Environmental resistome–guided development of resistance-tolerant antibiotics

Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use. Many of the most problematic types of resistance originated in the environment, where ancient arms races between antibiotic-producing microbe...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 122; no. 21; p. e2504781122
Main Authors Peek, James, Bhattacharjee, Abir, Burian, Ján, Hsieh, David Chun-Cheng, Hernandez, Yozen, Ternei, Melinda, Panfil, Cecilia, Brady, Sean F.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 27.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use. Many of the most problematic types of resistance originated in the environment, where ancient arms races between antibiotic-producing microbes and their competitors have created vast arsenals of antibiotics and resistance. Seizing on the knowledge that resistance in nature is frequently a harbinger of future clinical resistance, we propose introducing an additional step into the antibiotic development process that exploits the susceptibility of development candidates to environmental resistance as a metric for prioritizing lead compounds and as a roadmap for their structural optimization. Using the antibiotic albicidin as a model, we show how the environmental resistome can guide the development of more resistance-tolerant leads. We used metagenomic surveys to identify resistance vulnerabilities for albicidin and guide the synthesis of analogs that evade the resistance threats. We found that natural albicidin analogs (congeners) were especially enriched in structural features that escape resistance, which inspired our syntheses and provided compelling evidence for the evolution of families of antibiotics in response to resistance in nature. The coupling of metagenomics-based resistance surveillance with structural optimizations of new antibiotics is a broadly applicable approach that is easily integrated into antibiotic development programs to generate compounds that are more resilient in the face of resistance.
AbstractList Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use. Many of the most problematic types of resistance originated in the environment, where ancient arms races between antibiotic-producing microbes and their competitors have created vast arsenals of antibiotics and resistance. Seizing on the knowledge that resistance in nature is frequently a harbinger of future clinical resistance, we propose introducing an additional step into the antibiotic development process that exploits the susceptibility of development candidates to environmental resistance as a metric for prioritizing lead compounds and as a roadmap for their structural optimization. Using the antibiotic albicidin as a model, we show how the environmental resistome can guide the development of more resistance-tolerant leads. We used metagenomic surveys to identify resistance vulnerabilities for albicidin and guide the synthesis of analogs that evade the resistance threats. We found that natural albicidin analogs (congeners) were especially enriched in structural features that escape resistance, which inspired our syntheses and provided compelling evidence for the evolution of families of antibiotics in response to resistance in nature. The coupling of metagenomics-based resistance surveillance with structural optimizations of new antibiotics is a broadly applicable approach that is easily integrated into antibiotic development programs to generate compounds that are more resilient in the face of resistance.
Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use. Many of the most problematic types of resistance originated in the environment, where ancient arms races between antibiotic-producing microbes and their competitors have created vast arsenals of antibiotics and resistance. Seizing on the knowledge that resistance in nature is frequently a harbinger of future clinical resistance, we propose introducing an additional step into the antibiotic development process that exploits the susceptibility of development candidates to environmental resistance as a metric for prioritizing lead compounds and as a roadmap for their structural optimization. Using the antibiotic albicidin as a model, we show how the environmental resistome can guide the development of more resistance-tolerant leads. We used metagenomic surveys to identify resistance vulnerabilities for albicidin and guide the synthesis of analogs that evade the resistance threats. We found that natural albicidin analogs (congeners) were especially enriched in structural features that escape resistance, which inspired our syntheses and provided compelling evidence for the evolution of families of antibiotics in response to resistance in nature. The coupling of metagenomics-based resistance surveillance with structural optimizations of new antibiotics is a broadly applicable approach that is easily integrated into antibiotic development programs to generate compounds that are more resilient in the face of resistance.Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use. Many of the most problematic types of resistance originated in the environment, where ancient arms races between antibiotic-producing microbes and their competitors have created vast arsenals of antibiotics and resistance. Seizing on the knowledge that resistance in nature is frequently a harbinger of future clinical resistance, we propose introducing an additional step into the antibiotic development process that exploits the susceptibility of development candidates to environmental resistance as a metric for prioritizing lead compounds and as a roadmap for their structural optimization. Using the antibiotic albicidin as a model, we show how the environmental resistome can guide the development of more resistance-tolerant leads. We used metagenomic surveys to identify resistance vulnerabilities for albicidin and guide the synthesis of analogs that evade the resistance threats. We found that natural albicidin analogs (congeners) were especially enriched in structural features that escape resistance, which inspired our syntheses and provided compelling evidence for the evolution of families of antibiotics in response to resistance in nature. The coupling of metagenomics-based resistance surveillance with structural optimizations of new antibiotics is a broadly applicable approach that is easily integrated into antibiotic development programs to generate compounds that are more resilient in the face of resistance.
Author Bhattacharjee, Abir
Burian, Ján
Hsieh, David Chun-Cheng
Hernandez, Yozen
Peek, James
Panfil, Cecilia
Brady, Sean F.
Ternei, Melinda
Author_xml – sequence: 1
  givenname: James
  surname: Peek
  fullname: Peek, James
– sequence: 2
  givenname: Abir
  surname: Bhattacharjee
  fullname: Bhattacharjee, Abir
– sequence: 3
  givenname: Ján
  surname: Burian
  fullname: Burian, Ján
– sequence: 4
  givenname: David Chun-Cheng
  surname: Hsieh
  fullname: Hsieh, David Chun-Cheng
– sequence: 5
  givenname: Yozen
  orcidid: 0000-0003-3349-8856
  surname: Hernandez
  fullname: Hernandez, Yozen
– sequence: 6
  givenname: Melinda
  surname: Ternei
  fullname: Ternei, Melinda
– sequence: 7
  givenname: Cecilia
  surname: Panfil
  fullname: Panfil, Cecilia
– sequence: 8
  givenname: Sean F.
  orcidid: 0000-0001-5967-8586
  surname: Brady
  fullname: Brady, Sean F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40388614$$D View this record in MEDLINE/PubMed
BookMark eNpd0UtLAzEQB_AgFfvQszcpePGybR67TfYopT6g0Iuel2wyKym7yZrsFrz5HfyGfhJTWxU8hIHwm2GY_xgNrLOA0CXBM4I5m7dWhhnNcMoFIZSeoBHBOUkWaY4HaIQx5YlIaTpE4xC2GOM8E_gMDVPMhFiQdIQ2K7sz3tkGbCfrqYdgQuca-Hz_eOmNBj3VsIPatXswddVRSKsg6VwNXsbv-ExpXGdUOEenlawDXBzrBD3frZ6WD8l6c_-4vF0nilHaJZqnpcoU06KUtKpYzhjoXDJOmGBcSlryfEFpSSsNEjhVijMsNRVCaMkjn6Cbw9zWu9ceQlc0Jiioa2nB9aFgFGeCxCYa6fU_unW9t3G7qEjKs1x8D7w6qr5sQBetN430b8XPqSKYH4DyLgQP1S8huNiHUezDKP7CYF8H735-
Cites_doi 10.1038/s41467-018-05551-4
10.1016/0300-9084(91)90123-I
10.1128/AAC.00918-06
10.1016/S0021-9258(19)85361-9
10.1073/pnas.70.8.2276
10.1016/j.jmb.2006.03.038
10.1126/science.1120800
10.1099/00221287-144-2-555
10.1126/science.1220761
10.1128/AAC.42.9.2215
10.1038/nature10388
10.1016/j.mib.2019.06.005
10.1146/annurev-micro-090816-093420
10.1038/nprot.2007.195
10.1042/bj3180157
10.1038/ja.2013.49
10.1002/pro.5560070801
10.1039/D3SC00955F
10.1002/anie.202104874
10.1021/jacs.8b08895
10.1371/journal.pbio.3002186
10.1038/nbt.2377
10.1038/s41564-024-01891-8
10.1038/nrmicro.2017.28
10.1038/ismej.2008.86
10.1002/chem.201904752
10.1038/s41929-022-00904-1
10.1021/jacs.5b04099
10.1371/journal.pone.0034953
10.1186/1471-2105-11-395
10.1016/j.drup.2004.02.003
10.1093/nar/gkaa1266
10.1021/acs.orglett.1c02312
10.1111/j.1365-2672.2006.02899.x
10.1099/00221287-136-1-51
10.1038/nchembio.1734
10.1128/MMBR.00016-10
10.1039/C9SC04769G
10.1038/s41564-018-0110-1
ContentType Journal Article
Copyright Copyright National Academy of Sciences 2025
Copyright_xml – notice: Copyright National Academy of Sciences 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1073/pnas.2504781122
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Virology and AIDS Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 40388614
10_1073_pnas_2504781122
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM122559
– fundername: HHS | NIH (NIH)
  grantid: 5R35GM122559
GroupedDBID ---
-DZ
-~X
.55
0R~
123
2FS
2WC
4.4
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFHIN
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
WH7
WOQ
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c322t-d74bc5c3d8ba2ff3933ed9a3713837aa2b79622b2fdeae72cc730ad2888da7393
ISSN 0027-8424
1091-6490
IngestDate Wed Jul 02 03:09:22 EDT 2025
Mon Jun 30 07:32:37 EDT 2025
Mon Jul 21 06:03:04 EDT 2025
Sun Jul 06 05:07:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords drug development
resistome
antibiotic resistance
metagenomics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-d74bc5c3d8ba2ff3933ed9a3713837aa2b79622b2fdeae72cc730ad2888da7393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5967-8586
0000-0003-3349-8856
OpenAccessLink https://pnas.org/doi/pdf/10.1073/pnas.2504781122
PMID 40388614
PQID 3214759839
PQPubID 42026
ParticipantIDs proquest_miscellaneous_3205817302
proquest_journals_3214759839
pubmed_primary_40388614
crossref_primary_10_1073_pnas_2504781122
PublicationCentury 2000
PublicationDate 2025-05-27
PublicationDateYYYYMMDD 2025-05-27
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2025
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
Song J. S. (e_1_3_4_7_2) 2005; 43
e_1_3_4_28_2
e_1_3_4_29_2
Birch R. G. (e_1_3_4_15_2) 1985; 131
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_32_2
  doi: 10.1038/s41467-018-05551-4
– ident: e_1_3_4_28_2
  doi: 10.1016/0300-9084(91)90123-I
– volume: 43
  start-page: 172
  year: 2005
  ident: e_1_3_4_7_2
  article-title: Molecular characterization of TEM-type beta-lactamases identified in cold-seep sediments of Edison Seamount (south of Lihir Island, Papua New Guinea)
  publication-title: J. Microbiol.
– ident: e_1_3_4_17_2
  doi: 10.1128/AAC.00918-06
– ident: e_1_3_4_24_2
  doi: 10.1016/S0021-9258(19)85361-9
– ident: e_1_3_4_26_2
– ident: e_1_3_4_8_2
  doi: 10.1073/pnas.70.8.2276
– ident: e_1_3_4_9_2
  doi: 10.1016/j.jmb.2006.03.038
– ident: e_1_3_4_13_2
  doi: 10.1126/science.1120800
– ident: e_1_3_4_22_2
  doi: 10.1099/00221287-144-2-555
– ident: e_1_3_4_3_2
  doi: 10.1126/science.1220761
– ident: e_1_3_4_10_2
  doi: 10.1128/AAC.42.9.2215
– ident: e_1_3_4_1_2
  doi: 10.1038/nature10388
– ident: e_1_3_4_2_2
  doi: 10.1016/j.mib.2019.06.005
– ident: e_1_3_4_25_2
  doi: 10.1146/annurev-micro-090816-093420
– ident: e_1_3_4_39_2
  doi: 10.1038/nprot.2007.195
– ident: e_1_3_4_31_2
  doi: 10.1042/bj3180157
– ident: e_1_3_4_38_2
  doi: 10.1038/ja.2013.49
– ident: e_1_3_4_30_2
  doi: 10.1002/pro.5560070801
– ident: e_1_3_4_33_2
  doi: 10.1039/D3SC00955F
– ident: e_1_3_4_36_2
  doi: 10.1002/anie.202104874
– ident: e_1_3_4_29_2
  doi: 10.1021/jacs.8b08895
– ident: e_1_3_4_20_2
  doi: 10.1371/journal.pbio.3002186
– ident: e_1_3_4_41_2
  doi: 10.1038/nbt.2377
– ident: e_1_3_4_14_2
  doi: 10.1038/s41564-024-01891-8
– ident: e_1_3_4_12_2
  doi: 10.1038/nrmicro.2017.28
– ident: e_1_3_4_5_2
  doi: 10.1038/ismej.2008.86
– volume: 131
  start-page: 1069
  year: 1985
  ident: e_1_3_4_15_2
  article-title: Preliminary characterization of an antibiotic produced by Xanthomonas albilineans which inhibits DNA synthesis in Escherichia coli
  publication-title: J. Gen. Microbiol.
– ident: e_1_3_4_34_2
  doi: 10.1002/chem.201904752
– ident: e_1_3_4_18_2
  doi: 10.1038/s41929-022-00904-1
– ident: e_1_3_4_21_2
  doi: 10.1021/jacs.5b04099
– ident: e_1_3_4_11_2
  doi: 10.1371/journal.pone.0034953
– ident: e_1_3_4_42_2
  doi: 10.1186/1471-2105-11-395
– ident: e_1_3_4_6_2
  doi: 10.1016/j.drup.2004.02.003
– ident: e_1_3_4_19_2
  doi: 10.1093/nar/gkaa1266
– ident: e_1_3_4_35_2
  doi: 10.1021/acs.orglett.1c02312
– ident: e_1_3_4_27_2
  doi: 10.1111/j.1365-2672.2006.02899.x
– ident: e_1_3_4_23_2
  doi: 10.1099/00221287-136-1-51
– ident: e_1_3_4_16_2
  doi: 10.1038/nchembio.1734
– ident: e_1_3_4_4_2
  doi: 10.1128/MMBR.00016-10
– ident: e_1_3_4_37_2
  doi: 10.1039/C9SC04769G
– ident: e_1_3_4_40_2
  doi: 10.1038/s41564-018-0110-1
SSID ssj0009580
Score 2.4789646
Snippet Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e2504781122
SubjectTerms Analogs
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antibiotic resistance
Antibiotics
Bacteria - drug effects
Bacteria - genetics
Congeners
Drug Resistance, Bacterial - genetics
Lead compounds
Metagenome
Metagenomics
Metagenomics - methods
Title Environmental resistome–guided development of resistance-tolerant antibiotics
URI https://www.ncbi.nlm.nih.gov/pubmed/40388614
https://www.proquest.com/docview/3214759839
https://www.proquest.com/docview/3205817302
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKcuGCWH4LCwoSh0WVS2Pn91iqriq0dHtopd4ix3ZoF0gQSS6ceAcegTfjSRjHjpOigoBLVKXR1JqZzoyd-b5B6EUQqvE91MUikDH2WMwxpBGKU6jmsongXGTqvOPtMlhsvDdbfzsYfO91LdVVOuZfjuJK_seqcA_sqlCy_2BZKxRuwGewL1zBwnD9KxvPO5Raw89fKp6Aj7JtYKDv6r2AglJ0jUGqNtTPKWvjqvggIVmpLnOFHSmqtvfdlKsrm97Ktplg2Z4eTjssigkQ5QiPVstusvFKyve2E9fu-3esqpgCe13rHqBpurcNwq9r0JpGizRv8F3ruotyL3e2CX8029U5nu2kybvm2IL46o27ZgHos34fXWw_XhPIoZ5GWY-lDtFQ4eDA00NGbQwnpOesGnNtQrJ7NFFAZFPTjXNWjhWJm8LbGhEHlNzLq-Ric3mZrOfb9Q10k8BepEGUb90es3OkcU5mqS1_VEhf_SL-sPT5zX6mqWvWd9BtsyFxptq7TtFA5nfRaask59zwkr-8h64O3M2x7vbj6zftaE7P0Zwic444mtNztPtoczFfzxbYzOPAHMJ-hUXopdznVEQpI1lGY0qliBkNXXXMwRhJwzggJCWZkEyGhHNIH0yQKIoEU8yLD9BJXuTyEXJ8nk4YjTyfZ64XSg4SqcdYEMTeRARZOETnraqST5p2JWnaJUKaKK0mnVaH6KxVZWL-m2XSjN_yY6j-h-i5_Roip3odxnJZ1OqZiR-5sEQQ8VCbwP6Wp0iSoHJ9_GfhT9CtzrfP0En1uZZPoUit0meNk_wE8y-V9A
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+resistome%E2%80%93guided+development+of+resistance-tolerant+antibiotics&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Peek%2C+James&rft.au=Bhattacharjee%2C+Abir&rft.au=Burian%2C+J%C3%A1n&rft.au=Hsieh%2C+David+Chun-Cheng&rft.date=2025-05-27&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=122&rft.issue=21&rft.spage=1&rft_id=info:doi/10.1073%2Fpnas.2504781122&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon