspect is overlooked in most methods. Furthermore, the existing methods typically focus on studying direct pairwise connections between brain ROIs, while disregarding interactions between indirectly connected neighbors. To overcome above challenges, we build common FC and individualized FC by tangent pearson embedding (TP) and common orthogonal basis extraction (COBE) respectively, and present a novel multiview brain transformer (MBT) aimed at effectively fusing common and indivinformation of subjects. MBT is mainly constructed by transformer layers with diffusion kernel (DK), fusion quality-inspired weighting module (FQW), similarity loss and orthonormal clustering fusion readout module (OCFRead). DK transformer can incorporate higher-order random walk methods to capture wider interactions among indirectly connected brain regions. FQW promotes adaptive fusion of features between views, and similarity loss and OCFRead are placed on the last layer to accomplish the ultimate integration of information. In our method, TP, DK and FQW modules all help to model wider connectivity in the brain that make up for the shortcomings of traditional methods. We conducted experiments on the public ABIDE dataset based on AAL and CC200 respectively. Our framework has shown promising results, outperforming state-of-the-art methods on both templates. This suggests its potential as a valuable approach for clinical ASD diagnosis. Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD symptoms, the fusion of individualized information into diagnosis becomes essential. However, this aspect is overlooked in most methods. Furthermore, the existing methods typically focus on studying direct pairwise connections between brain ROIs, while disregarding interactions between indirectly connected neighbors. To overcome above challenges, we build common FC and individualized FC by tangent pearson embedding (TP) and common orthogonal basis extraction (COBE) respectively, and present a novel multiview brain transformer (MBT) aimed at effectively fusing common and indivinformation of subjects. MBT is mainly constructed by transformer layers with diffusion kernel (DK), fusion quality-inspired weighting module (FQW), similarity loss and orthonormal clustering fusion readout module (OCFRead). DK transformer can incorporate higher-order random walk methods to capture wider interactions among indirectly connected brain regions. FQW promotes adaptive fusion of features between views, and similarity loss and OCFRead are placed on the last layer to accomplish the ultimate integration of information. In our method, TP, DK and FQW modules all help to model wider connectivity in the brain that make up for the shortcomings of traditional methods. We conducted experiments on the public ABIDE dataset based on AAL and CC200 respectively. Our framework has shown promising results, outperforming state-of-the-art methods on both templates. This suggests its potential as a valuable approach for clinical ASD diagnosis.Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD symptoms, the fusion of individualized information into diagnosis becomes essential. However, this aspect is overlooked in most methods. Furthermore, the existing methods typically focus on studying direct pairwise connections between brain ROIs, while disregarding interactions between indirectly connected neighbors. To overcome above challenges, we build common FC and individualized FC by tangent pearson embedding (TP) and common orthogonal basis extraction (COBE) respectively, and present a novel multiview brain transformer (MBT) aimed at effectively fusing common and indivinformation of subjects. MBT is mainly constructed by transformer layers with diffusion kernel (DK), fusion quality-inspired weighting module (FQW), similarity loss and orthonormal clustering fusion readout module (OCFRead). DK transformer can incorporate higher-order random walk methods to capture wider interactions among indirectly connected brain regions. FQW promotes adaptive fusion of features between views, and similarity loss and OCFRead are placed on the last layer to accomplish the ultimate integration of information. In our method, TP, DK and FQW modules all help to model wider connectivity in the brain that make up for the shortcomings of traditional methods. We conducted experiments on the public ABIDE dataset based on AAL and CC200 respectively. Our framework has shown promising results, outperforming state-of-the-art methods on both templates. This suggests its potential as a valuable approach for clinical ASD diagnosis. |
Author | Li, Zhigang Liu, Jingyu Cai, Hongxin Dong, Qunxi Hu, Bin |
Author_xml | – sequence: 1 givenname: Qunxi orcidid: 0000-0002-0484-3019 surname: Dong fullname: Dong, Qunxi email: dongqx@bit.edu.cn organization: Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Hongxin orcidid: 0009-0005-4041-0770 surname: Cai fullname: Cai, Hongxin email: chx@bit.edu.cn organization: Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Zhigang orcidid: 0000-0003-1435-8671 surname: Li fullname: Li, Zhigang email: lzg2021@bit.edu.cn organization: Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Jingyu orcidid: 0000-0002-1646-637X surname: Liu fullname: Liu, Jingyu email: liujingyu@bit.edu.cn organization: Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Bin orcidid: 0000-0003-3514-5413 surname: Hu fullname: Hu, Bin email: bh@bit.edu.cn organization: Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38700974$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvGyEURlGUqknT_IBIVcUyG7s8BmZYOm9XeSyarhGB64hmBlxgErW_vji2pSqLsOEC51yJ-31CuyEGQOiIkimlRH37fnI1nzLCminnSjai3UH7jMpuwhjpdrc1Vc0eOsz5F6mrq1dKfkR7vGsJUW2zj8IM34x98c8eXvBJMj7gWygvMT3h-2RCXsQ0QMIXY_bhEc-Dq6QbTe__gqvH1bMpPgZcKzwbi88D_rEEW9I44DOfY3JVP_PmMcTs82f0YWH6DIeb_QD9vDi_P72aXN9dzk9n1xPLGSsTYIaC5ZQwIkVnnTQLaJwRquFta62gAtqOuAfGuXOdbCxXVgnpOEguJLP8AB2v-y5T_D1CLnrw2ULfmwBxzJoTQRRvGRMV_bpBx4cBnF4mP5j0R29nVIF2DdgUc06w0NaX10-XOq9eU6JXgehVIHoViN4EUk36xtw2f8_5snY8APzHC9pRyvg_1OeWow |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1109_TNSRE_2025_3543177 crossref_primary_10_1109_ACCESS_2025_3532302 |
Cites_doi | 10.1109/TMI.2022.3199032 10.1016/j.mri.2019.05.031 10.1109/TCYB.2015.2403356 10.1371/journal.pone.0289735 10.1038/s41380-023-01958-8 10.1145/3474085.3475240 10.1109/TMI.2022.3201974 10.1002/hbm.24021 10.1093/cercor/bhac513 10.3389/fnsys.2011.00010 10.1038/nbt1206-1565 10.1016/j.compbiomed.2022.105239 10.1038/mp.2013.78 10.1006/nimg.2001.0978 10.1109/TCYB.2022.3223918 10.3389/fnins.2020.00258 10.1016/j.media.2023.102756 10.1016/j.celrep.2013.10.003 10.1109/TMI.2020.2976825 10.1109/CVPR52688.2022.00333 10.3389/fnins.2022.1087176 10.1002/hbm.24415 10.1109/TMI.2022.3170701 10.1109/TIM.2023.3318748 10.7554/eLife.44890 10.1109/TMI.2021.3110829 10.1109/TMI.2022.3203899 10.1016/j.media.2021.102233 10.1109/TCYB.2018.2839693 10.1109/CVPR.2016.90 10.1109/TMI.2022.3218745 10.1002/hbm.21333 10.1109/JBHI.2023.3274531 10.1016/j.neuron.2011.09.006 10.3389/fninf.2019.00070 10.3389/conf.fninf.2013.09.00042 10.1109/JBHI.2022.3232550 10.3389/fnins.2016.00191 10.1109/TNNLS.2015.2487364 10.1093/cercor/bhy123 10.1016/j.biopsych.2015.06.029 10.1016/j.bbr.2010.09.010 10.1080/02643290500443250 10.18653/v1/D19-1443 10.1016/j.compbiomed.2022.106320 10.1038/nn.4164 10.1016/j.neuron.2020.01.029 10.15585/mmwr.ss6706a1 10.1109/JBHI.2019.2925710 10.1007/s12264-017-0118-1 10.1002/hbm.20324 10.1016/j.neuroimage.2009.12.120 10.1002/aur.1858 10.1109/TCYB.2020.3016953 10.1109/TMI.2023.3325261 10.1109/JBHI.2020.2983456 10.1371/journal.pone.0068910 10.1109/TMI.2020.2973650 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/JBHI.2024.3396457 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 4865 |
ExternalDocumentID | 38700974 10_1109_JBHI_2024_3396457 10518112 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2019YFA0706200 – fundername: Scientific and technological innovation 2030 project of MOST grantid: 2021ZD0201900; 2021ZD0200601 – fundername: China Postdoctoral Science Foundation grantid: 2022M720434 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 62227807; 62302044; 62376030 funderid: 10.13039/501100001809 – fundername: Beijing Institute of Technology Research Fund Program for Young Scholars funderid: 10.13039/501100012236 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c322t-e2a1ec31020658cd6afe4da594377cc515e780db233dd864c39c956d3e63562c3 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 03:27:04 EDT 2025 Mon Jul 21 05:51:31 EDT 2025 Thu Apr 24 23:11:29 EDT 2025 Tue Jul 01 03:00:09 EDT 2025 Wed Aug 27 01:57:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-e2a1ec31020658cd6afe4da594377cc515e780db233dd864c39c956d3e63562c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1646-637X 0000-0002-0484-3019 0009-0005-4041-0770 0000-0003-1435-8671 0000-0003-3514-5413 |
PMID | 38700974 |
PQID | 3050937225 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_JBHI_2024_3396457 ieee_primary_10518112 crossref_primary_10_1109_JBHI_2024_3396457 proquest_miscellaneous_3050937225 pubmed_primary_38700974 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 Kan (ref37) ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref31 ref30 Kan (ref27) 2022; 35 ref33 ref32 ref2 ref1 ref39 ref38 Kingma (ref48) 2015 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref60 ref61 |
References_xml | – ident: ref28 doi: 10.1109/TMI.2022.3199032 – ident: ref8 doi: 10.1016/j.mri.2019.05.031 – ident: ref20 doi: 10.1109/TCYB.2015.2403356 – ident: ref56 doi: 10.1371/journal.pone.0289735 – ident: ref18 doi: 10.1038/s41380-023-01958-8 – ident: ref39 doi: 10.1145/3474085.3475240 – ident: ref42 doi: 10.1109/TMI.2022.3201974 – ident: ref12 doi: 10.1002/hbm.24021 – ident: ref19 doi: 10.1093/cercor/bhac513 – ident: ref58 doi: 10.3389/fnsys.2011.00010 – ident: ref49 doi: 10.1038/nbt1206-1565 – ident: ref4 doi: 10.1016/j.compbiomed.2022.105239 – ident: ref44 doi: 10.1038/mp.2013.78 – ident: ref46 doi: 10.1006/nimg.2001.0978 – ident: ref30 doi: 10.1109/TCYB.2022.3223918 – ident: ref11 doi: 10.3389/fnins.2020.00258 – ident: ref17 doi: 10.1016/j.media.2023.102756 – ident: ref52 doi: 10.1016/j.celrep.2013.10.003 – ident: ref5 doi: 10.1109/TMI.2020.2976825 – ident: ref31 doi: 10.1109/CVPR52688.2022.00333 – ident: ref26 doi: 10.3389/fnins.2022.1087176 – start-page: 1 volume-title: Proc. ICLR year: 2015 ident: ref48 article-title: Adam: A method for stochastic optimization – ident: ref24 doi: 10.1002/hbm.24415 – ident: ref29 doi: 10.1109/TMI.2022.3170701 – ident: ref40 doi: 10.1109/TIM.2023.3318748 – ident: ref14 doi: 10.7554/eLife.44890 – ident: ref6 doi: 10.1109/TMI.2021.3110829 – ident: ref34 doi: 10.1109/TMI.2022.3203899 – ident: ref50 doi: 10.1016/j.media.2021.102233 – ident: ref22 doi: 10.1109/TCYB.2018.2839693 – start-page: 618 volume-title: Proc. Int. Conf. Med. Imag. With Deep Learn. ident: ref37 article-title: FBNETGEN: Task-aware GNN-based fMRI analysis via functional brain network generation – ident: ref41 doi: 10.1109/CVPR.2016.90 – ident: ref36 doi: 10.1109/TMI.2022.3218745 – ident: ref47 doi: 10.1002/hbm.21333 – ident: ref7 doi: 10.1109/JBHI.2023.3274531 – ident: ref10 doi: 10.1016/j.neuron.2011.09.006 – ident: ref51 doi: 10.3389/fninf.2019.00070 – ident: ref45 doi: 10.3389/conf.fninf.2013.09.00042 – ident: ref9 doi: 10.1109/JBHI.2022.3232550 – ident: ref59 doi: 10.3389/fnins.2016.00191 – ident: ref35 doi: 10.1109/TNNLS.2015.2487364 – ident: ref16 doi: 10.1093/cercor/bhy123 – ident: ref53 doi: 10.1016/j.biopsych.2015.06.029 – ident: ref61 doi: 10.1016/j.bbr.2010.09.010 – ident: ref43 doi: 10.1080/02643290500443250 – ident: ref38 doi: 10.18653/v1/D19-1443 – ident: ref25 doi: 10.1016/j.compbiomed.2022.106320 – ident: ref15 doi: 10.1038/nn.4164 – ident: ref13 doi: 10.1016/j.neuron.2020.01.029 – ident: ref1 doi: 10.15585/mmwr.ss6706a1 – ident: ref3 doi: 10.1109/JBHI.2019.2925710 – ident: ref54 doi: 10.1007/s12264-017-0118-1 – ident: ref60 doi: 10.1002/hbm.20324 – ident: ref32 doi: 10.1016/j.neuroimage.2009.12.120 – ident: ref57 doi: 10.1002/aur.1858 – ident: ref21 doi: 10.1109/TCYB.2020.3016953 – ident: ref23 doi: 10.1109/TMI.2023.3325261 – volume: 35 start-page: 25586 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2022 ident: ref27 article-title: Brain network transformer – ident: ref2 doi: 10.1109/JBHI.2020.2983456 – ident: ref55 doi: 10.1371/journal.pone.0068910 – ident: ref33 doi: 10.1109/TMI.2020.2973650 |
SSID | ssj0000816896 |
Score | 2.4547825 |
Snippet | Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4854 |
SubjectTerms | Algorithms Attention network Autism autism spectrum diso rder Autism Spectrum Disorder - diagnostic imaging Autism Spectrum Disorder - physiopathology Biomarkers Brain - diagnostic imaging Brain modeling brain network Child Computer aided diagnosis Data models Feature extraction fusion Humans Image Interpretation, Computer-Assisted - methods individualized Magnetic Resonance Imaging - methods Male transformer Transformers |
Title | A Multiview Brain Network Transformer Fusing Individualized Information for Autism Spectrum Disorder Diagnosis |
URI | https://ieeexplore.ieee.org/document/10518112 https://www.ncbi.nlm.nih.gov/pubmed/38700974 https://www.proquest.com/docview/3050937225 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7Ug3jxWTW-WMGTkJpkN0lzbMVShfZUwVtIZici2lT6uPjrndkkRQXF2xx28_pmM7M7j0-Iq4JMrsoLdAETPq3S6Gbg-27mB5kfq5x8cj7QH46iwaN-eAqf6mJ1WwuDiDb5DNss2li-mcKSj8pohYdkkJhTeJ12blWx1upAxTJIWD6ugASXVqKuo5i-l9w89Ab3tBsMdFupJNIhk-8p0lUvifU3k2Q5Vn53N63Z6e-IUfPAVbbJa3u5yNvw8aOX47_faFds1w6o7FYasyfWsNwXm8M6xH4gyq60RbkcMpA9JpCQoypVXI4bJxdnss8J88_yflXP9fKBRtbFTQy2JEl2Sa3nE8kk94vZciKbXp8k2Ay_l3lLPPbvxrcDtyZlcIHW_sJFwhCBnMKAnRcwUVagNlmYaBXHAOQeYdzxTB4oZUwn0qASoD2YUcid8AJQh2KjnJZ4LGSURRHkHmKoQHdyJOUA1FAoo4qiyMARXoNLCnXHcibOeEvtzsVLUkY1ZVTTGlVHXK-mvFftOv4a3GJEvgyswHDEZYN-SouNIyhZidPlPFXcLUfF9A90xFGlFqvZjTad_HLVU7HFN6-SB8_EBn12PCeHZpFfWEX-BAKM77I |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5VVCpcKOVR0tJ2kTghOdjetR0fA2qUUJJTkLhZ9uwYRYBTkeTCr-_M2o4KEojbHNbWWt-MZ3bn8QGclOxydVGSh5TKbZUhL8cg8PIgzINEFxyTy4X-eBIPr83lTXTTNKu7XhgicsVn1BXR5fLtHFdyVcYWHrFDEk7hj-z4TVq3a62vVByHhGPkClnw2BZNk8cM_PTs8nw44vNgaLpap7GJhH5Ps7b6aWKeOSXHsvJ6wOkcz-AzTNot1_Umd93Vsuji04tpju_-ph3YbkJQ1a915gt8oGoXPo2bJPseVH3l2nIlaaDOhUJCTepicTVtw1x6VAMpmb9Vo3VH1-yJrGramwRuxZLqs2IvHpTQ3C8fVw-qnfbJgqvxmy324Xrwe3ox9BpaBg_Z-pceMYqEHBaGEr6gjfOSjM2j1OgkQeQAiZKeb4tQa2t7sUGdIp_CrCaZhReiPoCNal7RIag4j2MsfKJIo-kVxOqBZLDUVpdlmWMH_BaXDJuZ5UKdcZ-5s4ufZoJqJqhmDaodOF0_8rce2PHW4n1B5L-FNRgdOG7Rz9jcJIeSVzRfLTIt83J0wn_BDnyt1WL9dKtN31556y_YHE7HV9nVaPLnO2zJRupSwiPYYAjoB4c3y-KnU-p_vbbzAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multiview+Brain+Network+Transformer+Fusing+Individualized+Information+for+Autism+Spectrum+Disorder+Diagnosis&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Dong%2C+Qunxi&rft.au=Cai%2C+Hongxin&rft.au=Li%2C+Zhigang&rft.au=Liu%2C+Jingyu&rft.date=2024-08-01&rft.eissn=2168-2208&rft.volume=28&rft.issue=8&rft.spage=4854&rft_id=info:doi/10.1109%2FJBHI.2024.3396457&rft_id=info%3Apmid%2F38700974&rft.externalDocID=38700974 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |