Provable sample-efficient sparse phase retrieval initialized by truncated power method

We study the sparse phase retrieval problem, recovering an s -sparse length- n signal from m magnitude-only measurements. Two-stage non-convex approaches have drawn much attention in recent studies. Despite non-convexity, many two-stage algorithms provably converge to the underlying solution linearl...

Full description

Saved in:
Bibliographic Details
Published inInverse problems Vol. 39; no. 7; pp. 75008 - 75037
Main Authors Cai, Jian-Feng, Li, Jingyang, You, Juntao
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the sparse phase retrieval problem, recovering an s -sparse length- n signal from m magnitude-only measurements. Two-stage non-convex approaches have drawn much attention in recent studies. Despite non-convexity, many two-stage algorithms provably converge to the underlying solution linearly when appropriately initialized. However, in terms of sample complexity, the bottleneck of those algorithms with Gaussian random measurements often comes from the initialization stage. Although the refinement stage usually needs only m = Ω ( s log n ) measurements, the widely used spectral initialization in the initialization stage requires m = Ω ( s 2 log n ) measurements to produce a desired initial guess, which causes the total sample complexity order-wisely more than necessary. To reduce the number of measurements, we propose a truncated power method to replace the spectral initialization for non-convex sparse phase retrieval algorithms. We prove that m = Ω ( s ˉ s log n ) measurements, where s ˉ is the stable sparsity of the underlying signal, are sufficient to produce a desired initial guess. When the underlying signal contains only very few significant components, the sample complexity of the proposed algorithm is m = Ω ( s log n ) and optimal. Numerical experiments illustrate that the proposed method is more sample-efficient than state-of-the-art algorithms.
AbstractList We study the sparse phase retrieval problem, recovering an s -sparse length- n signal from m magnitude-only measurements. Two-stage non-convex approaches have drawn much attention in recent studies. Despite non-convexity, many two-stage algorithms provably converge to the underlying solution linearly when appropriately initialized. However, in terms of sample complexity, the bottleneck of those algorithms with Gaussian random measurements often comes from the initialization stage. Although the refinement stage usually needs only m = Ω ( s log n ) measurements, the widely used spectral initialization in the initialization stage requires m = Ω ( s 2 log n ) measurements to produce a desired initial guess, which causes the total sample complexity order-wisely more than necessary. To reduce the number of measurements, we propose a truncated power method to replace the spectral initialization for non-convex sparse phase retrieval algorithms. We prove that m = Ω ( s ˉ s log n ) measurements, where s ˉ is the stable sparsity of the underlying signal, are sufficient to produce a desired initial guess. When the underlying signal contains only very few significant components, the sample complexity of the proposed algorithm is m = Ω ( s log n ) and optimal. Numerical experiments illustrate that the proposed method is more sample-efficient than state-of-the-art algorithms.
Author Li, Jingyang
Cai, Jian-Feng
You, Juntao
Author_xml – sequence: 1
  givenname: Jian-Feng
  surname: Cai
  fullname: Cai, Jian-Feng
  organization: HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute , Futian, Shenzhen 518000, People’s Republic of China
– sequence: 2
  givenname: Jingyang
  surname: Li
  fullname: Li, Jingyang
  organization: The Hong Kong University of Science and Technology Department of Mathematics, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
– sequence: 3
  givenname: Juntao
  orcidid: 0000-0003-0014-3514
  surname: You
  fullname: You, Juntao
  organization: The Hong Kong University of Science and Technology Department of Mathematics, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
BookMark eNp9kE1LAzEQhoMo2FbvHvMDXJuP3WyuUvyCgh7Ua0iyE5qy3SxJWqm_3pSKB0Ev7zAv8wwz7xSdDmEAhK4ouaFEyjnlglaiZmSubSeNPEGTH-sUTQgTomoEpedomtKaEEolbSfo_SWGnTY94KQ3Yw8VOOethyHjNOqYAI8rXTRCjh52usd-8Nnr3n9Ch80e57gdrM6lGcMHRLyBvArdBTpzuk9w-V1n6O3-7nXxWC2fH54Wt8vKcsZyUcktL_e3QpoOWsFlZ4SllhFoiuFMXbfc8WKKupONZoRYyWpiWFM3TvIZIse9NoaUIjg1Rr_Rca8oUYdc1CEEdQhBHXMpiPiFWJ919mHIUfv-P_D6CPowqnXYxqF89vf4F9vweaQ
CODEN INPEEY
CitedBy_id crossref_primary_10_1109_TIT_2024_3386821
crossref_primary_10_1016_j_dsp_2025_105073
Cites_doi 10.1016/j.acha.2014.04.001
10.1214/13-AOS1097
10.4310/CMS.2018.v16.n7.a13
10.4208/aam.OA-2021-0010
10.1007/s10208-018-9395-y
10.1364/JOSAA.10.001046
10.1109/TIT.2018.2800768
10.1109/TIT.2019.2891653
10.1109/TIT.2019.2902924
10.1007/s10107-013-0738-9
10.1214/aos/1015957395
10.1109/MSP.2014.2352673
10.1109/TSP.2015.2448516
10.1214/17-EJS1378SI
10.1016/j.acha.2021.10.002
10.1146/annurev.physchem.59.032607.093642
10.1080/713817747
10.1016/j.acha.2022.01.002
10.1109/TSP.2019.2904918
10.4208/aam.OA-2021-0009
10.1002/cpa.21638
10.1214/16-AOS1443
10.1109/TIT.2019.2956922
10.1080/01621459.2021.1906684
10.1007/s10208-017-9365-9
10.1109/TIT.2015.2429594
10.1364/AO.21.002758
10.1109/TSP.2022.3214091
10.1016/j.acha.2015.06.007
10.1109/TIT.2015.2399924
10.1137/151005099
10.1137/15M1050525
10.1109/TSP.2017.2771733
10.1016/j.acha.2005.07.001
ContentType Journal Article
Copyright 2023 IOP Publishing Ltd
Copyright_xml – notice: 2023 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-6420/acd8b8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1361-6420
ExternalDocumentID 10_1088_1361_6420_acd8b8
ipacd8b8
GrantInformation_xml – fundername: Hong Kong Research Grants Council
  grantid: 16310620; 16306821
– fundername: Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone
  grantid: HZQB-KCZYB-2020083
GroupedDBID -~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHFT
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
KZ1
LAP
LMP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
ZMT
~02
AAYXX
ADACN
ADEQX
CITATION
ID FETCH-LOGICAL-c322t-c383c3108768bde7638db6c1c20e5bdefb4473f3db664d85a200c8240b2545f83
IEDL.DBID IOP
ISSN 0266-5611
IngestDate Thu Apr 24 23:07:17 EDT 2025
Tue Jul 01 00:41:29 EDT 2025
Wed Aug 21 03:34:31 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-c383c3108768bde7638db6c1c20e5bdefb4473f3db664d85a200c8240b2545f83
Notes IP-103771.R2
ORCID 0000-0003-0014-3514
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6420/acd8b8/pdf
PageCount 30
ParticipantIDs crossref_primary_10_1088_1361_6420_acd8b8
iop_journals_10_1088_1361_6420_acd8b8
crossref_citationtrail_10_1088_1361_6420_acd8b8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Inverse problems
PublicationTitleAbbrev ip
PublicationTitleAlternate Inverse Problems
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Yuan (ipacd8b8bib54) 2013; 14
Balan (ipacd8b8bib4) 2006; 20
Netrapalli (ipacd8b8bib38) 2015; 63
Balakrishnan (ipacd8b8bib3) 2017
Sun (ipacd8b8bib43) 2018; 18
Netrapalli (ipacd8b8bib37) 2013
Ma (ipacd8b8bib31) 2018
Fienup (ipacd8b8bib19) 1982; 21
Iwen (ipacd8b8bib24) 2017; 42
Chen (ipacd8b8bib18) 2015; 61
Tong (ipacd8b8bib44) 2021; 22
Cai (ipacd8b8bib11) 2022; 56
Walther (ipacd8b8bib48) 1963; 10
Waldspurger (ipacd8b8bib47) 2015; 149
Cai (ipacd8b8bib12) 2022
Shen (ipacd8b8bib41) 2022
Salehi (ipacd8b8bib39) 2018; vol 31
Horn (ipacd8b8bib23) 2012
Moghaddam (ipacd8b8bib35) 2005; vol 18
Cai (ipacd8b8bib8) 2022
Cai (ipacd8b8bib7) 2022; 38
Wang (ipacd8b8bib51) 2014; 37
Soltanolkotabi (ipacd8b8bib42) 2019; 65
Zhang (ipacd8b8bib55) 2016
Berthet (ipacd8b8bib5) 2013
Cai (ipacd8b8bib9) 2022; 58
Hand (ipacd8b8bib21) 2018; 16
Liu (ipacd8b8bib29) 2021; vol 34
Shechtman (ipacd8b8bib40) 2015; 32
Wang (ipacd8b8bib50) 2017; 66
Chen (ipacd8b8bib17) 2017; 70
Tong (ipacd8b8bib45) 2022; 23
Miao (ipacd8b8bib34) 2008; 59
Cai (ipacd8b8bib13)
Bahmani (ipacd8b8bib1) 2015; vol 28
Vershynin (ipacd8b8bib46) 2018; vol 47
Wu (ipacd8b8bib53) 2021
Candes (ipacd8b8bib15) 2015; 57
Bahmani (ipacd8b8bib2) 2017; 11
Journée (ipacd8b8bib26) 2010; 11
Harrison (ipacd8b8bib22) 1993; 10
Laurent (ipacd8b8bib27) 2000; 28
Mallat (ipacd8b8bib33) 1998
Candes (ipacd8b8bib16) 2015; 61
Cai (ipacd8b8bib14) 2016; 44
Mondelli (ipacd8b8bib36) 2019; 19
Li (ipacd8b8bib28) 2020; 66
Jagatap (ipacd8b8bib25) 2019; 65
Wang (ipacd8b8bib49) 2016
Cai (ipacd8b8bib10) 2022; 70
Wei (ipacd8b8bib52) 2016; 37
Goldstein (ipacd8b8bib20) 2018; 64
Luo (ipacd8b8bib30) 2019; 67
Cai (ipacd8b8bib6) 2021; 37
Ma (ipacd8b8bib32) 2013; 41
References_xml – volume: 37
  start-page: 531
  year: 2014
  ident: ipacd8b8bib51
  article-title: Phase retrieval for sparse signals
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2014.04.001
– volume: 41
  start-page: 772
  year: 2013
  ident: ipacd8b8bib32
  article-title: Sparse principal component analysis and iterative thresholding
  publication-title: Ann. Stat.
  doi: 10.1214/13-AOS1097
– volume: 14
  start-page: 899
  year: 2013
  ident: ipacd8b8bib54
  article-title: Truncated power method for sparse eigenvalue problems
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 2047
  year: 2018
  ident: ipacd8b8bib21
  article-title: An elementary proof of convex phase retrieval in the natural parameter space via the linear program phasemax
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2018.v16.n7.a13
– volume: 38
  start-page: 62
  year: 2022
  ident: ipacd8b8bib7
  article-title: The global landscape of phase retrieval II: quotient intensity models
  publication-title: Ann. Appl. Math.
  doi: 10.4208/aam.OA-2021-0010
– volume: vol 34
  start-page: 17656
  year: 2021
  ident: ipacd8b8bib29
  article-title: Towards sample-optimal compressive phase retrieval with sparse and generative priors
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 517
  year: 2010
  ident: ipacd8b8bib26
  article-title: Generalized power method for sparse principal component analysis
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 703
  year: 2019
  ident: ipacd8b8bib36
  article-title: Fundamental limits of weak recovery with applications to phase retrieval
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-018-9395-y
– volume: vol 18
  year: 2005
  ident: ipacd8b8bib35
  article-title: Spectral bounds for sparse PCA: exact and greedy algorithms
– volume: 10
  start-page: 1046
  year: 1993
  ident: ipacd8b8bib22
  article-title: Phase problem in crystallography
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.10.001046
– year: 2022
  ident: ipacd8b8bib8
  article-title: Nearly optimal bounds for the global geometric landscape of phase retrieval
– volume: 64
  start-page: 2675
  year: 2018
  ident: ipacd8b8bib20
  article-title: Phasemax: convex phase retrieval via basis pursuit
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2018.2800768
– volume: 65
  start-page: 2374
  year: 2019
  ident: ipacd8b8bib42
  article-title: Structured signal recovery from quadratic measurements: breaking sample complexity barriers via nonconvex optimization
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2019.2891653
– volume: 65
  start-page: 4434
  year: 2019
  ident: ipacd8b8bib25
  article-title: Sample-efficient algorithms for recovering structured signals from magnitude-only measurements
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2019.2902924
– volume: 149
  start-page: 47
  year: 2015
  ident: ipacd8b8bib47
  article-title: Phase recovery, maxcut and complex semidefinite programming
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0738-9
– volume: 28
  start-page: 1302
  year: 2000
  ident: ipacd8b8bib27
  article-title: Adaptive estimation of a quadratic functional by model selection
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1015957395
– volume: 32
  start-page: 87
  year: 2015
  ident: ipacd8b8bib40
  article-title: Phase retrieval with application to optical imaging: a contemporary overview
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2352673
– volume: 63
  start-page: 4814
  year: 2015
  ident: ipacd8b8bib38
  article-title: Phase retrieval using alternating minimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2448516
– volume: 11
  start-page: 5254
  year: 2017
  ident: ipacd8b8bib2
  article-title: A flexible convex relaxation for phase retrieval
  publication-title: Electron. J. Stat.
  doi: 10.1214/17-EJS1378SI
– volume: 56
  start-page: 367
  year: 2022
  ident: ipacd8b8bib11
  article-title: Sparse signal recovery from phaseless measurements via hard thresholding pursuit
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2021.10.002
– volume: 59
  start-page: 387
  year: 2008
  ident: ipacd8b8bib34
  article-title: Extending x-ray crystallography to allow the imaging of noncrystalline materials, cells and single protein complexes
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.59.032607.093642
– start-page: pp 2796
  year: 2013
  ident: ipacd8b8bib37
  article-title: Phase retrieval using alternating minimization
– volume: 10
  start-page: 41
  year: 1963
  ident: ipacd8b8bib48
  article-title: The question of phase retrieval in optics
  publication-title: J. Mod. Opt.
  doi: 10.1080/713817747
– volume: 58
  start-page: 60
  year: 2022
  ident: ipacd8b8bib9
  article-title: Solving phase retrieval with random initial guess is nearly as good as by spectral initialization
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2022.01.002
– volume: 67
  start-page: 2347
  year: 2019
  ident: ipacd8b8bib30
  article-title: Optimal spectral initialization for signal recovery with applications to phase retrieval
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2904918
– ident: ipacd8b8bib13
  article-title: Solving systems of phaseless equations via Riemannian optimization with optimal sampling complexity
– volume: 37
  start-page: 437
  year: 2021
  ident: ipacd8b8bib6
  article-title: The global landscape of phase retrieval I: perturbed amplitude models
  publication-title: Ann. Appl. Math.
  doi: 10.4208/aam.OA-2021-0009
– volume: 70
  start-page: 822
  year: 2017
  ident: ipacd8b8bib17
  article-title: Solving random quadratic systems of equations is nearly as easy as solving linear systems
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21638
– volume: 44
  start-page: 2221
  year: 2016
  ident: ipacd8b8bib14
  article-title: Optimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flow
  publication-title: Ann. Stat.
  doi: 10.1214/16-AOS1443
– volume: vol 47
  year: 2018
  ident: ipacd8b8bib46
– volume: 66
  start-page: 3242
  year: 2020
  ident: ipacd8b8bib28
  article-title: Toward the optimal construction of a loss function without spurious local minima for solving quadratic equations
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2019.2956922
– year: 1998
  ident: ipacd8b8bib33
– volume: 23
  start-page: 1
  year: 2022
  ident: ipacd8b8bib45
  article-title: Scaling and scalability: provable nonconvex low-rank tensor estimation from incomplete measurements
  publication-title: J. Mach. Learn. Res.
– start-page: pp 2622
  year: 2016
  ident: ipacd8b8bib55
  article-title: Reshaped Wirtinger flow for solving quadratic system of equations
– start-page: 1
  year: 2022
  ident: ipacd8b8bib12
  article-title: Generalized low-rank plus sparse tensor estimation by fast Riemannian optimization
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2021.1906684
– volume: 18
  start-page: 1131
  year: 2018
  ident: ipacd8b8bib43
  article-title: A geometric analysis of phase retrieval
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-017-9365-9
– volume: 61
  start-page: 4034
  year: 2015
  ident: ipacd8b8bib18
  article-title: Exact and stable covariance estimation from quadratic sampling via convex programming
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2015.2429594
– volume: 21
  start-page: 2758
  year: 1982
  ident: ipacd8b8bib19
  article-title: Phase retrieval algorithms: a comparison
  publication-title: Appl. Opt.
  doi: 10.1364/AO.21.002758
– volume: 70
  start-page: 4951
  year: 2022
  ident: ipacd8b8bib10
  article-title: Sample-efficient sparse phase retrieval via stochastic alternating minimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2022.3214091
– volume: vol 28
  year: 2015
  ident: ipacd8b8bib1
  article-title: Efficient compressive phase retrieval with constrained sensing vectors
  publication-title: Advances in Neural Information Processing Systems
– volume: 42
  start-page: 135
  year: 2017
  ident: ipacd8b8bib24
  article-title: Robust sparse phase retrieval made easy
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2015.06.007
– volume: 61
  start-page: 1985
  year: 2015
  ident: ipacd8b8bib16
  article-title: Phase retrieval via Wirtinger flow: theory and algorithms
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2015.2399924
– volume: 57
  start-page: 225
  year: 2015
  ident: ipacd8b8bib15
  article-title: Phase retrieval via matrix completion
  publication-title: SIAM Rev.
  doi: 10.1137/151005099
– year: 2012
  ident: ipacd8b8bib23
– year: 2022
  ident: ipacd8b8bib41
  article-title: Computationally efficient and statistically optimal robust low-rank matrix estimation
– start-page: pp 568
  year: 2016
  ident: ipacd8b8bib49
  article-title: Solving random systems of quadratic equations via truncated generalized gradient flow
– volume: 37
  start-page: 1198
  year: 2016
  ident: ipacd8b8bib52
  article-title: Guarantees of Riemannian optimization for low rank matrix recovery
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/15M1050525
– start-page: pp 169
  year: 2017
  ident: ipacd8b8bib3
  article-title: Computationally efficient robust sparse estimation in high dimensions
– start-page: pp 3345
  year: 2018
  ident: ipacd8b8bib31
  article-title: Implicit regularization in nonconvex statistical estimation: gradient descent converges linearly for phase retrieval and matrix completion
– volume: 66
  start-page: 479
  year: 2017
  ident: ipacd8b8bib50
  article-title: Sparse phase retrieval via truncated amplitude flow
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2771733
– start-page: pp 982
  year: 2021
  ident: ipacd8b8bib53
  article-title: Hadamard Wirtinger flow for sparse phase retrieval
– volume: vol 31
  year: 2018
  ident: ipacd8b8bib39
  article-title: Learning without the phase: regularized phasemax achieves optimal sample complexity
– volume: 20
  start-page: 345
  year: 2006
  ident: ipacd8b8bib4
  article-title: On signal reconstruction without phase
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2005.07.001
– volume: 22
  start-page: 150
  year: 2021
  ident: ipacd8b8bib44
  article-title: Accelerating ill-conditioned low-rank matrix estimation via scaled gradient descent
  publication-title: J. Mach. Learn. Res.
– start-page: pp 1046
  year: 2013
  ident: ipacd8b8bib5
  article-title: Complexity theoretic lower bounds for sparse principal component detection
SSID ssj0011817
Score 2.4354224
Snippet We study the sparse phase retrieval problem, recovering an s -sparse length- n signal from m magnitude-only measurements. Two-stage non-convex approaches have...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 75008
SubjectTerms initialization
non-convex algorithms
sparse phase retrieval
truncated power method
Title Provable sample-efficient sparse phase retrieval initialized by truncated power method
URI https://iopscience.iop.org/article/10.1088/1361-6420/acd8b8
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MedGD3-L8Igc9eMi2rm2a4UnEMYXpDk52EErzURRlK2snuL_el6YrU1TES2nDaxtekvd-SV5-D-BEBW4bcWiTxgheqddyGBWB8qlAZ6yctm75yizo925Zd-DdDP1hBc7LszDjpDD9dby1RMFWhUVAHG84LnMowuZmI5KKC74Eyy5nzKQvuL7rl1sI6LoCu8DCKIIEp9ij_O4Ln3zSEv53wcV01uFxXjkbWfJSn2aiLmdfeBv_WfsNWCugJ7mwoptQ0aMtWF0gJMSnXsnimm7DQ38yfjNHq0gaGRJhqnO-CXRTBO3QJNUkeUInSCZ5Vi7ssuTZhCIhsp9pRcQ7ySZTwzmLD4lJxkZsuuodGHSu7i-7tMjDQCUO9wyv3JUIA9FwcqE0WiSuBJOObDW1jwWx8LzAjV0sZJ7ifoQjT3KECgJnn37M3V2ojsYjvQdEBUqYtTwWxcqLmSOaEmd4qsVxVsakUjVozFsilAVJucmV8Rrmm-Wch0Z_odFfaPVXg7PyjcQSdPwie4rNEhajNP1Rbv-PcgewYrLP2-jdQ6iiVvURYpRMHOd98QMl2d9S
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZokRAMvBHl6QEGBjdJkzjuiICqBVo6UNQtxI8IBGqjNEWiv55znFYFAUJiiRLr8jrbd5_t83cIncjArQMOtUkM4JV4NYcSHkifcHDG0qmrmi_1hH67Q5s977rv94s8p_lemGFSmP4qnBqiYKPCIiCOWY5LHQKw2bYiIRlnViLjElr0Xepq8vzWXXe2jADuKzCTLJQAUHCKdcrvnvLJL5Xg3XNuprGGHqcfaKJLXqrjjFfF5At34z_-YB2tFhAUnxvxDbSgBptoZY6YEK7aMzbX0RZ66KbDN73FCo8iTSZMVM47Ae4Kgz1KRwonT-AMcZpn54Kmi591SBIg_ImSmL_jLB1r7lm4SHRSNmzSVm-jXuPq_qJJinwMREC3z-DIXAFwEAwo41KBZWKSU-GImq18KIi55wVu7EIh9STzI-iBggFk4DAK9WPm7qDyYDhQuwjLQHI9p0ejWHoxdbgtYKQnawxGZ1RIWUHWtDZCUZCV65wZr2G-aM5YqHUYah2GRocVdDa7IzFEHb_InkLVhEVvHf0ot_dHuWO01L1shLetzs0-WtYJ6U1A7wEqg4LVIcCWjB_lTfMDEEPktg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Provable+sample-efficient+sparse+phase+retrieval+initialized+by+truncated+power+method&rft.jtitle=Inverse+problems&rft.au=Cai%2C+Jian-Feng&rft.au=Li%2C+Jingyang&rft.au=You%2C+Juntao&rft.date=2023-07-01&rft.pub=IOP+Publishing&rft.issn=0266-5611&rft.eissn=1361-6420&rft.volume=39&rft.issue=7&rft_id=info:doi/10.1088%2F1361-6420%2Facd8b8&rft.externalDocID=ipacd8b8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon