Self-gravitating collapsing star and black hole spin-up in long gamma ray bursts
Context. Long gamma ray bursts (GRBs) originate from the collapse of massive, rotating stars. Some of the GRBs exhibit much stronger variability patterns in the prompt GRB emission than the usual stochastic variations. We discuss the mechanisms able to account for this effect. Aims We aim to model t...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 677; p. A19 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context.
Long gamma ray bursts (GRBs) originate from the collapse of massive, rotating stars. Some of the GRBs exhibit much stronger variability patterns in the prompt GRB emission than the usual stochastic variations. We discuss the mechanisms able to account for this effect.
Aims
We aim to model the process of stellar collapse in the scenario of a self-gravitating collapsing star. We account for the changes in Kerr metric induced by the growth of the black hole; accretion of angular momentum; and the self-gravity effect due to a large mass of the collapsing stellar core falling onto black hole in a very short time. We also investigate the existence of accretion shocks in the collapsar, and the role of magnetic field in their propagation.
Methods.
We compute the time-dependent axially symmetric general relativistic magnetohydrodynamic model of a collapsing stellar core in the dynamical Kerr metric. We explore the influence of self-gravity in such a star, where the newly formed black hole is increasing the mass and changing its spin. The Kerr metric evolves according to the mass and angular momentum changes during the collapse. We parameterize the rotation inside the star, and account for the presence of large-scale poloidal magnetic field. For the set of the global parameters, such as the initial black hole spin and the initial content of specific angular momentum in the stellar envelope, we determine the evolution of black hole parameters (mass and spin) and quantify the strength of the gravitational instability. We then estimate the variability timescales and amplitudes.
Results.
We find that the role of the gravitational instability measured by the value of the Toomre parameter is relatively important in the innermost regions of the collapsing star. The character of accretion rate variability strongly depends on the assumption of self-gravity in the model, and is also affected by the magnetic field. Additional factors are initial spin and rotation of the stellar core. We find that for subcritical rotation of the precollapsed star, a centrifugally supported mini-disc is present at the equatorial plane, and it may be subject to fragmentation due to self-gravitating instability. We also find that self-gravity may play a role in the angular momentum transport and that it generally lowers the final mass and spin of the black hole, while the accretion-rate variability amplitude is much larger in self-gravitating objects. The effect of magnetic field is rather weak, while it seems to decrease the strength of accretion shocks. The magnetisation affects the global properties of the flow in a non-linear way, and is manifested mostly in models with moderate initial black hole spins but supercritical rotation of the collapsing star.
Conclusions.
Our computations confirm that gravitational instability can account for flaring activity in GRBs and the variations in their prompt emission. Rapid variability detected in the brightest GRBs (most likely powered by rapidly spinning black holes) is consistent with the self-gravitating collapsar model, where the transonic shocks are formed. The effect should be weakened by magnetic field. |
---|---|
AbstractList | Context. Long gamma ray bursts (GRBs) originate from the collapse of massive, rotating stars. Some of the GRBs exhibit much stronger variability patterns in the prompt GRB emission than the usual stochastic variations. We discuss the mechanisms able to account for this effect. Aims We aim to model the process of stellar collapse in the scenario of a self-gravitating collapsing star. We account for the changes in Kerr metric induced by the growth of the black hole; accretion of angular momentum; and the self-gravity effect due to a large mass of the collapsing stellar core falling onto black hole in a very short time. We also investigate the existence of accretion shocks in the collapsar, and the role of magnetic field in their propagation. Methods. We compute the time-dependent axially symmetric general relativistic magnetohydrodynamic model of a collapsing stellar core in the dynamical Kerr metric. We explore the influence of self-gravity in such a star, where the newly formed black hole is increasing the mass and changing its spin. The Kerr metric evolves according to the mass and angular momentum changes during the collapse. We parameterize the rotation inside the star, and account for the presence of large-scale poloidal magnetic field. For the set of the global parameters, such as the initial black hole spin and the initial content of specific angular momentum in the stellar envelope, we determine the evolution of black hole parameters (mass and spin) and quantify the strength of the gravitational instability. We then estimate the variability timescales and amplitudes. Results. We find that the role of the gravitational instability measured by the value of the Toomre parameter is relatively important in the innermost regions of the collapsing star. The character of accretion rate variability strongly depends on the assumption of self-gravity in the model, and is also affected by the magnetic field. Additional factors are initial spin and rotation of the stellar core. We find that for subcritical rotation of the precollapsed star, a centrifugally supported mini-disc is present at the equatorial plane, and it may be subject to fragmentation due to self-gravitating instability. We also find that self-gravity may play a role in the angular momentum transport and that it generally lowers the final mass and spin of the black hole, while the accretion-rate variability amplitude is much larger in self-gravitating objects. The effect of magnetic field is rather weak, while it seems to decrease the strength of accretion shocks. The magnetisation affects the global properties of the flow in a non-linear way, and is manifested mostly in models with moderate initial black hole spins but supercritical rotation of the collapsing star. Conclusions. Our computations confirm that gravitational instability can account for flaring activity in GRBs and the variations in their prompt emission. Rapid variability detected in the brightest GRBs (most likely powered by rapidly spinning black holes) is consistent with the self-gravitating collapsar model, where the transonic shocks are formed. The effect should be weakened by magnetic field. Context. Long gamma ray bursts (GRBs) originate from the collapse of massive, rotating stars. Some of the GRBs exhibit much stronger variability patterns in the prompt GRB emission than the usual stochastic variations. We discuss the mechanisms able to account for this effect. Aims We aim to model the process of stellar collapse in the scenario of a self-gravitating collapsing star. We account for the changes in Kerr metric induced by the growth of the black hole; accretion of angular momentum; and the self-gravity effect due to a large mass of the collapsing stellar core falling onto black hole in a very short time. We also investigate the existence of accretion shocks in the collapsar, and the role of magnetic field in their propagation. Methods. We compute the time-dependent axially symmetric general relativistic magnetohydrodynamic model of a collapsing stellar core in the dynamical Kerr metric. We explore the influence of self-gravity in such a star, where the newly formed black hole is increasing the mass and changing its spin. The Kerr metric evolves according to the mass and angular momentum changes during the collapse. We parameterize the rotation inside the star, and account for the presence of large-scale poloidal magnetic field. For the set of the global parameters, such as the initial black hole spin and the initial content of specific angular momentum in the stellar envelope, we determine the evolution of black hole parameters (mass and spin) and quantify the strength of the gravitational instability. We then estimate the variability timescales and amplitudes. Results. We find that the role of the gravitational instability measured by the value of the Toomre parameter is relatively important in the innermost regions of the collapsing star. The character of accretion rate variability strongly depends on the assumption of self-gravity in the model, and is also affected by the magnetic field. Additional factors are initial spin and rotation of the stellar core. We find that for subcritical rotation of the precollapsed star, a centrifugally supported mini-disc is present at the equatorial plane, and it may be subject to fragmentation due to self-gravitating instability. We also find that self-gravity may play a role in the angular momentum transport and that it generally lowers the final mass and spin of the black hole, while the accretion-rate variability amplitude is much larger in self-gravitating objects. The effect of magnetic field is rather weak, while it seems to decrease the strength of accretion shocks. The magnetisation affects the global properties of the flow in a non-linear way, and is manifested mostly in models with moderate initial black hole spins but supercritical rotation of the collapsing star. Conclusions. Our computations confirm that gravitational instability can account for flaring activity in GRBs and the variations in their prompt emission. Rapid variability detected in the brightest GRBs (most likely powered by rapidly spinning black holes) is consistent with the self-gravitating collapsar model, where the transonic shocks are formed. The effect should be weakened by magnetic field. |
Author | Janiuk, Agnieszka Król, Dominika Ł. Shahamat Dehsorkh, Narjes |
Author_xml | – sequence: 1 givenname: Agnieszka orcidid: 0000-0002-1622-3036 surname: Janiuk fullname: Janiuk, Agnieszka – sequence: 2 givenname: Narjes surname: Shahamat Dehsorkh fullname: Shahamat Dehsorkh, Narjes – sequence: 3 givenname: Dominika Ł. surname: Król fullname: Król, Dominika Ł. |
BookMark | eNp9kF1LwzAUhoNMcJv-Am8CXtedJG3SXsrwCwYK6nU4bdLZmaU16YT9e1snu_DCq_MeeN5z4JmRiW-9JeSSwTWDjC0AIE2kkGzBgfM0kwxOyJSlgiegUjkh0yNxRmYxboaVs1xMyfOLdXWyDvjV9Ng3fk2r1jns4hhjj4GiN7R0WH3Q99ZZGrvGJ7uONp66dmDWuN0iDbin5S7EPp6T0xpdtBe_c07e7m5flw_J6un-cXmzSirBeZ-YMpMILAWs87qQmVEZYJUWipnMyIrlxjCR5kyaWjAlLWJe2looBWgUlELMydXhbhfaz52Nvd60u-CHl5rnWSFBKQ4DJQ5UFdoYg611F5othr1moEd1ehSjRzH6qG5oFX9a1Y-d1vcBG_dv9xuCy3Pr |
CitedBy_id | crossref_primary_10_1103_PhysRevD_109_083010 crossref_primary_10_1016_j_procs_2025_02_270 |
Cites_doi | 10.1088/2041-8205/777/1/L15 10.1088/0004-637X/741/1/39 10.3847/1538-4357/ab58cb 10.1093/mnras/263.4.861 10.1093/mnras/stz2469 10.1088/0004-637X/787/1/90 10.1146/annurev-astro-081710-102521 10.1038/nature01750 10.1086/186493 10.1086/147861 10.1051/0004-6361:20011465 10.1088/0004-637X/744/2/141 10.1093/mnras/stz1296 10.1103/RevModPhys.76.1143 10.1088/0004-637X/810/1/34 10.1086/167015 10.1111/j.1365-2966.2011.19733.x 10.3847/2041-8213/abb818 10.1086/500349 10.1088/0004-637X/801/1/57 10.1086/308836 10.1093/mnras/staa1695 10.1086/518088 10.3847/2041-8213/aba493 10.1086/308732 10.1016/j.physrep.2014.09.008 10.1111/j.1745-3933.2005.00060.x 10.1093/mnras/stx2254 10.3847/1538-4357/ab5859 10.1016/j.newar.2008.04.002 10.3847/2041-8213/ab9a4e 10.1086/173723 10.1086/184130 10.1146/annurev.astro.41.081401.155207 10.1086/499775 10.1111/j.1365-2966.2009.16017.x 10.1103/PhysRevD.10.1070 10.1086/172359 10.1093/mnras/stac3185 10.1046/j.1365-8711.1999.02783.x 10.1086/165856 10.1111/j.1365-2966.2010.16824.x 10.1051/0004-6361:20030863 10.1088/0004-637X/700/2/1970 10.1093/mnras/stw2695 10.1093/mnras/stab2989 10.1086/304154 10.1051/0004-6361/200811323 10.1016/j.asr.2018.03.010 10.1146/annurev.astro.43.072103.150558 10.1086/367609 10.1093/mnras/stu2544 10.1103/PhysRevD.10.1680 10.1086/518761 10.1086/171166 10.1111/j.1745-3933.2009.00624.x 10.3847/1538-4357/abb3cd 10.1016/j.physrep.2007.02.002 10.1103/PhysRevLett.29.1114 10.1093/mnras/stab3784 10.1086/306428 10.1086/526511 10.1086/374594 10.3847/1538-4357/aae83f 10.1103/PhysRevLett.41.203 10.1137/1025002 10.1103/PhysRevD.11.2042 10.3847/1538-4357/abf245 10.3847/1538-4357/ac4507 10.1086/311710 10.1088/1361-6382/aa71c3 10.1046/j.1365-8711.2003.06464.x 10.1086/498500 10.1086/591841 |
ContentType | Journal Article |
Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1051/0004-6361/202245610 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_202245610 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD H8D L7M |
ID | FETCH-LOGICAL-c322t-db56a0140af8f965d750ac4971d5d6c18dd134816df3176eaa8bef3770ad70b33 |
ISSN | 0004-6361 |
IngestDate | Mon Jun 30 04:31:12 EDT 2025 Tue Jul 01 03:54:10 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c322t-db56a0140af8f965d750ac4971d5d6c18dd134816df3176eaa8bef3770ad70b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1622-3036 |
OpenAccessLink | https://www.aanda.org/10.1051/0004-6361/202245610/pdf |
PQID | 2859607720 |
PQPubID | 1796397 |
ParticipantIDs | proquest_journals_2859607720 crossref_primary_10_1051_0004_6361_202245610 crossref_citationtrail_10_1051_0004_6361_202245610 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2023 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Christodoulou (R10) 1992; 388 Wald (R72) 1978; 41 Hunter (R24) 1997; 482 Beloborodov (R7) 1998; 508 Chrzanowski (R11) 1975; 11 Meszaros (R45) 1983; 273 R63 Kifonidis (R37) 2003; 408 Wald (R71) 1974; 10 Guidorzi (R19) 2015; 801 R27 Murguia-Berthier (R46) 2020; 901 Gottlieb (R18) 2022; 510 Obergaulinger (R50) 2009; 498 Perna (R52) 2006; 636 Janka (R32) 2007; 442 Lei (R41) 2009; 700 Hueckstaedt (R23) 2005; 361 Balbus (R5) 2003; 41 R70 Kawanaka (R36) 2013; 777 Cohen (R12) 1974; 10 Teukolsky (R68) 1972; 29 Pontzen (R58) 2010; 402 Janiuk (R26) 2022; 12 Noble (R49) 2006; 641 Petit (R53) 2019; 489 Podsiadlowski (R57) 2003; 341 R33 Palit (R51) 2019; 487 Reichert (R59) 2023; 518 Shahamat (R62) 2021; 508 Coughlin (R13) 2020; 896 Abbott (R1) 2020; 900 Spruit (R65) 2002; 381 Armitage (R3) 2011; 49 Margutti (R43) 2010; 406 Golkhou (R17) 2014; 787 Eichler (R15) 1989; 336 Woosley (R75) 2006; 44 Dall’Osso (R14) 2017; 464 Janiuk (R29) 2007; 664 Kawanaka (R35) 2012; 419 Hachisu (R20) 1987; 323 Beloborodov (R8) 2000; 535 Narayan (R48) 1992; 395 White (R73) 2022; 926 Bhat (R9) 2011; 744 Toomre (R69) 1964; 139 Woosley (R77) 2015; 810 Becerra (R6) 2019; 887 Woosley (R74) 1993; 405 Hunter (R25) 1998; 508 Masada (R44) 2007; 663 Zhang (R78) 2003; 586 Harten (R21) 1983; 25 Janiuk (R31) 2018; 868 Shahamat (R61) 2020; 888 Komissarov (R38) 1999; 308 Janiuk (R28) 2008; 675 Janiuk (R30) 2008; 687 Kumar (R40) 2015; 561 Sironi (R64) 2011; 741 Balbus (R4) 2000; 534 Piran (R56) 1993; 263 Ryu (R60) 2020; 904 Amati (R2) 2018; 62 Lodato (R42) 2008; 52 Suková (R66) 2015; 447 Katz (R34) 1994; 422 Petropoulou (R54) 2020; 496 Suková (R67) 2017; 472 Gammie (R16) 2003; 589 Piran (R55) 2004; 76 Król (R39) 2021; 912 Woosley (R76) 2006; 637 Hjorth (R22) 2003; 423 Narayan (R47) 2009; 394 |
References_xml | – volume: 777 start-page: L15 year: 2013 ident: R36 publication-title: ApJ doi: 10.1088/2041-8205/777/1/L15 – volume: 741 start-page: 39 year: 2011 ident: R64 publication-title: ApJ doi: 10.1088/0004-637X/741/1/39 – volume: 888 start-page: 64 year: 2020 ident: R61 publication-title: ApJ doi: 10.3847/1538-4357/ab58cb – volume: 263 start-page: 861 year: 1993 ident: R56 publication-title: MNRAS doi: 10.1093/mnras/263.4.861 – volume: 489 start-page: 5669 year: 2019 ident: R53 publication-title: MNRAS doi: 10.1093/mnras/stz2469 – volume: 787 start-page: 90 year: 2014 ident: R17 publication-title: ApJ doi: 10.1088/0004-637X/787/1/90 – volume: 49 start-page: 195 year: 2011 ident: R3 publication-title: ARA&A doi: 10.1146/annurev-astro-081710-102521 – volume: 423 start-page: 847 year: 2003 ident: R22 publication-title: Nature doi: 10.1038/nature01750 – volume: 395 start-page: L83 year: 1992 ident: R48 publication-title: ApJ doi: 10.1086/186493 – volume: 139 start-page: 1217 year: 1964 ident: R69 publication-title: ApJ doi: 10.1086/147861 – volume: 381 start-page: 923 year: 2002 ident: R65 publication-title: A&A doi: 10.1051/0004-6361:20011465 – volume: 744 start-page: 141 year: 2011 ident: R9 publication-title: ApJ doi: 10.1088/0004-637X/744/2/141 – volume: 487 start-page: 755 year: 2019 ident: R51 publication-title: MNRAS doi: 10.1093/mnras/stz1296 – volume: 76 start-page: 1143 year: 2004 ident: R55 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.76.1143 – volume: 810 start-page: 34 year: 2015 ident: R77 publication-title: ApJ doi: 10.1088/0004-637X/810/1/34 – volume: 336 start-page: 360 year: 1989 ident: R15 publication-title: ApJ doi: 10.1086/167015 – ident: R33 – volume: 419 start-page: 713 year: 2012 ident: R35 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19733.x – volume: 901 start-page: L24 year: 2020 ident: R46 publication-title: ApJ doi: 10.3847/2041-8213/abb818 – volume: 641 start-page: 626 year: 2006 ident: R49 publication-title: ApJ doi: 10.1086/500349 – volume: 801 start-page: 57 year: 2015 ident: R19 publication-title: ApJ doi: 10.1088/0004-637X/801/1/57 – volume: 12 start-page: 221 year: 2022 ident: R26 publication-title: XL Polish Astronomical Society Meeting – volume: 535 start-page: 158 year: 2000 ident: R8 publication-title: ApJ doi: 10.1086/308836 – volume: 496 start-page: 2910 year: 2020 ident: R54 publication-title: MNRAS doi: 10.1093/mnras/staa1695 – volume: 663 start-page: 437 year: 2007 ident: R44 publication-title: ApJ doi: 10.1086/518088 – volume: 900 start-page: L13 year: 2020 ident: R1 publication-title: ApJ doi: 10.3847/2041-8213/aba493 – volume: 534 start-page: 420 year: 2000 ident: R4 publication-title: ApJ doi: 10.1086/308732 – volume: 561 start-page: 1 year: 2015 ident: R40 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2014.09.008 – volume: 361 start-page: L35 year: 2005 ident: R23 publication-title: MNRAS doi: 10.1111/j.1745-3933.2005.00060.x – volume: 472 start-page: 4327 year: 2017 ident: R67 publication-title: MNRAS doi: 10.1093/mnras/stx2254 – volume: 887 start-page: 254 year: 2019 ident: R6 publication-title: ApJ doi: 10.3847/1538-4357/ab5859 – volume: 52 start-page: 21 year: 2008 ident: R42 publication-title: New A Rev. doi: 10.1016/j.newar.2008.04.002 – volume: 896 start-page: L38 year: 2020 ident: R13 publication-title: ApJ doi: 10.3847/2041-8213/ab9a4e – volume: 422 start-page: 248 year: 1994 ident: R34 publication-title: ApJ doi: 10.1086/173723 – volume: 273 start-page: L59 year: 1983 ident: R45 publication-title: ApJ doi: 10.1086/184130 – volume: 41 start-page: 555 year: 2003 ident: R5 publication-title: ARA&A doi: 10.1146/annurev.astro.41.081401.155207 – volume: 636 start-page: L29 year: 2006 ident: R52 publication-title: ApJ doi: 10.1086/499775 – volume: 402 start-page: 1523 year: 2010 ident: R58 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.16017.x – volume: 10 start-page: 1070 year: 1974 ident: R12 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.10.1070 – ident: R63 – volume: 405 start-page: 273 year: 1993 ident: R74 publication-title: ApJ doi: 10.1086/172359 – volume: 518 start-page: 1557 year: 2023 ident: R59 publication-title: MNRAS doi: 10.1093/mnras/stac3185 – volume: 308 start-page: 1069 year: 1999 ident: R38 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02783.x – volume: 323 start-page: 592 year: 1987 ident: R20 publication-title: ApJ doi: 10.1086/165856 – volume: 406 start-page: 2149 year: 2010 ident: R43 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16824.x – volume: 408 start-page: 621 year: 2003 ident: R37 publication-title: A&A doi: 10.1051/0004-6361:20030863 – volume: 700 start-page: 1970 year: 2009 ident: R41 publication-title: ApJ doi: 10.1088/0004-637X/700/2/1970 – volume: 464 start-page: 4399 year: 2017 ident: R14 publication-title: MNRAS doi: 10.1093/mnras/stw2695 – volume: 508 start-page: 6068 year: 2021 ident: R62 publication-title: MNRAS doi: 10.1093/mnras/stab2989 – volume: 482 start-page: 852 year: 1997 ident: R24 publication-title: ApJ doi: 10.1086/304154 – volume: 498 start-page: 241 year: 2009 ident: R50 publication-title: A&A doi: 10.1051/0004-6361/200811323 – volume: 62 start-page: 191 year: 2018 ident: R2 publication-title: Adv. Space Res. doi: 10.1016/j.asr.2018.03.010 – volume: 44 start-page: 507 year: 2006 ident: R75 publication-title: ARA&A doi: 10.1146/annurev.astro.43.072103.150558 – volume: 586 start-page: 356 year: 2003 ident: R78 publication-title: ApJ doi: 10.1086/367609 – volume: 447 start-page: 1565 year: 2015 ident: R66 publication-title: MNRAS doi: 10.1093/mnras/stu2544 – volume: 10 start-page: 1680 year: 1974 ident: R71 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.10.1680 – volume: 664 start-page: 1011 year: 2007 ident: R29 publication-title: ApJ doi: 10.1086/518761 – volume: 388 start-page: 451 year: 1992 ident: R10 publication-title: ApJ doi: 10.1086/171166 – volume: 394 start-page: L117 year: 2009 ident: R47 publication-title: MNRAS doi: 10.1111/j.1745-3933.2009.00624.x – volume: 904 start-page: 99 year: 2020 ident: R60 publication-title: ApJ doi: 10.3847/1538-4357/abb3cd – volume: 442 start-page: 38 year: 2007 ident: R32 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2007.02.002 – volume: 29 start-page: 1114 year: 1972 ident: R68 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.29.1114 – volume: 510 start-page: 4962 year: 2022 ident: R18 publication-title: MNRAS doi: 10.1093/mnras/stab3784 – volume: 508 start-page: 680 year: 1998 ident: R25 publication-title: ApJ doi: 10.1086/306428 – volume: 675 start-page: 519 year: 2008 ident: R28 publication-title: ApJ doi: 10.1086/526511 – volume: 589 start-page: 444 year: 2003 ident: R16 publication-title: ApJ doi: 10.1086/374594 – volume: 868 start-page: 68 year: 2018 ident: R31 publication-title: ApJ doi: 10.3847/1538-4357/aae83f – volume: 41 start-page: 203 year: 1978 ident: R72 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.41.203 – volume: 25 start-page: 35 year: 1983 ident: R21 publication-title: SIAM Rev. doi: 10.1137/1025002 – ident: R27 – volume: 11 start-page: 2042 year: 1975 ident: R11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.11.2042 – volume: 912 start-page: 132 year: 2021 ident: R39 publication-title: ApJ doi: 10.3847/1538-4357/abf245 – volume: 926 start-page: 111 year: 2022 ident: R73 publication-title: ApJ doi: 10.3847/1538-4357/ac4507 – volume: 508 start-page: L25 year: 1998 ident: R7 publication-title: ApJ doi: 10.1086/311710 – ident: R70 doi: 10.1088/1361-6382/aa71c3 – volume: 341 start-page: 385 year: 2003 ident: R57 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06464.x – volume: 637 start-page: 914 year: 2006 ident: R76 publication-title: ApJ doi: 10.1086/498500 – volume: 687 start-page: 433 year: 2008 ident: R30 publication-title: ApJ doi: 10.1086/591841 |
SSID | ssj0002183 |
Score | 2.4392636 |
Snippet | Context.
Long gamma ray bursts (GRBs) originate from the collapse of massive, rotating stars. Some of the GRBs exhibit much stronger variability patterns in... Context. Long gamma ray bursts (GRBs) originate from the collapse of massive, rotating stars. Some of the GRBs exhibit much stronger variability patterns in... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | A19 |
SubjectTerms | Amplitudes Angular momentum Black holes Collapsars Deposition Emission Gamma ray astronomy Gamma ray bursts Gamma rays Gravitation Gravitational instability Magnetic fields Magnetic properties Mathematical models Parameters Stellar cores Stellar envelopes Stellar magnetic fields Stellar rotation Time dependence Variability |
Title | Self-gravitating collapsing star and black hole spin-up in long gamma ray bursts |
URI | https://www.proquest.com/docview/2859607720 |
Volume | 677 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKEBIXNAZog4F8AC4hXRI7bnIsEzCGhCZtk3aLHDtZS9u0atLDduDAX857dup0A00MqYpSq32V8n19fu_5_SDkLU9SPkhi7gvJtc9VHvhpypkfJYFWeQkOgTIJst_F0Tk_vogver1fG1lLqybvq-u_1pX8D6qwBrhilew9kHVCYQHuAV-4AsJw_SeMT4tp6eMAIdNo21TPAqqLuo0R2PTIHEN0Ho7B9erFuPJXC4xxTHHG0KWczaS3lFcePNra9nRyLWlrDJLPZ7Y_k8R3NgpiwrS2S9ZGGOFYVuOV0azDywq87-uJ0_enIyzGlg3otlE9X05GVqsvf3Tpi9_Mgf1HNrU2PfY7mUjv3WEMhm5_MzARMZd51SlboACzvdb7hdWvnGGyaxt1bBWwaAe5WBU6tCr0D9UO2sPmQlqhWMmC9gfaf91etj6_v7XFucRDc-Qeh3jkzjMUkzkhD8jDCFwNnILx5etPt5ujCWldKPu7685VcXjg1g6ckJvWzc3N3VgsZ9vkSetq0KHlzVPSK6odsutwpe_pcAPVHfLoxN49Iye3iUU7YlEkFgVOUEMsisSiLbHouKJILGqIRYFY1BLrOTn__Ons8MhvR2_4CjR84-s8FhKdb1kmZSpiDYalVDwdhDrWQoWJ1iGWcAtdggEqCimTvCjZYBBIPQhyxl6QrWpeFbuEMhWpNIQXeK6cgwOrEiaLUOeCSaWSdI9E60eWqbYvPY5HmWZ3gLVHPrgvLWxblrs_vr_GImv_v3WGrRtFAJAHL-8n7RV53PF9n2w1y1XxGkzTJn9juPMbEP2EGQ |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-gravitating+collapsing+star+and+black+hole+spin-up+in+long+gamma+ray+bursts&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Janiuk%2C+Agnieszka&rft.au=Shahamat+Dehsorkh%2C+Narjes&rft.au=Kr%C3%B3l%2C+Dominika+%C5%81.&rft.date=2023-09-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=677&rft.spage=A19&rft_id=info:doi/10.1051%2F0004-6361%2F202245610&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202245610 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |