Enhancing disruption prediction through Bayesian neural network in KSTAR
In this research, we develop a data-driven disruption predictor based on Bayesian deep probabilistic learning, capable of predicting disruptions and modeling uncertainty in KSTAR. Unlike conventional neural networks within a frequentist approach, Bayesian neural networks can quantify the uncertainty...
Saved in:
Published in | Plasma physics and controlled fusion Vol. 66; no. 7; pp. 75001 - 75021 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0741-3335 1361-6587 |
DOI | 10.1088/1361-6587/ad48b7 |
Cover
Abstract | In this research, we develop a data-driven disruption predictor based on Bayesian deep probabilistic learning, capable of predicting disruptions and modeling uncertainty in KSTAR. Unlike conventional neural networks within a frequentist approach, Bayesian neural networks can quantify the uncertainty associated with their predictions, thereby enhancing the precision of disruption prediction by mitigating false alarm rates through uncertainty thresholding. Leveraging 0D plasma parameters from EFIT and diagnostic data, a temporal convolutional network adept at handling multi-time scale data was utilized. The proposed framework demonstrates proficiency in predicting disruptions, substantiating its effectiveness through successful applications to KSTAR experimental data. |
---|---|
AbstractList | In this research, we develop a data-driven disruption predictor based on Bayesian deep probabilistic learning, capable of predicting disruptions and modeling uncertainty in KSTAR. Unlike conventional neural networks within a frequentist approach, Bayesian neural networks can quantify the uncertainty associated with their predictions, thereby enhancing the precision of disruption prediction by mitigating false alarm rates through uncertainty thresholding. Leveraging 0D plasma parameters from EFIT and diagnostic data, a temporal convolutional network adept at handling multi-time scale data was utilized. The proposed framework demonstrates proficiency in predicting disruptions, substantiating its effectiveness through successful applications to KSTAR experimental data. |
Author | Lee, Jeongwon Kim, Jinsu Ghim, Young-Chul Lee, Yeongsun Na, Yong-Su Seo, Jaemin |
Author_xml | – sequence: 1 givenname: Jinsu orcidid: 0009-0000-2610-4551 surname: Kim fullname: Kim, Jinsu organization: Department of Nuclear Engineering, Seoul National University , Seoul, Republic of Korea – sequence: 2 givenname: Jeongwon orcidid: 0000-0002-2353-2603 surname: Lee fullname: Lee, Jeongwon organization: Korean Institute of Fusion Energy , Daejeon, Republic of Korea – sequence: 3 givenname: Jaemin orcidid: 0000-0003-0635-0282 surname: Seo fullname: Seo, Jaemin organization: Chung-Ang University Department of Physics, Seoul, Republic of Korea – sequence: 4 givenname: Young-Chul orcidid: 0000-0003-4123-9416 surname: Ghim fullname: Ghim, Young-Chul organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology , Daejeon, Republic of Korea – sequence: 5 givenname: Yeongsun orcidid: 0000-0003-4474-416X surname: Lee fullname: Lee, Yeongsun organization: Department of Nuclear Engineering, Seoul National University , Seoul, Republic of Korea – sequence: 6 givenname: Yong-Su orcidid: 0000-0001-7270-3846 surname: Na fullname: Na, Yong-Su organization: Department of Nuclear Engineering, Seoul National University , Seoul, Republic of Korea |
BookMark | eNp9kM1KAzEUhYNUsK3uXc4DODaZpJnMspZqxYKgdR3y26bWZEhmkL59Z6y4EHR1LpfzXe45IzDwwRsArhG8RZCxCcIU5XTKyonQhMnyDAx_VgMwhCVBOcZ4egFGKe0gRIgVdAiWC78VXjm_ybRLsa0bF3xWR6Od-hqbbQztZpvdiYNJTvjMmzaKfSfNZ4jvmfPZ0-t69nIJzq3YJ3P1rWPwdr9Yz5f56vnhcT5b5QoXRZPLCkqqNLaMCCWpEdBOJa4UkQJZaTVBVMtSFpZAWFnJoCTSdD5W4qrUluIxoKe7KoaUorFcuUb0rzZRuD1HkPd98D4878PzUx8dCH-BdXQfIh7-Q25OiAs134U2-i7Z3_Yjm8505w |
CODEN | PLPHBZ |
CitedBy_id | crossref_primary_10_1088_1741_4326_ad93e6 crossref_primary_10_1088_1741_4326_adb3bc |
Cites_doi | 10.1063/1.5134126 10.1038/s41586-024-07024-9 10.1088/0029-5515/25/11/007 10.1088/1741-4326/ac79be 10.1088/0029-5515/51/5/053018 10.1080/01621459.2017.1285773 10.1063/5.0133825 10.1038/s41567-022-01602-2 10.1088/1741-4326/ab28bf 10.1063/1.5144458 10.1063/1.1315639 10.1088/1741-4326/ad067c 10.1088/1361-6587/ac228b 10.1016/j.aei.2019.100977 10.1088/1741-4326/abc664 10.3233/JIFS-189155 10.1088/0029-5515/51/12/123010 10.1088/1741-4326/acbe0f 10.1016/j.fusengdes.2023.114128 10.1038/s41598-023-49977-3 10.1088/1741-4326/ad142f 10.1088/0029-5515/47/11/018 10.1088/1741-4326/abc9f3 10.1016/j.csda.2019.106816 10.1016/j.neucom.2021.04.112 10.1016/j.jcp.2018.10.045 10.1088/1742-6596/1168/2/022022 10.1038/s42005-023-01296-9 10.1017/S0022377822001192 10.1088/0029-5515/29/4/009 10.1088/1741-4326/ac121b 10.1063/1.4901251 10.1088/0741-3335/37/11A/009 10.1109/TPS.2020.2972579 10.1615/JMachLearnModelComput.2021037052 10.1016/j.fusengdes.2024.114204 10.1088/1361-6587/aac7fe 10.1080/15361055.2020.1820749 10.1063/1.4705694 10.1038/s41586-019-1116-4 10.1103/PhysRevLett.88.174102 10.1088/1741-4326/ab1df4 10.1109/MSP.2017.2765695 10.1016/0893-6080(89)90020-8 10.1063/1.1323251 10.1088/1741-4326/ad2723 10.1103/PhysRevE.104.025205 10.1016/j.fusengdes.2023.113668 |
ContentType | Journal Article |
Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6587/ad48b7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1361-6587 |
ExternalDocumentID | 10_1088_1361_6587_ad48b7 ppcfad48b7 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 W28 XPP AAYXX CITATION |
ID | FETCH-LOGICAL-c322t-b90b6cd3f84acb6ea0f5b39c4ba1fbfd416db7b2f4009fb80b4beb6e87397df63 |
IEDL.DBID | IOP |
ISSN | 0741-3335 |
IngestDate | Wed Aug 27 16:30:30 EDT 2025 Thu Apr 24 22:53:02 EDT 2025 Wed Aug 27 01:32:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-b90b6cd3f84acb6ea0f5b39c4ba1fbfd416db7b2f4009fb80b4beb6e87397df63 |
Notes | PPCF-104522.R2 |
ORCID | 0000-0003-4474-416X 0000-0003-4123-9416 0000-0001-7270-3846 0009-0000-2610-4551 0000-0002-2353-2603 0000-0003-0635-0282 |
OpenAccessLink | https://doi.org/10.1088/1361-6587/ad48b7 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1088_1361_6587_ad48b7 iop_journals_10_1088_1361_6587_ad48b7 crossref_citationtrail_10_1088_1361_6587_ad48b7 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Plasma physics and controlled fusion |
PublicationTitleAbbrev | PPCF |
PublicationTitleAlternate | Plasma Phys. Control. Fusion |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Xu (ppcfad48b7bib60) 2020 Murari (ppcfad48b7bib62) 2021; 61 Heo (ppcfad48b7bib27) 2023 Hoi (ppcfad48b7bib66) 2021; 459 Vega (ppcfad48b7bib17) 2022; 18 Van der Maaten (ppcfad48b7bib58) 2008; 9 Gal (ppcfad48b7bib55) 2016 Lin (ppcfad48b7bib57) 2017 Jeon (ppcfad48b7bib28) 2001; 72 the-JET-Contributors (ppcfad48b7bib63) 2023; 193 JET-EFDA Contributors (ppcfad48b7bib4) 2011; 51 Jet-Efda Contributors (ppcfad48b7bib10) 2007; 47 Seo (ppcfad48b7bib32) 2022; 62 Rea (ppcfad48b7bib16) 2018; 60 Rossi (ppcfad48b7bib40) 2023; 63 Chandrasekar (ppcfad48b7bib18) 2020; 39 Hornik (ppcfad48b7bib26) 1989; 2 Sabbagh (ppcfad48b7bib9) 2023; 30 Lee (ppcfad48b7bib20) 2024; 199 Gretton (ppcfad48b7bib52) 1999; vol 22 Blei (ppcfad48b7bib53) 2017; 112 Ying (ppcfad48b7bib42) 2019; 1168 Wesson (ppcfad48b7bib48) 2011; vol 149 Yang (ppcfad48b7bib41) Zhu (ppcfad48b7bib5) 2020; 61 JET Contributors (ppcfad48b7bib37) 2020; 27 Sabbagh (ppcfad48b7bib8) 2018 Lehnen (ppcfad48b7bib64) 2011; 51 Mathews (ppcfad48b7bib38) 2021; 104 Hein (ppcfad48b7bib43) 2019 DIII-D Team (ppcfad48b7bib14) 2020; 27 Seo (ppcfad48b7bib35) 2024; 626 Wang (ppcfad48b7bib44) 2021; vol 34 Lao (ppcfad48b7bib46) 1985; 25 Gretton (ppcfad48b7bib51) 2006; vol 19 Ding (ppcfad48b7bib59) 2019; 42 Vega (ppcfad48b7bib12) 2015 Raissi (ppcfad48b7bib36) 2019; 378 Shousha (ppcfad48b7bib30) 2024; 64 Rea (ppcfad48b7bib25) 2019; 59 Na (ppcfad48b7bib29) 2001; 72 Kendall (ppcfad48b7bib54) 2017 Rossi (ppcfad48b7bib61) 2024; 64 Kates-Harbeck (ppcfad48b7bib11) 2019; 568 Cheng (ppcfad48b7bib65) 2018; 35 Abramovic (ppcfad48b7bib39) 2022; 88 Hollmann (ppcfad48b7bib6) 2015; 22 Bao (ppcfad48b7bib7) 2020; 48 Blundell (ppcfad48b7bib45) 2015 Sinn (ppcfad48b7bib49) 2012 Guo (ppcfad48b7bib19) 2021; 63 Schuller (ppcfad48b7bib2) 1995; 37 van den Oord (ppcfad48b7bib47) 2016 Shen (ppcfad48b7bib24) 2023; 63 JET Contributors (ppcfad48b7bib13) 2020; 76 JET-EFDA Contributors (ppcfad48b7bib1) 2012; 19 Kwon (ppcfad48b7bib56) 2020; 142 Wesson (ppcfad48b7bib3) 1989; 29 Zheng (ppcfad48b7bib15) 2023; 6 Kim (ppcfad48b7bib21) 2024; 200 Seo (ppcfad48b7bib31) 2021; 61 Dong (ppcfad48b7bib22) 2021; 2 Montes (ppcfad48b7bib23) 2019; 59 Seo (ppcfad48b7bib33) 2023 Seo (ppcfad48b7bib34) 2024; 14 Bandt (ppcfad48b7bib50) 2002; 88 |
References_xml | – volume: 27 year: 2020 ident: ppcfad48b7bib37 article-title: Fast modeling of turbulent transport in fusion plasmas using neural networks publication-title: Phys. Plasmas doi: 10.1063/1.5134126 – start-page: p 30 year: 2017 ident: ppcfad48b7bib54 article-title: What uncertainties do we need in bayesian deep learning for computer vision? – year: 2012 ident: ppcfad48b7bib49 article-title: Detecting change-points in time series by maximum mean discrepancy of ordinal pattern distributions – volume: vol 22 start-page: p 1637 year: 1999 ident: ppcfad48b7bib52 article-title: A kernel approach to comparing distributions – volume: 626 start-page: 746 year: 2024 ident: ppcfad48b7bib35 article-title: Avoiding fusion plasma tearing instability with deep reinforcement learning publication-title: Nature doi: 10.1038/s41586-024-07024-9 – volume: 25 start-page: 1611 year: 1985 ident: ppcfad48b7bib46 article-title: Reconstruction of current profile parameters and plasma shapes in tokamaks publication-title: Nucl. Fusion doi: 10.1088/0029-5515/25/11/007 – volume: 62 year: 2022 ident: ppcfad48b7bib32 article-title: Development of an operation trajectory design algorithm for control of multiple 0d parameters using deep reinforcement learning in KSTAR publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac79be – volume: 51 year: 2011 ident: ppcfad48b7bib4 article-title: Survey of disruption causes at jet publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/5/053018 – start-page: pp 1 year: 2023 ident: ppcfad48b7bib27 article-title: Neural-network model for linear mhd stability analysis of tokamak edge pedestals – volume: 112 start-page: 859 year: 2017 ident: ppcfad48b7bib53 article-title: Variational inference: a review for statisticians publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1285773 – start-page: pp 384 year: 2020 ident: ppcfad48b7bib60 article-title: Phostransfer: a deep transfer learning framework for kinase-specific phosphorylation site prediction in hierarchy – volume: 30 year: 2023 ident: ppcfad48b7bib9 article-title: Disruption event characterization and forecasting in tokamaks publication-title: Phys. Plasmas doi: 10.1063/5.0133825 – volume: 18 start-page: 741 year: 2022 ident: ppcfad48b7bib17 article-title: Disruption prediction with artificial intelligence techniques in tokamak plasmas publication-title: Nat. Phys. doi: 10.1038/s41567-022-01602-2 – volume: 59 year: 2019 ident: ppcfad48b7bib25 article-title: A real-time machine learning-based disruption predictor in DIII-D publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab28bf – volume: 27 year: 2020 ident: ppcfad48b7bib14 article-title: Deep convolutional neural networks for multi-scale time-series classification and application to tokamak disruption prediction using raw, high temporal resolution diagnostic data publication-title: Phys. Plasmas doi: 10.1063/1.5144458 – volume: vol 149 year: 2011 ident: ppcfad48b7bib48 – volume: 72 start-page: 1400 year: 2001 ident: ppcfad48b7bib29 article-title: Real-time extraction of plasma equilibrium parameters in KSTAR tokamak using statistical methods publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1315639 – volume: 63 year: 2023 ident: ppcfad48b7bib40 article-title: On the potential of physics-informed neural networks to solve inverse problems in tokamaks publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad067c – year: 2016 ident: ppcfad48b7bib47 article-title: Wavenet: a generative model for raw audio – volume: 63 year: 2021 ident: ppcfad48b7bib19 article-title: Disruption prediction on east tokamak using a deep learning algorithm publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ac228b – volume: vol 19 year: 2006 ident: ppcfad48b7bib51 article-title: A kernel method for the two-sample-problem – volume: 42 year: 2019 ident: ppcfad48b7bib59 article-title: Intelligent fault diagnosis for rotating machinery using deep q-network based health state classification: a deep reinforcement learning approach publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2019.100977 – volume: 61 year: 2020 ident: ppcfad48b7bib5 article-title: Hybrid deep-learning architecture for general disruption prediction across multiple tokamaks publication-title: Nucl. Fusion doi: 10.1088/1741-4326/abc664 – volume: 39 start-page: 8365 year: 2020 ident: ppcfad48b7bib18 article-title: Data-driven disruption prediction in golem tokamak using ensemble classifiers publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-189155 – volume: 51 year: 2011 ident: ppcfad48b7bib64 article-title: Disruption mitigation by massive gas injection in jet publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/12/123010 – volume: 63 year: 2023 ident: ppcfad48b7bib24 article-title: IDP-PGFE: an interpretable disruption predictor based on physics-guided feature extraction publication-title: Nucl. Fusion doi: 10.1088/1741-4326/acbe0f – volume: 199 year: 2024 ident: ppcfad48b7bib20 article-title: Data-driven disruption prediction using random forest in KSTAR publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2023.114128 – volume: vol 34 start-page: pp 11809 year: 2021 ident: ppcfad48b7bib44 article-title: Rethinking calibration of deep neural networks: do not be afraid of overconfidence – volume: 14 start-page: 202 year: 2024 ident: ppcfad48b7bib34 article-title: Solving real-world optimization tasks using physics-informed neural computing publication-title: Sci. Rep. doi: 10.1038/s41598-023-49977-3 – volume: 64 year: 2024 ident: ppcfad48b7bib30 article-title: Machine learning-based real-time kinetic profile reconstruction in DIII-D publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad142f – volume: 47 start-page: 1559 year: 2007 ident: ppcfad48b7bib10 article-title: A prediction tool for real-time application in the disruption protection system at jet publication-title: Nucl. Fusion doi: 10.1088/0029-5515/47/11/018 – ident: ppcfad48b7bib41 article-title: PFNN: less data and better performance on disruption prediction via physics-informed deep learning – volume: 9 start-page: 2579 year: 2008 ident: ppcfad48b7bib58 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 61 year: 2021 ident: ppcfad48b7bib62 article-title: Stacking of predictors for the automatic classification of disruption types to optimize the control logic publication-title: Nucl. Fusion doi: 10.1088/1741-4326/abc9f3 – volume: 142 year: 2020 ident: ppcfad48b7bib56 article-title: Uncertainty quantification using Bayesian neural networks in classification: application to biomedical image segmentation publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2019.106816 – volume: 459 start-page: 249 year: 2021 ident: ppcfad48b7bib66 article-title: Online learning: a comprehensive survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.04.112 – start-page: pp 41 year: 2019 ident: ppcfad48b7bib43 article-title: Why relu networks yield high-confidence predictions far away from the training data and how to mitigate the problem – volume: 378 start-page: 686 year: 2019 ident: ppcfad48b7bib36 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 1168 year: 2019 ident: ppcfad48b7bib42 article-title: An overview of overfitting and its solutions publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/1168/2/022022 – volume: 6 start-page: 181 year: 2023 ident: ppcfad48b7bib15 article-title: Disruption prediction for future tokamaks using parameter-based transfer learning publication-title: Commun. Phys. doi: 10.1038/s42005-023-01296-9 – year: 2018 ident: ppcfad48b7bib8 article-title: Disruption event characterization ex/p6-26 and forecasting in tokamaks – start-page: pp 1 year: 2023 ident: ppcfad48b7bib33 article-title: Multimodal prediction of tearing instabilities in a tokamak – volume: 88 year: 2022 ident: ppcfad48b7bib39 article-title: Data-driven model discovery for plasma turbulence modelling publication-title: J. Plasma Phys. doi: 10.1017/S0022377822001192 – volume: 29 start-page: 641 year: 1989 ident: ppcfad48b7bib3 article-title: Disruptions in jet publication-title: Nucl. Fusion doi: 10.1088/0029-5515/29/4/009 – volume: 61 year: 2021 ident: ppcfad48b7bib31 article-title: Feedforward beta control in the KSTAR tokamak by deep reinforcement learning publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac121b – volume: 22 year: 2015 ident: ppcfad48b7bib6 article-title: Status of research toward the iter disruption mitigation system publication-title: Phys. Plasmas doi: 10.1063/1.4901251 – volume: 37 start-page: A135 year: 1995 ident: ppcfad48b7bib2 article-title: Disruptions in tokamaks publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/37/11A/009 – volume: 48 start-page: 715 year: 2020 ident: ppcfad48b7bib7 article-title: A real-time disruption prediction tool for vde on east publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2020.2972579 – volume: 2 start-page: 49 year: 2021 ident: ppcfad48b7bib22 article-title: Fully convolutional spatio-temporal models for representation learning in plasma science publication-title: J. Mach. Learn. Model. Comput. doi: 10.1615/JMachLearnModelComput.2021037052 – volume: 200 year: 2024 ident: ppcfad48b7bib21 article-title: Disruption prediction and analysis through multimodal deep learning in KSTAR publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2024.114204 – start-page: pp 1050 year: 2016 ident: ppcfad48b7bib55 article-title: Dropout as a bayesian approximation: representing model uncertainty in deep learning – volume: 60 year: 2018 ident: ppcfad48b7bib16 article-title: Disruption prediction investigations using machine learning tools on DIII-D and Alcator C-Mod publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/aac7fe – start-page: pp 1 year: 2015 ident: ppcfad48b7bib12 article-title: Disruption precursor detection: combining the time and frequency domains – volume: 76 start-page: 901 year: 2020 ident: ppcfad48b7bib13 article-title: Deep learning for the analysis of disruption precursors based on plasma tomography publication-title: Fusion Sci. Technol. doi: 10.1080/15361055.2020.1820749 – volume: 19 year: 2012 ident: ppcfad48b7bib1 article-title: Understanding disruptions in tokamaks publication-title: Phys. Plasmas doi: 10.1063/1.4705694 – volume: 568 start-page: 526 year: 2019 ident: ppcfad48b7bib11 article-title: Predicting disruptive instabilities in controlled fusion plasmas through deep learning publication-title: Nature doi: 10.1038/s41586-019-1116-4 – volume: 88 year: 2002 ident: ppcfad48b7bib50 article-title: Permutation entropy: a natural complexity measure for time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.174102 – volume: 59 year: 2019 ident: ppcfad48b7bib23 article-title: Machine learning for disruption warnings on alcator C-Mod, DIII-D and EAST publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab1df4 – volume: 35 start-page: 126 year: 2018 ident: ppcfad48b7bib65 article-title: Model compression and acceleration for deep neural networks: The principles, progress and challenges publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2765695 – start-page: pp 2980 year: 2017 ident: ppcfad48b7bib57 article-title: Focal loss for dense object detection – volume: 2 start-page: 359 year: 1989 ident: ppcfad48b7bib26 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – volume: 72 start-page: 513 year: 2001 ident: ppcfad48b7bib28 article-title: Newly developed double neural network concept for reliable fast plasma position control publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1323251 – volume: 64 year: 2024 ident: ppcfad48b7bib61 article-title: A hybrid physics/data-driven logic to detect, classify and predict anomalies and disruptions in tokamak plasmas publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad2723 – start-page: pp 1613 year: 2015 ident: ppcfad48b7bib45 article-title: Weight uncertainty in neural network – volume: 104 year: 2021 ident: ppcfad48b7bib38 article-title: Uncovering turbulent plasma dynamics via deep learning from partial observations publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.104.025205 – volume: 193 year: 2023 ident: ppcfad48b7bib63 article-title: Cnn disruption predictor at jet: early versus late data fusion approach publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2023.113668 |
SSID | ssj0011826 |
Score | 2.454356 |
Snippet | In this research, we develop a data-driven disruption predictor based on Bayesian deep probabilistic learning, capable of predicting disruptions and modeling... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 75001 |
SubjectTerms | Bayesian neural network deep learning disruption tokamak uncertainty estimation |
Title | Enhancing disruption prediction through Bayesian neural network in KSTAR |
URI | https://iopscience.iop.org/article/10.1088/1361-6587/ad48b7 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7aiuDFt1hf7EEPHtI23TTZ4KlKS1V8oC30IIR9alHS0qYH_fXOZrdFRUW87WGyWb7MK8zsNwgdBsbnGz5tqSPtQf4feCxiBFZcE0WZz_IfxavrsNMLLvqNfgGdzO_CDEfO9VdgaYmCLYSuIY5WfRL6HgTOyBDgUh4V0YIZXGnU-_zmdl5CMImz5eD0PUJIw9Uov9vhU0wqwns_hJj2CnqYHc52ljxXphmviLcvvI3_PP0qWnapJ25a0TVUUOk6WsxbQMVkA3Va6ZMh30gfsRxMxtPcl-DR2FRy8qUb6YNP2asyVy-x4cKEDVPbSY4HKb687zbvNlGv3eqedTw3Z8ETYM6Zx-MaD4UkmgZM8FCxmm5wEouAM19zLeFbSh7xugZ7jzWnNR5wBXI0gmRG6pBsoVI6TNU2wpqFoBSKxEQEuTcAmbqWQispiC_9MqrOkE6EIyE3szBekrwYTmli8EkMPonFp4yO50-MLAHHL7JHAHvirHDyo9zOH-V20VIdchjbnbuHStl4qvYhB8n4Qa5r7z0b1MU |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4IRuPFtxGfPejBQ4GypY8jKgREkSgk3Oo-lWhKA-Wgv97Z7kLUqDHxNofptp3uPJr59huETlwV8xWfNpe-tKH-d23iEwwSlVgExCHZj-JNx2v23atBdWDmnGZnYUaJCf1FEDVRsDahAcQFJQd7jg2J01cEuAH1SwmXObRYhVCsMF2t2-68jaCKZ83D6dgY46rpU363yqe8lIN7f0gzjTX0MHtAjS55Lk5TWmRvX7gb__EG62jVlKBWTatvoAURb6KlDArKJluoWY-fFAlH_Gjx4WQ8zWKKlYxVRycTzWgf65y8CnUE01KcmLBgrBHl1jC22ve92t026jfqvYumbeYt2AzcOrVpWKYe41gGLmHUE6QsqxSHzKXEkVRy-Kac-rQiwe9DSYMydakAvcCHooZLD--gfDyKxS6yJPFgcwgcYuZmUQF0KpIzKTjDDncKqDSzdsQMGbmaifESZU3xIIiUjSJlo0jbqIDO5lckmojjF91TMH1kvHHyo97eH_WO0XL3shFdtzrtfbRSgbJGA3YPUD4dT8UhlCUpPcq23jtZFNop |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+disruption+prediction+through+Bayesian+neural+network+in+KSTAR&rft.jtitle=Plasma+physics+and+controlled+fusion&rft.au=Kim%2C+Jinsu&rft.au=Lee%2C+Jeongwon&rft.au=Seo%2C+Jaemin&rft.au=Ghim%2C+Young-Chul&rft.date=2024-07-01&rft.pub=IOP+Publishing&rft.issn=0741-3335&rft.eissn=1361-6587&rft.volume=66&rft.issue=7&rft_id=info:doi/10.1088%2F1361-6587%2Fad48b7&rft.externalDocID=ppcfad48b7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-3335&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-3335&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-3335&client=summon |