Provable sample-efficient sparse phase retrieval initialized by truncated power method
We study the sparse phase retrieval problem, recovering an s -sparse length- n signal from m magnitude-only measurements. Two-stage non-convex approaches have drawn much attention in recent studies. Despite non-convexity, many two-stage algorithms provably converge to the underlying solution linearl...
Saved in:
Published in | Inverse problems Vol. 39; no. 7; pp. 75008 - 75037 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the sparse phase retrieval problem, recovering an
s
-sparse length-
n
signal from
m
magnitude-only measurements. Two-stage non-convex approaches have drawn much attention in recent studies. Despite non-convexity, many two-stage algorithms provably converge to the underlying solution linearly when appropriately initialized. However, in terms of sample complexity, the bottleneck of those algorithms with Gaussian random measurements often comes from the initialization stage. Although the refinement stage usually needs only
m
=
Ω
(
s
log
n
)
measurements, the widely used spectral initialization in the initialization stage requires
m
=
Ω
(
s
2
log
n
)
measurements to produce a desired initial guess, which causes the total sample complexity order-wisely more than necessary. To reduce the number of measurements, we propose a truncated power method to replace the spectral initialization for non-convex sparse phase retrieval algorithms. We prove that
m
=
Ω
(
s
ˉ
s
log
n
)
measurements, where
s
ˉ
is the stable sparsity of the underlying signal, are sufficient to produce a desired initial guess. When the underlying signal contains only very few significant components, the sample complexity of the proposed algorithm is
m
=
Ω
(
s
log
n
)
and optimal. Numerical experiments illustrate that the proposed method is more sample-efficient than state-of-the-art algorithms. |
---|---|
AbstractList | We study the sparse phase retrieval problem, recovering an
s
-sparse length-
n
signal from
m
magnitude-only measurements. Two-stage non-convex approaches have drawn much attention in recent studies. Despite non-convexity, many two-stage algorithms provably converge to the underlying solution linearly when appropriately initialized. However, in terms of sample complexity, the bottleneck of those algorithms with Gaussian random measurements often comes from the initialization stage. Although the refinement stage usually needs only
m
=
Ω
(
s
log
n
)
measurements, the widely used spectral initialization in the initialization stage requires
m
=
Ω
(
s
2
log
n
)
measurements to produce a desired initial guess, which causes the total sample complexity order-wisely more than necessary. To reduce the number of measurements, we propose a truncated power method to replace the spectral initialization for non-convex sparse phase retrieval algorithms. We prove that
m
=
Ω
(
s
ˉ
s
log
n
)
measurements, where
s
ˉ
is the stable sparsity of the underlying signal, are sufficient to produce a desired initial guess. When the underlying signal contains only very few significant components, the sample complexity of the proposed algorithm is
m
=
Ω
(
s
log
n
)
and optimal. Numerical experiments illustrate that the proposed method is more sample-efficient than state-of-the-art algorithms. |
Author | Li, Jingyang Cai, Jian-Feng You, Juntao |
Author_xml | – sequence: 1 givenname: Jian-Feng surname: Cai fullname: Cai, Jian-Feng organization: HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute , Futian, Shenzhen 518000, People’s Republic of China – sequence: 2 givenname: Jingyang surname: Li fullname: Li, Jingyang organization: The Hong Kong University of Science and Technology Department of Mathematics, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China – sequence: 3 givenname: Juntao orcidid: 0000-0003-0014-3514 surname: You fullname: You, Juntao organization: The Hong Kong University of Science and Technology Department of Mathematics, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China |
BookMark | eNp9kE1LAzEQhoMo2FbvHvMDXJuP3WyuUvyCgh7Ua0iyE5qy3SxJWqm_3pSKB0Ev7zAv8wwz7xSdDmEAhK4ouaFEyjnlglaiZmSubSeNPEGTH-sUTQgTomoEpedomtKaEEolbSfo_SWGnTY94KQ3Yw8VOOethyHjNOqYAI8rXTRCjh52usd-8Nnr3n9Ch80e57gdrM6lGcMHRLyBvArdBTpzuk9w-V1n6O3-7nXxWC2fH54Wt8vKcsZyUcktL_e3QpoOWsFlZ4SllhFoiuFMXbfc8WKKupONZoRYyWpiWFM3TvIZIse9NoaUIjg1Rr_Rca8oUYdc1CEEdQhBHXMpiPiFWJ919mHIUfv-P_D6CPowqnXYxqF89vf4F9vweaQ |
CODEN | INPEEY |
CitedBy_id | crossref_primary_10_1109_TIT_2024_3386821 crossref_primary_10_1016_j_dsp_2025_105073 |
Cites_doi | 10.1016/j.acha.2014.04.001 10.1214/13-AOS1097 10.4310/CMS.2018.v16.n7.a13 10.4208/aam.OA-2021-0010 10.1007/s10208-018-9395-y 10.1364/JOSAA.10.001046 10.1109/TIT.2018.2800768 10.1109/TIT.2019.2891653 10.1109/TIT.2019.2902924 10.1007/s10107-013-0738-9 10.1214/aos/1015957395 10.1109/MSP.2014.2352673 10.1109/TSP.2015.2448516 10.1214/17-EJS1378SI 10.1016/j.acha.2021.10.002 10.1146/annurev.physchem.59.032607.093642 10.1080/713817747 10.1016/j.acha.2022.01.002 10.1109/TSP.2019.2904918 10.4208/aam.OA-2021-0009 10.1002/cpa.21638 10.1214/16-AOS1443 10.1109/TIT.2019.2956922 10.1080/01621459.2021.1906684 10.1007/s10208-017-9365-9 10.1109/TIT.2015.2429594 10.1364/AO.21.002758 10.1109/TSP.2022.3214091 10.1016/j.acha.2015.06.007 10.1109/TIT.2015.2399924 10.1137/151005099 10.1137/15M1050525 10.1109/TSP.2017.2771733 10.1016/j.acha.2005.07.001 |
ContentType | Journal Article |
Copyright | 2023 IOP Publishing Ltd |
Copyright_xml | – notice: 2023 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6420/acd8b8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1361-6420 |
ExternalDocumentID | 10_1088_1361_6420_acd8b8 ipacd8b8 |
GrantInformation_xml | – fundername: Hong Kong Research Grants Council grantid: 16310620; 16306821 – fundername: Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone grantid: HZQB-KCZYB-2020083 |
GroupedDBID | -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHFT ABHWH ABJNI ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT KZ1 LAP LMP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 UCJ W28 XPP ZMT ~02 AAYXX ADACN ADEQX CITATION |
ID | FETCH-LOGICAL-c322t-c383c3108768bde7638db6c1c20e5bdefb4473f3db664d85a200c8240b2545f83 |
IEDL.DBID | IOP |
ISSN | 0266-5611 |
IngestDate | Thu Apr 24 23:07:17 EDT 2025 Tue Jul 01 00:41:29 EDT 2025 Wed Aug 21 03:34:31 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-c383c3108768bde7638db6c1c20e5bdefb4473f3db664d85a200c8240b2545f83 |
Notes | IP-103771.R2 |
ORCID | 0000-0003-0014-3514 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-6420/acd8b8/pdf |
PageCount | 30 |
ParticipantIDs | crossref_primary_10_1088_1361_6420_acd8b8 iop_journals_10_1088_1361_6420_acd8b8 crossref_citationtrail_10_1088_1361_6420_acd8b8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Inverse problems |
PublicationTitleAbbrev | ip |
PublicationTitleAlternate | Inverse Problems |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Yuan (ipacd8b8bib54) 2013; 14 Balan (ipacd8b8bib4) 2006; 20 Netrapalli (ipacd8b8bib38) 2015; 63 Balakrishnan (ipacd8b8bib3) 2017 Sun (ipacd8b8bib43) 2018; 18 Netrapalli (ipacd8b8bib37) 2013 Ma (ipacd8b8bib31) 2018 Fienup (ipacd8b8bib19) 1982; 21 Iwen (ipacd8b8bib24) 2017; 42 Chen (ipacd8b8bib18) 2015; 61 Tong (ipacd8b8bib44) 2021; 22 Cai (ipacd8b8bib11) 2022; 56 Walther (ipacd8b8bib48) 1963; 10 Waldspurger (ipacd8b8bib47) 2015; 149 Cai (ipacd8b8bib12) 2022 Shen (ipacd8b8bib41) 2022 Salehi (ipacd8b8bib39) 2018; vol 31 Horn (ipacd8b8bib23) 2012 Moghaddam (ipacd8b8bib35) 2005; vol 18 Cai (ipacd8b8bib8) 2022 Cai (ipacd8b8bib7) 2022; 38 Wang (ipacd8b8bib51) 2014; 37 Soltanolkotabi (ipacd8b8bib42) 2019; 65 Zhang (ipacd8b8bib55) 2016 Berthet (ipacd8b8bib5) 2013 Cai (ipacd8b8bib9) 2022; 58 Hand (ipacd8b8bib21) 2018; 16 Liu (ipacd8b8bib29) 2021; vol 34 Shechtman (ipacd8b8bib40) 2015; 32 Wang (ipacd8b8bib50) 2017; 66 Chen (ipacd8b8bib17) 2017; 70 Tong (ipacd8b8bib45) 2022; 23 Miao (ipacd8b8bib34) 2008; 59 Cai (ipacd8b8bib13) Bahmani (ipacd8b8bib1) 2015; vol 28 Vershynin (ipacd8b8bib46) 2018; vol 47 Wu (ipacd8b8bib53) 2021 Candes (ipacd8b8bib15) 2015; 57 Bahmani (ipacd8b8bib2) 2017; 11 Journée (ipacd8b8bib26) 2010; 11 Harrison (ipacd8b8bib22) 1993; 10 Laurent (ipacd8b8bib27) 2000; 28 Mallat (ipacd8b8bib33) 1998 Candes (ipacd8b8bib16) 2015; 61 Cai (ipacd8b8bib14) 2016; 44 Mondelli (ipacd8b8bib36) 2019; 19 Li (ipacd8b8bib28) 2020; 66 Jagatap (ipacd8b8bib25) 2019; 65 Wang (ipacd8b8bib49) 2016 Cai (ipacd8b8bib10) 2022; 70 Wei (ipacd8b8bib52) 2016; 37 Goldstein (ipacd8b8bib20) 2018; 64 Luo (ipacd8b8bib30) 2019; 67 Cai (ipacd8b8bib6) 2021; 37 Ma (ipacd8b8bib32) 2013; 41 |
References_xml | – volume: 37 start-page: 531 year: 2014 ident: ipacd8b8bib51 article-title: Phase retrieval for sparse signals publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2014.04.001 – volume: 41 start-page: 772 year: 2013 ident: ipacd8b8bib32 article-title: Sparse principal component analysis and iterative thresholding publication-title: Ann. Stat. doi: 10.1214/13-AOS1097 – volume: 14 start-page: 899 year: 2013 ident: ipacd8b8bib54 article-title: Truncated power method for sparse eigenvalue problems publication-title: J. Mach. Learn. Res. – volume: 16 start-page: 2047 year: 2018 ident: ipacd8b8bib21 article-title: An elementary proof of convex phase retrieval in the natural parameter space via the linear program phasemax publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2018.v16.n7.a13 – volume: 38 start-page: 62 year: 2022 ident: ipacd8b8bib7 article-title: The global landscape of phase retrieval II: quotient intensity models publication-title: Ann. Appl. Math. doi: 10.4208/aam.OA-2021-0010 – volume: vol 34 start-page: 17656 year: 2021 ident: ipacd8b8bib29 article-title: Towards sample-optimal compressive phase retrieval with sparse and generative priors publication-title: Advances in Neural Information Processing Systems – volume: 11 start-page: 517 year: 2010 ident: ipacd8b8bib26 article-title: Generalized power method for sparse principal component analysis publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 703 year: 2019 ident: ipacd8b8bib36 article-title: Fundamental limits of weak recovery with applications to phase retrieval publication-title: Found. Comput. Math. doi: 10.1007/s10208-018-9395-y – volume: vol 18 year: 2005 ident: ipacd8b8bib35 article-title: Spectral bounds for sparse PCA: exact and greedy algorithms – volume: 10 start-page: 1046 year: 1993 ident: ipacd8b8bib22 article-title: Phase problem in crystallography publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.10.001046 – year: 2022 ident: ipacd8b8bib8 article-title: Nearly optimal bounds for the global geometric landscape of phase retrieval – volume: 64 start-page: 2675 year: 2018 ident: ipacd8b8bib20 article-title: Phasemax: convex phase retrieval via basis pursuit publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2018.2800768 – volume: 65 start-page: 2374 year: 2019 ident: ipacd8b8bib42 article-title: Structured signal recovery from quadratic measurements: breaking sample complexity barriers via nonconvex optimization publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2019.2891653 – volume: 65 start-page: 4434 year: 2019 ident: ipacd8b8bib25 article-title: Sample-efficient algorithms for recovering structured signals from magnitude-only measurements publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2019.2902924 – volume: 149 start-page: 47 year: 2015 ident: ipacd8b8bib47 article-title: Phase recovery, maxcut and complex semidefinite programming publication-title: Math. Program. doi: 10.1007/s10107-013-0738-9 – volume: 28 start-page: 1302 year: 2000 ident: ipacd8b8bib27 article-title: Adaptive estimation of a quadratic functional by model selection publication-title: Ann. Stat. doi: 10.1214/aos/1015957395 – volume: 32 start-page: 87 year: 2015 ident: ipacd8b8bib40 article-title: Phase retrieval with application to optical imaging: a contemporary overview publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2352673 – volume: 63 start-page: 4814 year: 2015 ident: ipacd8b8bib38 article-title: Phase retrieval using alternating minimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2448516 – volume: 11 start-page: 5254 year: 2017 ident: ipacd8b8bib2 article-title: A flexible convex relaxation for phase retrieval publication-title: Electron. J. Stat. doi: 10.1214/17-EJS1378SI – volume: 56 start-page: 367 year: 2022 ident: ipacd8b8bib11 article-title: Sparse signal recovery from phaseless measurements via hard thresholding pursuit publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2021.10.002 – volume: 59 start-page: 387 year: 2008 ident: ipacd8b8bib34 article-title: Extending x-ray crystallography to allow the imaging of noncrystalline materials, cells and single protein complexes publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.59.032607.093642 – start-page: pp 2796 year: 2013 ident: ipacd8b8bib37 article-title: Phase retrieval using alternating minimization – volume: 10 start-page: 41 year: 1963 ident: ipacd8b8bib48 article-title: The question of phase retrieval in optics publication-title: J. Mod. Opt. doi: 10.1080/713817747 – volume: 58 start-page: 60 year: 2022 ident: ipacd8b8bib9 article-title: Solving phase retrieval with random initial guess is nearly as good as by spectral initialization publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2022.01.002 – volume: 67 start-page: 2347 year: 2019 ident: ipacd8b8bib30 article-title: Optimal spectral initialization for signal recovery with applications to phase retrieval publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2904918 – ident: ipacd8b8bib13 article-title: Solving systems of phaseless equations via Riemannian optimization with optimal sampling complexity – volume: 37 start-page: 437 year: 2021 ident: ipacd8b8bib6 article-title: The global landscape of phase retrieval I: perturbed amplitude models publication-title: Ann. Appl. Math. doi: 10.4208/aam.OA-2021-0009 – volume: 70 start-page: 822 year: 2017 ident: ipacd8b8bib17 article-title: Solving random quadratic systems of equations is nearly as easy as solving linear systems publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21638 – volume: 44 start-page: 2221 year: 2016 ident: ipacd8b8bib14 article-title: Optimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flow publication-title: Ann. Stat. doi: 10.1214/16-AOS1443 – volume: vol 47 year: 2018 ident: ipacd8b8bib46 – volume: 66 start-page: 3242 year: 2020 ident: ipacd8b8bib28 article-title: Toward the optimal construction of a loss function without spurious local minima for solving quadratic equations publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2019.2956922 – year: 1998 ident: ipacd8b8bib33 – volume: 23 start-page: 1 year: 2022 ident: ipacd8b8bib45 article-title: Scaling and scalability: provable nonconvex low-rank tensor estimation from incomplete measurements publication-title: J. Mach. Learn. Res. – start-page: pp 2622 year: 2016 ident: ipacd8b8bib55 article-title: Reshaped Wirtinger flow for solving quadratic system of equations – start-page: 1 year: 2022 ident: ipacd8b8bib12 article-title: Generalized low-rank plus sparse tensor estimation by fast Riemannian optimization publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2021.1906684 – volume: 18 start-page: 1131 year: 2018 ident: ipacd8b8bib43 article-title: A geometric analysis of phase retrieval publication-title: Found. Comput. Math. doi: 10.1007/s10208-017-9365-9 – volume: 61 start-page: 4034 year: 2015 ident: ipacd8b8bib18 article-title: Exact and stable covariance estimation from quadratic sampling via convex programming publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2015.2429594 – volume: 21 start-page: 2758 year: 1982 ident: ipacd8b8bib19 article-title: Phase retrieval algorithms: a comparison publication-title: Appl. Opt. doi: 10.1364/AO.21.002758 – volume: 70 start-page: 4951 year: 2022 ident: ipacd8b8bib10 article-title: Sample-efficient sparse phase retrieval via stochastic alternating minimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2022.3214091 – volume: vol 28 year: 2015 ident: ipacd8b8bib1 article-title: Efficient compressive phase retrieval with constrained sensing vectors publication-title: Advances in Neural Information Processing Systems – volume: 42 start-page: 135 year: 2017 ident: ipacd8b8bib24 article-title: Robust sparse phase retrieval made easy publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2015.06.007 – volume: 61 start-page: 1985 year: 2015 ident: ipacd8b8bib16 article-title: Phase retrieval via Wirtinger flow: theory and algorithms publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2015.2399924 – volume: 57 start-page: 225 year: 2015 ident: ipacd8b8bib15 article-title: Phase retrieval via matrix completion publication-title: SIAM Rev. doi: 10.1137/151005099 – year: 2012 ident: ipacd8b8bib23 – year: 2022 ident: ipacd8b8bib41 article-title: Computationally efficient and statistically optimal robust low-rank matrix estimation – start-page: pp 568 year: 2016 ident: ipacd8b8bib49 article-title: Solving random systems of quadratic equations via truncated generalized gradient flow – volume: 37 start-page: 1198 year: 2016 ident: ipacd8b8bib52 article-title: Guarantees of Riemannian optimization for low rank matrix recovery publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/15M1050525 – start-page: pp 169 year: 2017 ident: ipacd8b8bib3 article-title: Computationally efficient robust sparse estimation in high dimensions – start-page: pp 3345 year: 2018 ident: ipacd8b8bib31 article-title: Implicit regularization in nonconvex statistical estimation: gradient descent converges linearly for phase retrieval and matrix completion – volume: 66 start-page: 479 year: 2017 ident: ipacd8b8bib50 article-title: Sparse phase retrieval via truncated amplitude flow publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2771733 – start-page: pp 982 year: 2021 ident: ipacd8b8bib53 article-title: Hadamard Wirtinger flow for sparse phase retrieval – volume: vol 31 year: 2018 ident: ipacd8b8bib39 article-title: Learning without the phase: regularized phasemax achieves optimal sample complexity – volume: 20 start-page: 345 year: 2006 ident: ipacd8b8bib4 article-title: On signal reconstruction without phase publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2005.07.001 – volume: 22 start-page: 150 year: 2021 ident: ipacd8b8bib44 article-title: Accelerating ill-conditioned low-rank matrix estimation via scaled gradient descent publication-title: J. Mach. Learn. Res. – start-page: pp 1046 year: 2013 ident: ipacd8b8bib5 article-title: Complexity theoretic lower bounds for sparse principal component detection |
SSID | ssj0011817 |
Score | 2.4354224 |
Snippet | We study the sparse phase retrieval problem, recovering an
s
-sparse length-
n
signal from
m
magnitude-only measurements. Two-stage non-convex approaches have... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 75008 |
SubjectTerms | initialization non-convex algorithms sparse phase retrieval truncated power method |
Title | Provable sample-efficient sparse phase retrieval initialized by truncated power method |
URI | https://iopscience.iop.org/article/10.1088/1361-6420/acd8b8 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MedGD3-L8Igc9eMi2rm2a4UnEMYXpDk52EErzURRlK2snuL_el6YrU1TES2nDaxtekvd-SV5-D-BEBW4bcWiTxgheqddyGBWB8qlAZ6yctm75yizo925Zd-DdDP1hBc7LszDjpDD9dby1RMFWhUVAHG84LnMowuZmI5KKC74Eyy5nzKQvuL7rl1sI6LoCu8DCKIIEp9ij_O4Ln3zSEv53wcV01uFxXjkbWfJSn2aiLmdfeBv_WfsNWCugJ7mwoptQ0aMtWF0gJMSnXsnimm7DQ38yfjNHq0gaGRJhqnO-CXRTBO3QJNUkeUInSCZ5Vi7ssuTZhCIhsp9pRcQ7ySZTwzmLD4lJxkZsuuodGHSu7i-7tMjDQCUO9wyv3JUIA9FwcqE0WiSuBJOObDW1jwWx8LzAjV0sZJ7ifoQjT3KECgJnn37M3V2ojsYjvQdEBUqYtTwWxcqLmSOaEmd4qsVxVsakUjVozFsilAVJucmV8Rrmm-Wch0Z_odFfaPVXg7PyjcQSdPwie4rNEhajNP1Rbv-PcgewYrLP2-jdQ6iiVvURYpRMHOd98QMl2d9S |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZokRAMvBHl6QEGBjdJkzjuiICqBVo6UNQtxI8IBGqjNEWiv55znFYFAUJiiRLr8jrbd5_t83cIncjArQMOtUkM4JV4NYcSHkifcHDG0qmrmi_1hH67Q5s977rv94s8p_lemGFSmP4qnBqiYKPCIiCOWY5LHQKw2bYiIRlnViLjElr0Xepq8vzWXXe2jADuKzCTLJQAUHCKdcrvnvLJL5Xg3XNuprGGHqcfaKJLXqrjjFfF5At34z_-YB2tFhAUnxvxDbSgBptoZY6YEK7aMzbX0RZ66KbDN73FCo8iTSZMVM47Ae4Kgz1KRwonT-AMcZpn54Kmi591SBIg_ImSmL_jLB1r7lm4SHRSNmzSVm-jXuPq_qJJinwMREC3z-DIXAFwEAwo41KBZWKSU-GImq18KIi55wVu7EIh9STzI-iBggFk4DAK9WPm7qDyYDhQuwjLQHI9p0ejWHoxdbgtYKQnawxGZ1RIWUHWtDZCUZCV65wZr2G-aM5YqHUYah2GRocVdDa7IzFEHb_InkLVhEVvHf0ot_dHuWO01L1shLetzs0-WtYJ6U1A7wEqg4LVIcCWjB_lTfMDEEPktg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Provable+sample-efficient+sparse+phase+retrieval+initialized+by+truncated+power+method&rft.jtitle=Inverse+problems&rft.au=Cai%2C+Jian-Feng&rft.au=Li%2C+Jingyang&rft.au=You%2C+Juntao&rft.date=2023-07-01&rft.pub=IOP+Publishing&rft.issn=0266-5611&rft.eissn=1361-6420&rft.volume=39&rft.issue=7&rft_id=info:doi/10.1088%2F1361-6420%2Facd8b8&rft.externalDocID=ipacd8b8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon |