Environmental resistome–guided development of resistance-tolerant antibiotics
Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use. Many of the most problematic types of resistance originated in the environment, where ancient arms races between antibiotic-producing microbe...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 122; no. 21; p. e2504781122 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
27.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use. Many of the most problematic types of resistance originated in the environment, where ancient arms races between antibiotic-producing microbes and their competitors have created vast arsenals of antibiotics and resistance. Seizing on the knowledge that resistance in nature is frequently a harbinger of future clinical resistance, we propose introducing an additional step into the antibiotic development process that exploits the susceptibility of development candidates to environmental resistance as a metric for prioritizing lead compounds and as a roadmap for their structural optimization. Using the antibiotic albicidin as a model, we show how the environmental resistome can guide the development of more resistance-tolerant leads. We used metagenomic surveys to identify resistance vulnerabilities for albicidin and guide the synthesis of analogs that evade the resistance threats. We found that natural albicidin analogs (congeners) were especially enriched in structural features that escape resistance, which inspired our syntheses and provided compelling evidence for the evolution of families of antibiotics in response to resistance in nature. The coupling of metagenomics-based resistance surveillance with structural optimizations of new antibiotics is a broadly applicable approach that is easily integrated into antibiotic development programs to generate compounds that are more resilient in the face of resistance. |
---|---|
AbstractList | Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use. Many of the most problematic types of resistance originated in the environment, where ancient arms races between antibiotic-producing microbes and their competitors have created vast arsenals of antibiotics and resistance. Seizing on the knowledge that resistance in nature is frequently a harbinger of future clinical resistance, we propose introducing an additional step into the antibiotic development process that exploits the susceptibility of development candidates to environmental resistance as a metric for prioritizing lead compounds and as a roadmap for their structural optimization. Using the antibiotic albicidin as a model, we show how the environmental resistome can guide the development of more resistance-tolerant leads. We used metagenomic surveys to identify resistance vulnerabilities for albicidin and guide the synthesis of analogs that evade the resistance threats. We found that natural albicidin analogs (congeners) were especially enriched in structural features that escape resistance, which inspired our syntheses and provided compelling evidence for the evolution of families of antibiotics in response to resistance in nature. The coupling of metagenomics-based resistance surveillance with structural optimizations of new antibiotics is a broadly applicable approach that is easily integrated into antibiotic development programs to generate compounds that are more resilient in the face of resistance. Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use. Many of the most problematic types of resistance originated in the environment, where ancient arms races between antibiotic-producing microbes and their competitors have created vast arsenals of antibiotics and resistance. Seizing on the knowledge that resistance in nature is frequently a harbinger of future clinical resistance, we propose introducing an additional step into the antibiotic development process that exploits the susceptibility of development candidates to environmental resistance as a metric for prioritizing lead compounds and as a roadmap for their structural optimization. Using the antibiotic albicidin as a model, we show how the environmental resistome can guide the development of more resistance-tolerant leads. We used metagenomic surveys to identify resistance vulnerabilities for albicidin and guide the synthesis of analogs that evade the resistance threats. We found that natural albicidin analogs (congeners) were especially enriched in structural features that escape resistance, which inspired our syntheses and provided compelling evidence for the evolution of families of antibiotics in response to resistance in nature. The coupling of metagenomics-based resistance surveillance with structural optimizations of new antibiotics is a broadly applicable approach that is easily integrated into antibiotic development programs to generate compounds that are more resilient in the face of resistance.Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use. Many of the most problematic types of resistance originated in the environment, where ancient arms races between antibiotic-producing microbes and their competitors have created vast arsenals of antibiotics and resistance. Seizing on the knowledge that resistance in nature is frequently a harbinger of future clinical resistance, we propose introducing an additional step into the antibiotic development process that exploits the susceptibility of development candidates to environmental resistance as a metric for prioritizing lead compounds and as a roadmap for their structural optimization. Using the antibiotic albicidin as a model, we show how the environmental resistome can guide the development of more resistance-tolerant leads. We used metagenomic surveys to identify resistance vulnerabilities for albicidin and guide the synthesis of analogs that evade the resistance threats. We found that natural albicidin analogs (congeners) were especially enriched in structural features that escape resistance, which inspired our syntheses and provided compelling evidence for the evolution of families of antibiotics in response to resistance in nature. The coupling of metagenomics-based resistance surveillance with structural optimizations of new antibiotics is a broadly applicable approach that is easily integrated into antibiotic development programs to generate compounds that are more resilient in the face of resistance. |
Author | Bhattacharjee, Abir Burian, Ján Hsieh, David Chun-Cheng Hernandez, Yozen Peek, James Panfil, Cecilia Brady, Sean F. Ternei, Melinda |
Author_xml | – sequence: 1 givenname: James surname: Peek fullname: Peek, James – sequence: 2 givenname: Abir surname: Bhattacharjee fullname: Bhattacharjee, Abir – sequence: 3 givenname: Ján surname: Burian fullname: Burian, Ján – sequence: 4 givenname: David Chun-Cheng surname: Hsieh fullname: Hsieh, David Chun-Cheng – sequence: 5 givenname: Yozen orcidid: 0000-0003-3349-8856 surname: Hernandez fullname: Hernandez, Yozen – sequence: 6 givenname: Melinda surname: Ternei fullname: Ternei, Melinda – sequence: 7 givenname: Cecilia surname: Panfil fullname: Panfil, Cecilia – sequence: 8 givenname: Sean F. orcidid: 0000-0001-5967-8586 surname: Brady fullname: Brady, Sean F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40388614$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0UtLAzEQB_AgFfvQszcpePGybR67TfYopT6g0Iuel2wyKym7yZrsFrz5HfyGfhJTWxU8hIHwm2GY_xgNrLOA0CXBM4I5m7dWhhnNcMoFIZSeoBHBOUkWaY4HaIQx5YlIaTpE4xC2GOM8E_gMDVPMhFiQdIQ2K7sz3tkGbCfrqYdgQuca-Hz_eOmNBj3VsIPatXswddVRSKsg6VwNXsbv-ExpXGdUOEenlawDXBzrBD3frZ6WD8l6c_-4vF0nilHaJZqnpcoU06KUtKpYzhjoXDJOmGBcSlryfEFpSSsNEjhVijMsNRVCaMkjn6Cbw9zWu9ceQlc0Jiioa2nB9aFgFGeCxCYa6fU_unW9t3G7qEjKs1x8D7w6qr5sQBetN430b8XPqSKYH4DyLgQP1S8huNiHUezDKP7CYF8H735- |
Cites_doi | 10.1038/s41467-018-05551-4 10.1016/0300-9084(91)90123-I 10.1128/AAC.00918-06 10.1016/S0021-9258(19)85361-9 10.1073/pnas.70.8.2276 10.1016/j.jmb.2006.03.038 10.1126/science.1120800 10.1099/00221287-144-2-555 10.1126/science.1220761 10.1128/AAC.42.9.2215 10.1038/nature10388 10.1016/j.mib.2019.06.005 10.1146/annurev-micro-090816-093420 10.1038/nprot.2007.195 10.1042/bj3180157 10.1038/ja.2013.49 10.1002/pro.5560070801 10.1039/D3SC00955F 10.1002/anie.202104874 10.1021/jacs.8b08895 10.1371/journal.pbio.3002186 10.1038/nbt.2377 10.1038/s41564-024-01891-8 10.1038/nrmicro.2017.28 10.1038/ismej.2008.86 10.1002/chem.201904752 10.1038/s41929-022-00904-1 10.1021/jacs.5b04099 10.1371/journal.pone.0034953 10.1186/1471-2105-11-395 10.1016/j.drup.2004.02.003 10.1093/nar/gkaa1266 10.1021/acs.orglett.1c02312 10.1111/j.1365-2672.2006.02899.x 10.1099/00221287-136-1-51 10.1038/nchembio.1734 10.1128/MMBR.00016-10 10.1039/C9SC04769G 10.1038/s41564-018-0110-1 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences 2025 |
Copyright_xml | – notice: Copyright National Academy of Sciences 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1073/pnas.2504781122 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | 40388614 10_1073_pnas_2504781122 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM122559 – fundername: HHS | NIH (NIH) grantid: 5R35GM122559 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 2FS 2WC 4.4 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFHIN AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR WH7 WOQ X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c322t-d74bc5c3d8ba2ff3933ed9a3713837aa2b79622b2fdeae72cc730ad2888da7393 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Wed Jul 02 03:09:22 EDT 2025 Mon Jun 30 07:32:37 EDT 2025 Mon Jul 21 06:03:04 EDT 2025 Sun Jul 06 05:07:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | drug development resistome antibiotic resistance metagenomics |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c322t-d74bc5c3d8ba2ff3933ed9a3713837aa2b79622b2fdeae72cc730ad2888da7393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5967-8586 0000-0003-3349-8856 |
OpenAccessLink | https://pnas.org/doi/pdf/10.1073/pnas.2504781122 |
PMID | 40388614 |
PQID | 3214759839 |
PQPubID | 42026 |
ParticipantIDs | proquest_miscellaneous_3205817302 proquest_journals_3214759839 pubmed_primary_40388614 crossref_primary_10_1073_pnas_2504781122 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-27 |
PublicationDateYYYYMMDD | 2025-05-27 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2025 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 Song J. S. (e_1_3_4_7_2) 2005; 43 e_1_3_4_28_2 e_1_3_4_29_2 Birch R. G. (e_1_3_4_15_2) 1985; 131 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_32_2 doi: 10.1038/s41467-018-05551-4 – ident: e_1_3_4_28_2 doi: 10.1016/0300-9084(91)90123-I – volume: 43 start-page: 172 year: 2005 ident: e_1_3_4_7_2 article-title: Molecular characterization of TEM-type beta-lactamases identified in cold-seep sediments of Edison Seamount (south of Lihir Island, Papua New Guinea) publication-title: J. Microbiol. – ident: e_1_3_4_17_2 doi: 10.1128/AAC.00918-06 – ident: e_1_3_4_24_2 doi: 10.1016/S0021-9258(19)85361-9 – ident: e_1_3_4_26_2 – ident: e_1_3_4_8_2 doi: 10.1073/pnas.70.8.2276 – ident: e_1_3_4_9_2 doi: 10.1016/j.jmb.2006.03.038 – ident: e_1_3_4_13_2 doi: 10.1126/science.1120800 – ident: e_1_3_4_22_2 doi: 10.1099/00221287-144-2-555 – ident: e_1_3_4_3_2 doi: 10.1126/science.1220761 – ident: e_1_3_4_10_2 doi: 10.1128/AAC.42.9.2215 – ident: e_1_3_4_1_2 doi: 10.1038/nature10388 – ident: e_1_3_4_2_2 doi: 10.1016/j.mib.2019.06.005 – ident: e_1_3_4_25_2 doi: 10.1146/annurev-micro-090816-093420 – ident: e_1_3_4_39_2 doi: 10.1038/nprot.2007.195 – ident: e_1_3_4_31_2 doi: 10.1042/bj3180157 – ident: e_1_3_4_38_2 doi: 10.1038/ja.2013.49 – ident: e_1_3_4_30_2 doi: 10.1002/pro.5560070801 – ident: e_1_3_4_33_2 doi: 10.1039/D3SC00955F – ident: e_1_3_4_36_2 doi: 10.1002/anie.202104874 – ident: e_1_3_4_29_2 doi: 10.1021/jacs.8b08895 – ident: e_1_3_4_20_2 doi: 10.1371/journal.pbio.3002186 – ident: e_1_3_4_41_2 doi: 10.1038/nbt.2377 – ident: e_1_3_4_14_2 doi: 10.1038/s41564-024-01891-8 – ident: e_1_3_4_12_2 doi: 10.1038/nrmicro.2017.28 – ident: e_1_3_4_5_2 doi: 10.1038/ismej.2008.86 – volume: 131 start-page: 1069 year: 1985 ident: e_1_3_4_15_2 article-title: Preliminary characterization of an antibiotic produced by Xanthomonas albilineans which inhibits DNA synthesis in Escherichia coli publication-title: J. Gen. Microbiol. – ident: e_1_3_4_34_2 doi: 10.1002/chem.201904752 – ident: e_1_3_4_18_2 doi: 10.1038/s41929-022-00904-1 – ident: e_1_3_4_21_2 doi: 10.1021/jacs.5b04099 – ident: e_1_3_4_11_2 doi: 10.1371/journal.pone.0034953 – ident: e_1_3_4_42_2 doi: 10.1186/1471-2105-11-395 – ident: e_1_3_4_6_2 doi: 10.1016/j.drup.2004.02.003 – ident: e_1_3_4_19_2 doi: 10.1093/nar/gkaa1266 – ident: e_1_3_4_35_2 doi: 10.1021/acs.orglett.1c02312 – ident: e_1_3_4_27_2 doi: 10.1111/j.1365-2672.2006.02899.x – ident: e_1_3_4_23_2 doi: 10.1099/00221287-136-1-51 – ident: e_1_3_4_16_2 doi: 10.1038/nchembio.1734 – ident: e_1_3_4_4_2 doi: 10.1128/MMBR.00016-10 – ident: e_1_3_4_37_2 doi: 10.1039/C9SC04769G – ident: e_1_3_4_40_2 doi: 10.1038/s41564-018-0110-1 |
SSID | ssj0009580 |
Score | 2.4789646 |
Snippet | Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e2504781122 |
SubjectTerms | Analogs Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Antibiotic resistance Antibiotics Bacteria - drug effects Bacteria - genetics Congeners Drug Resistance, Bacterial - genetics Lead compounds Metagenome Metagenomics Metagenomics - methods |
Title | Environmental resistome–guided development of resistance-tolerant antibiotics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40388614 https://www.proquest.com/docview/3214759839 https://www.proquest.com/docview/3205817302 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKcuGCWH4LCwoSh0WVS2Pn91iqriq0dHtopd4ix3ZoF0gQSS6ceAcegTfjSRjHjpOigoBLVKXR1JqZzoyd-b5B6EUQqvE91MUikDH2WMwxpBGKU6jmsongXGTqvOPtMlhsvDdbfzsYfO91LdVVOuZfjuJK_seqcA_sqlCy_2BZKxRuwGewL1zBwnD9KxvPO5Raw89fKp6Aj7JtYKDv6r2AglJ0jUGqNtTPKWvjqvggIVmpLnOFHSmqtvfdlKsrm97Ktplg2Z4eTjssigkQ5QiPVstusvFKyve2E9fu-3esqpgCe13rHqBpurcNwq9r0JpGizRv8F3ruotyL3e2CX8029U5nu2kybvm2IL46o27ZgHos34fXWw_XhPIoZ5GWY-lDtFQ4eDA00NGbQwnpOesGnNtQrJ7NFFAZFPTjXNWjhWJm8LbGhEHlNzLq-Ric3mZrOfb9Q10k8BepEGUb90es3OkcU5mqS1_VEhf_SL-sPT5zX6mqWvWd9BtsyFxptq7TtFA5nfRaask59zwkr-8h64O3M2x7vbj6zftaE7P0Zwic444mtNztPtoczFfzxbYzOPAHMJ-hUXopdznVEQpI1lGY0qliBkNXXXMwRhJwzggJCWZkEyGhHNIH0yQKIoEU8yLD9BJXuTyEXJ8nk4YjTyfZ64XSg4SqcdYEMTeRARZOETnraqST5p2JWnaJUKaKK0mnVaH6KxVZWL-m2XSjN_yY6j-h-i5_Roip3odxnJZ1OqZiR-5sEQQ8VCbwP6Wp0iSoHJ9_GfhT9CtzrfP0En1uZZPoUit0meNk_wE8y-V9A |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+resistome%E2%80%93guided+development+of+resistance-tolerant+antibiotics&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Peek%2C+James&rft.au=Bhattacharjee%2C+Abir&rft.au=Burian%2C+J%C3%A1n&rft.au=Hsieh%2C+David+Chun-Cheng&rft.date=2025-05-27&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=122&rft.issue=21&rft.spage=1&rft_id=info:doi/10.1073%2Fpnas.2504781122&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |