Self-gravitating collapsing star and black hole spin-up in long gamma ray bursts

Context. Long gamma ray bursts (GRBs) originate from the collapse of massive, rotating stars. Some of the GRBs exhibit much stronger variability patterns in the prompt GRB emission than the usual stochastic variations. We discuss the mechanisms able to account for this effect. Aims We aim to model t...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 677; p. A19
Main Authors Janiuk, Agnieszka, Shahamat Dehsorkh, Narjes, Król, Dominika Ł.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context. Long gamma ray bursts (GRBs) originate from the collapse of massive, rotating stars. Some of the GRBs exhibit much stronger variability patterns in the prompt GRB emission than the usual stochastic variations. We discuss the mechanisms able to account for this effect. Aims We aim to model the process of stellar collapse in the scenario of a self-gravitating collapsing star. We account for the changes in Kerr metric induced by the growth of the black hole; accretion of angular momentum; and the self-gravity effect due to a large mass of the collapsing stellar core falling onto black hole in a very short time. We also investigate the existence of accretion shocks in the collapsar, and the role of magnetic field in their propagation. Methods. We compute the time-dependent axially symmetric general relativistic magnetohydrodynamic model of a collapsing stellar core in the dynamical Kerr metric. We explore the influence of self-gravity in such a star, where the newly formed black hole is increasing the mass and changing its spin. The Kerr metric evolves according to the mass and angular momentum changes during the collapse. We parameterize the rotation inside the star, and account for the presence of large-scale poloidal magnetic field. For the set of the global parameters, such as the initial black hole spin and the initial content of specific angular momentum in the stellar envelope, we determine the evolution of black hole parameters (mass and spin) and quantify the strength of the gravitational instability. We then estimate the variability timescales and amplitudes. Results. We find that the role of the gravitational instability measured by the value of the Toomre parameter is relatively important in the innermost regions of the collapsing star. The character of accretion rate variability strongly depends on the assumption of self-gravity in the model, and is also affected by the magnetic field. Additional factors are initial spin and rotation of the stellar core. We find that for subcritical rotation of the precollapsed star, a centrifugally supported mini-disc is present at the equatorial plane, and it may be subject to fragmentation due to self-gravitating instability. We also find that self-gravity may play a role in the angular momentum transport and that it generally lowers the final mass and spin of the black hole, while the accretion-rate variability amplitude is much larger in self-gravitating objects. The effect of magnetic field is rather weak, while it seems to decrease the strength of accretion shocks. The magnetisation affects the global properties of the flow in a non-linear way, and is manifested mostly in models with moderate initial black hole spins but supercritical rotation of the collapsing star. Conclusions. Our computations confirm that gravitational instability can account for flaring activity in GRBs and the variations in their prompt emission. Rapid variability detected in the brightest GRBs (most likely powered by rapidly spinning black holes) is consistent with the self-gravitating collapsar model, where the transonic shocks are formed. The effect should be weakened by magnetic field.
AbstractList Context. Long gamma ray bursts (GRBs) originate from the collapse of massive, rotating stars. Some of the GRBs exhibit much stronger variability patterns in the prompt GRB emission than the usual stochastic variations. We discuss the mechanisms able to account for this effect. Aims We aim to model the process of stellar collapse in the scenario of a self-gravitating collapsing star. We account for the changes in Kerr metric induced by the growth of the black hole; accretion of angular momentum; and the self-gravity effect due to a large mass of the collapsing stellar core falling onto black hole in a very short time. We also investigate the existence of accretion shocks in the collapsar, and the role of magnetic field in their propagation. Methods. We compute the time-dependent axially symmetric general relativistic magnetohydrodynamic model of a collapsing stellar core in the dynamical Kerr metric. We explore the influence of self-gravity in such a star, where the newly formed black hole is increasing the mass and changing its spin. The Kerr metric evolves according to the mass and angular momentum changes during the collapse. We parameterize the rotation inside the star, and account for the presence of large-scale poloidal magnetic field. For the set of the global parameters, such as the initial black hole spin and the initial content of specific angular momentum in the stellar envelope, we determine the evolution of black hole parameters (mass and spin) and quantify the strength of the gravitational instability. We then estimate the variability timescales and amplitudes. Results. We find that the role of the gravitational instability measured by the value of the Toomre parameter is relatively important in the innermost regions of the collapsing star. The character of accretion rate variability strongly depends on the assumption of self-gravity in the model, and is also affected by the magnetic field. Additional factors are initial spin and rotation of the stellar core. We find that for subcritical rotation of the precollapsed star, a centrifugally supported mini-disc is present at the equatorial plane, and it may be subject to fragmentation due to self-gravitating instability. We also find that self-gravity may play a role in the angular momentum transport and that it generally lowers the final mass and spin of the black hole, while the accretion-rate variability amplitude is much larger in self-gravitating objects. The effect of magnetic field is rather weak, while it seems to decrease the strength of accretion shocks. The magnetisation affects the global properties of the flow in a non-linear way, and is manifested mostly in models with moderate initial black hole spins but supercritical rotation of the collapsing star. Conclusions. Our computations confirm that gravitational instability can account for flaring activity in GRBs and the variations in their prompt emission. Rapid variability detected in the brightest GRBs (most likely powered by rapidly spinning black holes) is consistent with the self-gravitating collapsar model, where the transonic shocks are formed. The effect should be weakened by magnetic field.
Context. Long gamma ray bursts (GRBs) originate from the collapse of massive, rotating stars. Some of the GRBs exhibit much stronger variability patterns in the prompt GRB emission than the usual stochastic variations. We discuss the mechanisms able to account for this effect. Aims We aim to model the process of stellar collapse in the scenario of a self-gravitating collapsing star. We account for the changes in Kerr metric induced by the growth of the black hole; accretion of angular momentum; and the self-gravity effect due to a large mass of the collapsing stellar core falling onto black hole in a very short time. We also investigate the existence of accretion shocks in the collapsar, and the role of magnetic field in their propagation. Methods. We compute the time-dependent axially symmetric general relativistic magnetohydrodynamic model of a collapsing stellar core in the dynamical Kerr metric. We explore the influence of self-gravity in such a star, where the newly formed black hole is increasing the mass and changing its spin. The Kerr metric evolves according to the mass and angular momentum changes during the collapse. We parameterize the rotation inside the star, and account for the presence of large-scale poloidal magnetic field. For the set of the global parameters, such as the initial black hole spin and the initial content of specific angular momentum in the stellar envelope, we determine the evolution of black hole parameters (mass and spin) and quantify the strength of the gravitational instability. We then estimate the variability timescales and amplitudes. Results. We find that the role of the gravitational instability measured by the value of the Toomre parameter is relatively important in the innermost regions of the collapsing star. The character of accretion rate variability strongly depends on the assumption of self-gravity in the model, and is also affected by the magnetic field. Additional factors are initial spin and rotation of the stellar core. We find that for subcritical rotation of the precollapsed star, a centrifugally supported mini-disc is present at the equatorial plane, and it may be subject to fragmentation due to self-gravitating instability. We also find that self-gravity may play a role in the angular momentum transport and that it generally lowers the final mass and spin of the black hole, while the accretion-rate variability amplitude is much larger in self-gravitating objects. The effect of magnetic field is rather weak, while it seems to decrease the strength of accretion shocks. The magnetisation affects the global properties of the flow in a non-linear way, and is manifested mostly in models with moderate initial black hole spins but supercritical rotation of the collapsing star. Conclusions. Our computations confirm that gravitational instability can account for flaring activity in GRBs and the variations in their prompt emission. Rapid variability detected in the brightest GRBs (most likely powered by rapidly spinning black holes) is consistent with the self-gravitating collapsar model, where the transonic shocks are formed. The effect should be weakened by magnetic field.
Author Janiuk, Agnieszka
Król, Dominika Ł.
Shahamat Dehsorkh, Narjes
Author_xml – sequence: 1
  givenname: Agnieszka
  orcidid: 0000-0002-1622-3036
  surname: Janiuk
  fullname: Janiuk, Agnieszka
– sequence: 2
  givenname: Narjes
  surname: Shahamat Dehsorkh
  fullname: Shahamat Dehsorkh, Narjes
– sequence: 3
  givenname: Dominika Ł.
  surname: Król
  fullname: Król, Dominika Ł.
BookMark eNp9kF1LwzAUhoNMcJv-Am8CXtedJG3SXsrwCwYK6nU4bdLZmaU16YT9e1snu_DCq_MeeN5z4JmRiW-9JeSSwTWDjC0AIE2kkGzBgfM0kwxOyJSlgiegUjkh0yNxRmYxboaVs1xMyfOLdXWyDvjV9Ng3fk2r1jns4hhjj4GiN7R0WH3Q99ZZGrvGJ7uONp66dmDWuN0iDbin5S7EPp6T0xpdtBe_c07e7m5flw_J6un-cXmzSirBeZ-YMpMILAWs87qQmVEZYJUWipnMyIrlxjCR5kyaWjAlLWJe2looBWgUlELMydXhbhfaz52Nvd60u-CHl5rnWSFBKQ4DJQ5UFdoYg611F5othr1moEd1ehSjRzH6qG5oFX9a1Y-d1vcBG_dv9xuCy3Pr
CitedBy_id crossref_primary_10_1103_PhysRevD_109_083010
crossref_primary_10_1016_j_procs_2025_02_270
Cites_doi 10.1088/2041-8205/777/1/L15
10.1088/0004-637X/741/1/39
10.3847/1538-4357/ab58cb
10.1093/mnras/263.4.861
10.1093/mnras/stz2469
10.1088/0004-637X/787/1/90
10.1146/annurev-astro-081710-102521
10.1038/nature01750
10.1086/186493
10.1086/147861
10.1051/0004-6361:20011465
10.1088/0004-637X/744/2/141
10.1093/mnras/stz1296
10.1103/RevModPhys.76.1143
10.1088/0004-637X/810/1/34
10.1086/167015
10.1111/j.1365-2966.2011.19733.x
10.3847/2041-8213/abb818
10.1086/500349
10.1088/0004-637X/801/1/57
10.1086/308836
10.1093/mnras/staa1695
10.1086/518088
10.3847/2041-8213/aba493
10.1086/308732
10.1016/j.physrep.2014.09.008
10.1111/j.1745-3933.2005.00060.x
10.1093/mnras/stx2254
10.3847/1538-4357/ab5859
10.1016/j.newar.2008.04.002
10.3847/2041-8213/ab9a4e
10.1086/173723
10.1086/184130
10.1146/annurev.astro.41.081401.155207
10.1086/499775
10.1111/j.1365-2966.2009.16017.x
10.1103/PhysRevD.10.1070
10.1086/172359
10.1093/mnras/stac3185
10.1046/j.1365-8711.1999.02783.x
10.1086/165856
10.1111/j.1365-2966.2010.16824.x
10.1051/0004-6361:20030863
10.1088/0004-637X/700/2/1970
10.1093/mnras/stw2695
10.1093/mnras/stab2989
10.1086/304154
10.1051/0004-6361/200811323
10.1016/j.asr.2018.03.010
10.1146/annurev.astro.43.072103.150558
10.1086/367609
10.1093/mnras/stu2544
10.1103/PhysRevD.10.1680
10.1086/518761
10.1086/171166
10.1111/j.1745-3933.2009.00624.x
10.3847/1538-4357/abb3cd
10.1016/j.physrep.2007.02.002
10.1103/PhysRevLett.29.1114
10.1093/mnras/stab3784
10.1086/306428
10.1086/526511
10.1086/374594
10.3847/1538-4357/aae83f
10.1103/PhysRevLett.41.203
10.1137/1025002
10.1103/PhysRevD.11.2042
10.3847/1538-4357/abf245
10.3847/1538-4357/ac4507
10.1086/311710
10.1088/1361-6382/aa71c3
10.1046/j.1365-8711.2003.06464.x
10.1086/498500
10.1086/591841
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1051/0004-6361/202245610
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_202245610
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
ID FETCH-LOGICAL-c322t-db56a0140af8f965d750ac4971d5d6c18dd134816df3176eaa8bef3770ad70b33
ISSN 0004-6361
IngestDate Mon Jun 30 04:31:12 EDT 2025
Tue Jul 01 03:54:10 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-db56a0140af8f965d750ac4971d5d6c18dd134816df3176eaa8bef3770ad70b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1622-3036
OpenAccessLink https://www.aanda.org/10.1051/0004-6361/202245610/pdf
PQID 2859607720
PQPubID 1796397
ParticipantIDs proquest_journals_2859607720
crossref_primary_10_1051_0004_6361_202245610
crossref_citationtrail_10_1051_0004_6361_202245610
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2023
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Christodoulou (R10) 1992; 388
Wald (R72) 1978; 41
Hunter (R24) 1997; 482
Beloborodov (R7) 1998; 508
Chrzanowski (R11) 1975; 11
Meszaros (R45) 1983; 273
R63
Kifonidis (R37) 2003; 408
Wald (R71) 1974; 10
Guidorzi (R19) 2015; 801
R27
Murguia-Berthier (R46) 2020; 901
Gottlieb (R18) 2022; 510
Obergaulinger (R50) 2009; 498
Perna (R52) 2006; 636
Janka (R32) 2007; 442
Lei (R41) 2009; 700
Hueckstaedt (R23) 2005; 361
Balbus (R5) 2003; 41
R70
Kawanaka (R36) 2013; 777
Cohen (R12) 1974; 10
Teukolsky (R68) 1972; 29
Pontzen (R58) 2010; 402
Janiuk (R26) 2022; 12
Noble (R49) 2006; 641
Petit (R53) 2019; 489
Podsiadlowski (R57) 2003; 341
R33
Palit (R51) 2019; 487
Reichert (R59) 2023; 518
Shahamat (R62) 2021; 508
Coughlin (R13) 2020; 896
Abbott (R1) 2020; 900
Spruit (R65) 2002; 381
Armitage (R3) 2011; 49
Margutti (R43) 2010; 406
Golkhou (R17) 2014; 787
Eichler (R15) 1989; 336
Woosley (R75) 2006; 44
Dall’Osso (R14) 2017; 464
Janiuk (R29) 2007; 664
Kawanaka (R35) 2012; 419
Hachisu (R20) 1987; 323
Beloborodov (R8) 2000; 535
Narayan (R48) 1992; 395
White (R73) 2022; 926
Bhat (R9) 2011; 744
Toomre (R69) 1964; 139
Woosley (R77) 2015; 810
Becerra (R6) 2019; 887
Woosley (R74) 1993; 405
Hunter (R25) 1998; 508
Masada (R44) 2007; 663
Zhang (R78) 2003; 586
Harten (R21) 1983; 25
Janiuk (R31) 2018; 868
Shahamat (R61) 2020; 888
Komissarov (R38) 1999; 308
Janiuk (R28) 2008; 675
Janiuk (R30) 2008; 687
Kumar (R40) 2015; 561
Sironi (R64) 2011; 741
Balbus (R4) 2000; 534
Piran (R56) 1993; 263
Ryu (R60) 2020; 904
Amati (R2) 2018; 62
Lodato (R42) 2008; 52
Suková (R66) 2015; 447
Katz (R34) 1994; 422
Petropoulou (R54) 2020; 496
Suková (R67) 2017; 472
Gammie (R16) 2003; 589
Piran (R55) 2004; 76
Król (R39) 2021; 912
Woosley (R76) 2006; 637
Hjorth (R22) 2003; 423
Narayan (R47) 2009; 394
References_xml – volume: 777
  start-page: L15
  year: 2013
  ident: R36
  publication-title: ApJ
  doi: 10.1088/2041-8205/777/1/L15
– volume: 741
  start-page: 39
  year: 2011
  ident: R64
  publication-title: ApJ
  doi: 10.1088/0004-637X/741/1/39
– volume: 888
  start-page: 64
  year: 2020
  ident: R61
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab58cb
– volume: 263
  start-page: 861
  year: 1993
  ident: R56
  publication-title: MNRAS
  doi: 10.1093/mnras/263.4.861
– volume: 489
  start-page: 5669
  year: 2019
  ident: R53
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2469
– volume: 787
  start-page: 90
  year: 2014
  ident: R17
  publication-title: ApJ
  doi: 10.1088/0004-637X/787/1/90
– volume: 49
  start-page: 195
  year: 2011
  ident: R3
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081710-102521
– volume: 423
  start-page: 847
  year: 2003
  ident: R22
  publication-title: Nature
  doi: 10.1038/nature01750
– volume: 395
  start-page: L83
  year: 1992
  ident: R48
  publication-title: ApJ
  doi: 10.1086/186493
– volume: 139
  start-page: 1217
  year: 1964
  ident: R69
  publication-title: ApJ
  doi: 10.1086/147861
– volume: 381
  start-page: 923
  year: 2002
  ident: R65
  publication-title: A&A
  doi: 10.1051/0004-6361:20011465
– volume: 744
  start-page: 141
  year: 2011
  ident: R9
  publication-title: ApJ
  doi: 10.1088/0004-637X/744/2/141
– volume: 487
  start-page: 755
  year: 2019
  ident: R51
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1296
– volume: 76
  start-page: 1143
  year: 2004
  ident: R55
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.76.1143
– volume: 810
  start-page: 34
  year: 2015
  ident: R77
  publication-title: ApJ
  doi: 10.1088/0004-637X/810/1/34
– volume: 336
  start-page: 360
  year: 1989
  ident: R15
  publication-title: ApJ
  doi: 10.1086/167015
– ident: R33
– volume: 419
  start-page: 713
  year: 2012
  ident: R35
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19733.x
– volume: 901
  start-page: L24
  year: 2020
  ident: R46
  publication-title: ApJ
  doi: 10.3847/2041-8213/abb818
– volume: 641
  start-page: 626
  year: 2006
  ident: R49
  publication-title: ApJ
  doi: 10.1086/500349
– volume: 801
  start-page: 57
  year: 2015
  ident: R19
  publication-title: ApJ
  doi: 10.1088/0004-637X/801/1/57
– volume: 12
  start-page: 221
  year: 2022
  ident: R26
  publication-title: XL Polish Astronomical Society Meeting
– volume: 535
  start-page: 158
  year: 2000
  ident: R8
  publication-title: ApJ
  doi: 10.1086/308836
– volume: 496
  start-page: 2910
  year: 2020
  ident: R54
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1695
– volume: 663
  start-page: 437
  year: 2007
  ident: R44
  publication-title: ApJ
  doi: 10.1086/518088
– volume: 900
  start-page: L13
  year: 2020
  ident: R1
  publication-title: ApJ
  doi: 10.3847/2041-8213/aba493
– volume: 534
  start-page: 420
  year: 2000
  ident: R4
  publication-title: ApJ
  doi: 10.1086/308732
– volume: 561
  start-page: 1
  year: 2015
  ident: R40
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2014.09.008
– volume: 361
  start-page: L35
  year: 2005
  ident: R23
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2005.00060.x
– volume: 472
  start-page: 4327
  year: 2017
  ident: R67
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2254
– volume: 887
  start-page: 254
  year: 2019
  ident: R6
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab5859
– volume: 52
  start-page: 21
  year: 2008
  ident: R42
  publication-title: New A Rev.
  doi: 10.1016/j.newar.2008.04.002
– volume: 896
  start-page: L38
  year: 2020
  ident: R13
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab9a4e
– volume: 422
  start-page: 248
  year: 1994
  ident: R34
  publication-title: ApJ
  doi: 10.1086/173723
– volume: 273
  start-page: L59
  year: 1983
  ident: R45
  publication-title: ApJ
  doi: 10.1086/184130
– volume: 41
  start-page: 555
  year: 2003
  ident: R5
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.41.081401.155207
– volume: 636
  start-page: L29
  year: 2006
  ident: R52
  publication-title: ApJ
  doi: 10.1086/499775
– volume: 402
  start-page: 1523
  year: 2010
  ident: R58
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.16017.x
– volume: 10
  start-page: 1070
  year: 1974
  ident: R12
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.10.1070
– ident: R63
– volume: 405
  start-page: 273
  year: 1993
  ident: R74
  publication-title: ApJ
  doi: 10.1086/172359
– volume: 518
  start-page: 1557
  year: 2023
  ident: R59
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3185
– volume: 308
  start-page: 1069
  year: 1999
  ident: R38
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02783.x
– volume: 323
  start-page: 592
  year: 1987
  ident: R20
  publication-title: ApJ
  doi: 10.1086/165856
– volume: 406
  start-page: 2149
  year: 2010
  ident: R43
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16824.x
– volume: 408
  start-page: 621
  year: 2003
  ident: R37
  publication-title: A&A
  doi: 10.1051/0004-6361:20030863
– volume: 700
  start-page: 1970
  year: 2009
  ident: R41
  publication-title: ApJ
  doi: 10.1088/0004-637X/700/2/1970
– volume: 464
  start-page: 4399
  year: 2017
  ident: R14
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2695
– volume: 508
  start-page: 6068
  year: 2021
  ident: R62
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2989
– volume: 482
  start-page: 852
  year: 1997
  ident: R24
  publication-title: ApJ
  doi: 10.1086/304154
– volume: 498
  start-page: 241
  year: 2009
  ident: R50
  publication-title: A&A
  doi: 10.1051/0004-6361/200811323
– volume: 62
  start-page: 191
  year: 2018
  ident: R2
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2018.03.010
– volume: 44
  start-page: 507
  year: 2006
  ident: R75
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.43.072103.150558
– volume: 586
  start-page: 356
  year: 2003
  ident: R78
  publication-title: ApJ
  doi: 10.1086/367609
– volume: 447
  start-page: 1565
  year: 2015
  ident: R66
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2544
– volume: 10
  start-page: 1680
  year: 1974
  ident: R71
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.10.1680
– volume: 664
  start-page: 1011
  year: 2007
  ident: R29
  publication-title: ApJ
  doi: 10.1086/518761
– volume: 388
  start-page: 451
  year: 1992
  ident: R10
  publication-title: ApJ
  doi: 10.1086/171166
– volume: 394
  start-page: L117
  year: 2009
  ident: R47
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2009.00624.x
– volume: 904
  start-page: 99
  year: 2020
  ident: R60
  publication-title: ApJ
  doi: 10.3847/1538-4357/abb3cd
– volume: 442
  start-page: 38
  year: 2007
  ident: R32
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2007.02.002
– volume: 29
  start-page: 1114
  year: 1972
  ident: R68
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.29.1114
– volume: 510
  start-page: 4962
  year: 2022
  ident: R18
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3784
– volume: 508
  start-page: 680
  year: 1998
  ident: R25
  publication-title: ApJ
  doi: 10.1086/306428
– volume: 675
  start-page: 519
  year: 2008
  ident: R28
  publication-title: ApJ
  doi: 10.1086/526511
– volume: 589
  start-page: 444
  year: 2003
  ident: R16
  publication-title: ApJ
  doi: 10.1086/374594
– volume: 868
  start-page: 68
  year: 2018
  ident: R31
  publication-title: ApJ
  doi: 10.3847/1538-4357/aae83f
– volume: 41
  start-page: 203
  year: 1978
  ident: R72
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.41.203
– volume: 25
  start-page: 35
  year: 1983
  ident: R21
  publication-title: SIAM Rev.
  doi: 10.1137/1025002
– ident: R27
– volume: 11
  start-page: 2042
  year: 1975
  ident: R11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.11.2042
– volume: 912
  start-page: 132
  year: 2021
  ident: R39
  publication-title: ApJ
  doi: 10.3847/1538-4357/abf245
– volume: 926
  start-page: 111
  year: 2022
  ident: R73
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac4507
– volume: 508
  start-page: L25
  year: 1998
  ident: R7
  publication-title: ApJ
  doi: 10.1086/311710
– ident: R70
  doi: 10.1088/1361-6382/aa71c3
– volume: 341
  start-page: 385
  year: 2003
  ident: R57
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06464.x
– volume: 637
  start-page: 914
  year: 2006
  ident: R76
  publication-title: ApJ
  doi: 10.1086/498500
– volume: 687
  start-page: 433
  year: 2008
  ident: R30
  publication-title: ApJ
  doi: 10.1086/591841
SSID ssj0002183
Score 2.4392636
Snippet Context. Long gamma ray bursts (GRBs) originate from the collapse of massive, rotating stars. Some of the GRBs exhibit much stronger variability patterns in...
Context. Long gamma ray bursts (GRBs) originate from the collapse of massive, rotating stars. Some of the GRBs exhibit much stronger variability patterns in...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage A19
SubjectTerms Amplitudes
Angular momentum
Black holes
Collapsars
Deposition
Emission
Gamma ray astronomy
Gamma ray bursts
Gamma rays
Gravitation
Gravitational instability
Magnetic fields
Magnetic properties
Mathematical models
Parameters
Stellar cores
Stellar envelopes
Stellar magnetic fields
Stellar rotation
Time dependence
Variability
Title Self-gravitating collapsing star and black hole spin-up in long gamma ray bursts
URI https://www.proquest.com/docview/2859607720
Volume 677
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKEBIXNAZog4F8AC4hXRI7bnIsEzCGhCZtk3aLHDtZS9u0atLDduDAX857dup0A00MqYpSq32V8n19fu_5_SDkLU9SPkhi7gvJtc9VHvhpypkfJYFWeQkOgTIJst_F0Tk_vogver1fG1lLqybvq-u_1pX8D6qwBrhilew9kHVCYQHuAV-4AsJw_SeMT4tp6eMAIdNo21TPAqqLuo0R2PTIHEN0Ho7B9erFuPJXC4xxTHHG0KWczaS3lFcePNra9nRyLWlrDJLPZ7Y_k8R3NgpiwrS2S9ZGGOFYVuOV0azDywq87-uJ0_enIyzGlg3otlE9X05GVqsvf3Tpi9_Mgf1HNrU2PfY7mUjv3WEMhm5_MzARMZd51SlboACzvdb7hdWvnGGyaxt1bBWwaAe5WBU6tCr0D9UO2sPmQlqhWMmC9gfaf91etj6_v7XFucRDc-Qeh3jkzjMUkzkhD8jDCFwNnILx5etPt5ujCWldKPu7685VcXjg1g6ckJvWzc3N3VgsZ9vkSetq0KHlzVPSK6odsutwpe_pcAPVHfLoxN49Iye3iUU7YlEkFgVOUEMsisSiLbHouKJILGqIRYFY1BLrOTn__Ons8MhvR2_4CjR84-s8FhKdb1kmZSpiDYalVDwdhDrWQoWJ1iGWcAtdggEqCimTvCjZYBBIPQhyxl6QrWpeFbuEMhWpNIQXeK6cgwOrEiaLUOeCSaWSdI9E60eWqbYvPY5HmWZ3gLVHPrgvLWxblrs_vr_GImv_v3WGrRtFAJAHL-8n7RV53PF9n2w1y1XxGkzTJn9juPMbEP2EGQ
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-gravitating+collapsing+star+and+black+hole+spin-up+in+long+gamma+ray+bursts&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Janiuk%2C+Agnieszka&rft.au=Shahamat+Dehsorkh%2C+Narjes&rft.au=Kr%C3%B3l%2C+Dominika+%C5%81.&rft.date=2023-09-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=677&rft.spage=A19&rft_id=info:doi/10.1051%2F0004-6361%2F202245610&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202245610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon