Enhancing disruption prediction through Bayesian neural network in KSTAR

In this research, we develop a data-driven disruption predictor based on Bayesian deep probabilistic learning, capable of predicting disruptions and modeling uncertainty in KSTAR. Unlike conventional neural networks within a frequentist approach, Bayesian neural networks can quantify the uncertainty...

Full description

Saved in:
Bibliographic Details
Published inPlasma physics and controlled fusion Vol. 66; no. 7; pp. 75001 - 75021
Main Authors Kim, Jinsu, Lee, Jeongwon, Seo, Jaemin, Ghim, Young-Chul, Lee, Yeongsun, Na, Yong-Su
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.07.2024
Subjects
Online AccessGet full text
ISSN0741-3335
1361-6587
DOI10.1088/1361-6587/ad48b7

Cover

Abstract In this research, we develop a data-driven disruption predictor based on Bayesian deep probabilistic learning, capable of predicting disruptions and modeling uncertainty in KSTAR. Unlike conventional neural networks within a frequentist approach, Bayesian neural networks can quantify the uncertainty associated with their predictions, thereby enhancing the precision of disruption prediction by mitigating false alarm rates through uncertainty thresholding. Leveraging 0D plasma parameters from EFIT and diagnostic data, a temporal convolutional network adept at handling multi-time scale data was utilized. The proposed framework demonstrates proficiency in predicting disruptions, substantiating its effectiveness through successful applications to KSTAR experimental data.
AbstractList In this research, we develop a data-driven disruption predictor based on Bayesian deep probabilistic learning, capable of predicting disruptions and modeling uncertainty in KSTAR. Unlike conventional neural networks within a frequentist approach, Bayesian neural networks can quantify the uncertainty associated with their predictions, thereby enhancing the precision of disruption prediction by mitigating false alarm rates through uncertainty thresholding. Leveraging 0D plasma parameters from EFIT and diagnostic data, a temporal convolutional network adept at handling multi-time scale data was utilized. The proposed framework demonstrates proficiency in predicting disruptions, substantiating its effectiveness through successful applications to KSTAR experimental data.
Author Lee, Jeongwon
Kim, Jinsu
Ghim, Young-Chul
Lee, Yeongsun
Na, Yong-Su
Seo, Jaemin
Author_xml – sequence: 1
  givenname: Jinsu
  orcidid: 0009-0000-2610-4551
  surname: Kim
  fullname: Kim, Jinsu
  organization: Department of Nuclear Engineering, Seoul National University , Seoul, Republic of Korea
– sequence: 2
  givenname: Jeongwon
  orcidid: 0000-0002-2353-2603
  surname: Lee
  fullname: Lee, Jeongwon
  organization: Korean Institute of Fusion Energy , Daejeon, Republic of Korea
– sequence: 3
  givenname: Jaemin
  orcidid: 0000-0003-0635-0282
  surname: Seo
  fullname: Seo, Jaemin
  organization: Chung-Ang University Department of Physics, Seoul, Republic of Korea
– sequence: 4
  givenname: Young-Chul
  orcidid: 0000-0003-4123-9416
  surname: Ghim
  fullname: Ghim, Young-Chul
  organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology , Daejeon, Republic of Korea
– sequence: 5
  givenname: Yeongsun
  orcidid: 0000-0003-4474-416X
  surname: Lee
  fullname: Lee, Yeongsun
  organization: Department of Nuclear Engineering, Seoul National University , Seoul, Republic of Korea
– sequence: 6
  givenname: Yong-Su
  orcidid: 0000-0001-7270-3846
  surname: Na
  fullname: Na, Yong-Su
  organization: Department of Nuclear Engineering, Seoul National University , Seoul, Republic of Korea
BookMark eNp9kM1KAzEUhYNUsK3uXc4DODaZpJnMspZqxYKgdR3y26bWZEhmkL59Z6y4EHR1LpfzXe45IzDwwRsArhG8RZCxCcIU5XTKyonQhMnyDAx_VgMwhCVBOcZ4egFGKe0gRIgVdAiWC78VXjm_ybRLsa0bF3xWR6Od-hqbbQztZpvdiYNJTvjMmzaKfSfNZ4jvmfPZ0-t69nIJzq3YJ3P1rWPwdr9Yz5f56vnhcT5b5QoXRZPLCkqqNLaMCCWpEdBOJa4UkQJZaTVBVMtSFpZAWFnJoCTSdD5W4qrUluIxoKe7KoaUorFcuUb0rzZRuD1HkPd98D4878PzUx8dCH-BdXQfIh7-Q25OiAs134U2-i7Z3_Yjm8505w
CODEN PLPHBZ
CitedBy_id crossref_primary_10_1088_1741_4326_ad93e6
crossref_primary_10_1088_1741_4326_adb3bc
Cites_doi 10.1063/1.5134126
10.1038/s41586-024-07024-9
10.1088/0029-5515/25/11/007
10.1088/1741-4326/ac79be
10.1088/0029-5515/51/5/053018
10.1080/01621459.2017.1285773
10.1063/5.0133825
10.1038/s41567-022-01602-2
10.1088/1741-4326/ab28bf
10.1063/1.5144458
10.1063/1.1315639
10.1088/1741-4326/ad067c
10.1088/1361-6587/ac228b
10.1016/j.aei.2019.100977
10.1088/1741-4326/abc664
10.3233/JIFS-189155
10.1088/0029-5515/51/12/123010
10.1088/1741-4326/acbe0f
10.1016/j.fusengdes.2023.114128
10.1038/s41598-023-49977-3
10.1088/1741-4326/ad142f
10.1088/0029-5515/47/11/018
10.1088/1741-4326/abc9f3
10.1016/j.csda.2019.106816
10.1016/j.neucom.2021.04.112
10.1016/j.jcp.2018.10.045
10.1088/1742-6596/1168/2/022022
10.1038/s42005-023-01296-9
10.1017/S0022377822001192
10.1088/0029-5515/29/4/009
10.1088/1741-4326/ac121b
10.1063/1.4901251
10.1088/0741-3335/37/11A/009
10.1109/TPS.2020.2972579
10.1615/JMachLearnModelComput.2021037052
10.1016/j.fusengdes.2024.114204
10.1088/1361-6587/aac7fe
10.1080/15361055.2020.1820749
10.1063/1.4705694
10.1038/s41586-019-1116-4
10.1103/PhysRevLett.88.174102
10.1088/1741-4326/ab1df4
10.1109/MSP.2017.2765695
10.1016/0893-6080(89)90020-8
10.1063/1.1323251
10.1088/1741-4326/ad2723
10.1103/PhysRevE.104.025205
10.1016/j.fusengdes.2023.113668
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1361-6587/ad48b7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1361-6587
ExternalDocumentID 10_1088_1361_6587_ad48b7
ppcfad48b7
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
CITATION
ID FETCH-LOGICAL-c322t-b90b6cd3f84acb6ea0f5b39c4ba1fbfd416db7b2f4009fb80b4beb6e87397df63
IEDL.DBID IOP
ISSN 0741-3335
IngestDate Wed Aug 27 16:30:30 EDT 2025
Thu Apr 24 22:53:02 EDT 2025
Wed Aug 27 01:32:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-b90b6cd3f84acb6ea0f5b39c4ba1fbfd416db7b2f4009fb80b4beb6e87397df63
Notes PPCF-104522.R2
ORCID 0000-0003-4474-416X
0000-0003-4123-9416
0000-0001-7270-3846
0009-0000-2610-4551
0000-0002-2353-2603
0000-0003-0635-0282
OpenAccessLink https://doi.org/10.1088/1361-6587/ad48b7
PageCount 21
ParticipantIDs crossref_primary_10_1088_1361_6587_ad48b7
iop_journals_10_1088_1361_6587_ad48b7
crossref_citationtrail_10_1088_1361_6587_ad48b7
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Plasma physics and controlled fusion
PublicationTitleAbbrev PPCF
PublicationTitleAlternate Plasma Phys. Control. Fusion
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Xu (ppcfad48b7bib60) 2020
Murari (ppcfad48b7bib62) 2021; 61
Heo (ppcfad48b7bib27) 2023
Hoi (ppcfad48b7bib66) 2021; 459
Vega (ppcfad48b7bib17) 2022; 18
Van der Maaten (ppcfad48b7bib58) 2008; 9
Gal (ppcfad48b7bib55) 2016
Lin (ppcfad48b7bib57) 2017
Jeon (ppcfad48b7bib28) 2001; 72
the-JET-Contributors (ppcfad48b7bib63) 2023; 193
JET-EFDA Contributors (ppcfad48b7bib4) 2011; 51
Jet-Efda Contributors (ppcfad48b7bib10) 2007; 47
Seo (ppcfad48b7bib32) 2022; 62
Rea (ppcfad48b7bib16) 2018; 60
Rossi (ppcfad48b7bib40) 2023; 63
Chandrasekar (ppcfad48b7bib18) 2020; 39
Hornik (ppcfad48b7bib26) 1989; 2
Sabbagh (ppcfad48b7bib9) 2023; 30
Lee (ppcfad48b7bib20) 2024; 199
Gretton (ppcfad48b7bib52) 1999; vol 22
Blei (ppcfad48b7bib53) 2017; 112
Ying (ppcfad48b7bib42) 2019; 1168
Wesson (ppcfad48b7bib48) 2011; vol 149
Yang (ppcfad48b7bib41)
Zhu (ppcfad48b7bib5) 2020; 61
JET Contributors (ppcfad48b7bib37) 2020; 27
Sabbagh (ppcfad48b7bib8) 2018
Lehnen (ppcfad48b7bib64) 2011; 51
Mathews (ppcfad48b7bib38) 2021; 104
Hein (ppcfad48b7bib43) 2019
DIII-D Team (ppcfad48b7bib14) 2020; 27
Seo (ppcfad48b7bib35) 2024; 626
Wang (ppcfad48b7bib44) 2021; vol 34
Lao (ppcfad48b7bib46) 1985; 25
Gretton (ppcfad48b7bib51) 2006; vol 19
Ding (ppcfad48b7bib59) 2019; 42
Vega (ppcfad48b7bib12) 2015
Raissi (ppcfad48b7bib36) 2019; 378
Shousha (ppcfad48b7bib30) 2024; 64
Rea (ppcfad48b7bib25) 2019; 59
Na (ppcfad48b7bib29) 2001; 72
Kendall (ppcfad48b7bib54) 2017
Rossi (ppcfad48b7bib61) 2024; 64
Kates-Harbeck (ppcfad48b7bib11) 2019; 568
Cheng (ppcfad48b7bib65) 2018; 35
Abramovic (ppcfad48b7bib39) 2022; 88
Hollmann (ppcfad48b7bib6) 2015; 22
Bao (ppcfad48b7bib7) 2020; 48
Blundell (ppcfad48b7bib45) 2015
Sinn (ppcfad48b7bib49) 2012
Guo (ppcfad48b7bib19) 2021; 63
Schuller (ppcfad48b7bib2) 1995; 37
van den Oord (ppcfad48b7bib47) 2016
Shen (ppcfad48b7bib24) 2023; 63
JET Contributors (ppcfad48b7bib13) 2020; 76
JET-EFDA Contributors (ppcfad48b7bib1) 2012; 19
Kwon (ppcfad48b7bib56) 2020; 142
Wesson (ppcfad48b7bib3) 1989; 29
Zheng (ppcfad48b7bib15) 2023; 6
Kim (ppcfad48b7bib21) 2024; 200
Seo (ppcfad48b7bib31) 2021; 61
Dong (ppcfad48b7bib22) 2021; 2
Montes (ppcfad48b7bib23) 2019; 59
Seo (ppcfad48b7bib33) 2023
Seo (ppcfad48b7bib34) 2024; 14
Bandt (ppcfad48b7bib50) 2002; 88
References_xml – volume: 27
  year: 2020
  ident: ppcfad48b7bib37
  article-title: Fast modeling of turbulent transport in fusion plasmas using neural networks
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5134126
– start-page: p 30
  year: 2017
  ident: ppcfad48b7bib54
  article-title: What uncertainties do we need in bayesian deep learning for computer vision?
– year: 2012
  ident: ppcfad48b7bib49
  article-title: Detecting change-points in time series by maximum mean discrepancy of ordinal pattern distributions
– volume: vol 22
  start-page: p 1637
  year: 1999
  ident: ppcfad48b7bib52
  article-title: A kernel approach to comparing distributions
– volume: 626
  start-page: 746
  year: 2024
  ident: ppcfad48b7bib35
  article-title: Avoiding fusion plasma tearing instability with deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/s41586-024-07024-9
– volume: 25
  start-page: 1611
  year: 1985
  ident: ppcfad48b7bib46
  article-title: Reconstruction of current profile parameters and plasma shapes in tokamaks
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/25/11/007
– volume: 62
  year: 2022
  ident: ppcfad48b7bib32
  article-title: Development of an operation trajectory design algorithm for control of multiple 0d parameters using deep reinforcement learning in KSTAR
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac79be
– volume: 51
  year: 2011
  ident: ppcfad48b7bib4
  article-title: Survey of disruption causes at jet
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/51/5/053018
– start-page: pp 1
  year: 2023
  ident: ppcfad48b7bib27
  article-title: Neural-network model for linear mhd stability analysis of tokamak edge pedestals
– volume: 112
  start-page: 859
  year: 2017
  ident: ppcfad48b7bib53
  article-title: Variational inference: a review for statisticians
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1285773
– start-page: pp 384
  year: 2020
  ident: ppcfad48b7bib60
  article-title: Phostransfer: a deep transfer learning framework for kinase-specific phosphorylation site prediction in hierarchy
– volume: 30
  year: 2023
  ident: ppcfad48b7bib9
  article-title: Disruption event characterization and forecasting in tokamaks
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0133825
– volume: 18
  start-page: 741
  year: 2022
  ident: ppcfad48b7bib17
  article-title: Disruption prediction with artificial intelligence techniques in tokamak plasmas
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-022-01602-2
– volume: 59
  year: 2019
  ident: ppcfad48b7bib25
  article-title: A real-time machine learning-based disruption predictor in DIII-D
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab28bf
– volume: 27
  year: 2020
  ident: ppcfad48b7bib14
  article-title: Deep convolutional neural networks for multi-scale time-series classification and application to tokamak disruption prediction using raw, high temporal resolution diagnostic data
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5144458
– volume: vol 149
  year: 2011
  ident: ppcfad48b7bib48
– volume: 72
  start-page: 1400
  year: 2001
  ident: ppcfad48b7bib29
  article-title: Real-time extraction of plasma equilibrium parameters in KSTAR tokamak using statistical methods
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1315639
– volume: 63
  year: 2023
  ident: ppcfad48b7bib40
  article-title: On the potential of physics-informed neural networks to solve inverse problems in tokamaks
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ad067c
– year: 2016
  ident: ppcfad48b7bib47
  article-title: Wavenet: a generative model for raw audio
– volume: 63
  year: 2021
  ident: ppcfad48b7bib19
  article-title: Disruption prediction on east tokamak using a deep learning algorithm
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ac228b
– volume: vol 19
  year: 2006
  ident: ppcfad48b7bib51
  article-title: A kernel method for the two-sample-problem
– volume: 42
  year: 2019
  ident: ppcfad48b7bib59
  article-title: Intelligent fault diagnosis for rotating machinery using deep q-network based health state classification: a deep reinforcement learning approach
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2019.100977
– volume: 61
  year: 2020
  ident: ppcfad48b7bib5
  article-title: Hybrid deep-learning architecture for general disruption prediction across multiple tokamaks
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/abc664
– volume: 39
  start-page: 8365
  year: 2020
  ident: ppcfad48b7bib18
  article-title: Data-driven disruption prediction in golem tokamak using ensemble classifiers
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-189155
– volume: 51
  year: 2011
  ident: ppcfad48b7bib64
  article-title: Disruption mitigation by massive gas injection in jet
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/51/12/123010
– volume: 63
  year: 2023
  ident: ppcfad48b7bib24
  article-title: IDP-PGFE: an interpretable disruption predictor based on physics-guided feature extraction
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/acbe0f
– volume: 199
  year: 2024
  ident: ppcfad48b7bib20
  article-title: Data-driven disruption prediction using random forest in KSTAR
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2023.114128
– volume: vol 34
  start-page: pp 11809
  year: 2021
  ident: ppcfad48b7bib44
  article-title: Rethinking calibration of deep neural networks: do not be afraid of overconfidence
– volume: 14
  start-page: 202
  year: 2024
  ident: ppcfad48b7bib34
  article-title: Solving real-world optimization tasks using physics-informed neural computing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-49977-3
– volume: 64
  year: 2024
  ident: ppcfad48b7bib30
  article-title: Machine learning-based real-time kinetic profile reconstruction in DIII-D
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ad142f
– volume: 47
  start-page: 1559
  year: 2007
  ident: ppcfad48b7bib10
  article-title: A prediction tool for real-time application in the disruption protection system at jet
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/47/11/018
– ident: ppcfad48b7bib41
  article-title: PFNN: less data and better performance on disruption prediction via physics-informed deep learning
– volume: 9
  start-page: 2579
  year: 2008
  ident: ppcfad48b7bib58
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 61
  year: 2021
  ident: ppcfad48b7bib62
  article-title: Stacking of predictors for the automatic classification of disruption types to optimize the control logic
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/abc9f3
– volume: 142
  year: 2020
  ident: ppcfad48b7bib56
  article-title: Uncertainty quantification using Bayesian neural networks in classification: application to biomedical image segmentation
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2019.106816
– volume: 459
  start-page: 249
  year: 2021
  ident: ppcfad48b7bib66
  article-title: Online learning: a comprehensive survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.112
– start-page: pp 41
  year: 2019
  ident: ppcfad48b7bib43
  article-title: Why relu networks yield high-confidence predictions far away from the training data and how to mitigate the problem
– volume: 378
  start-page: 686
  year: 2019
  ident: ppcfad48b7bib36
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 1168
  year: 2019
  ident: ppcfad48b7bib42
  article-title: An overview of overfitting and its solutions
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/1168/2/022022
– volume: 6
  start-page: 181
  year: 2023
  ident: ppcfad48b7bib15
  article-title: Disruption prediction for future tokamaks using parameter-based transfer learning
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-023-01296-9
– year: 2018
  ident: ppcfad48b7bib8
  article-title: Disruption event characterization ex/p6-26 and forecasting in tokamaks
– start-page: pp 1
  year: 2023
  ident: ppcfad48b7bib33
  article-title: Multimodal prediction of tearing instabilities in a tokamak
– volume: 88
  year: 2022
  ident: ppcfad48b7bib39
  article-title: Data-driven model discovery for plasma turbulence modelling
  publication-title: J. Plasma Phys.
  doi: 10.1017/S0022377822001192
– volume: 29
  start-page: 641
  year: 1989
  ident: ppcfad48b7bib3
  article-title: Disruptions in jet
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/29/4/009
– volume: 61
  year: 2021
  ident: ppcfad48b7bib31
  article-title: Feedforward beta control in the KSTAR tokamak by deep reinforcement learning
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac121b
– volume: 22
  year: 2015
  ident: ppcfad48b7bib6
  article-title: Status of research toward the iter disruption mitigation system
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4901251
– volume: 37
  start-page: A135
  year: 1995
  ident: ppcfad48b7bib2
  article-title: Disruptions in tokamaks
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/37/11A/009
– volume: 48
  start-page: 715
  year: 2020
  ident: ppcfad48b7bib7
  article-title: A real-time disruption prediction tool for vde on east
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2020.2972579
– volume: 2
  start-page: 49
  year: 2021
  ident: ppcfad48b7bib22
  article-title: Fully convolutional spatio-temporal models for representation learning in plasma science
  publication-title: J. Mach. Learn. Model. Comput.
  doi: 10.1615/JMachLearnModelComput.2021037052
– volume: 200
  year: 2024
  ident: ppcfad48b7bib21
  article-title: Disruption prediction and analysis through multimodal deep learning in KSTAR
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2024.114204
– start-page: pp 1050
  year: 2016
  ident: ppcfad48b7bib55
  article-title: Dropout as a bayesian approximation: representing model uncertainty in deep learning
– volume: 60
  year: 2018
  ident: ppcfad48b7bib16
  article-title: Disruption prediction investigations using machine learning tools on DIII-D and Alcator C-Mod
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/aac7fe
– start-page: pp 1
  year: 2015
  ident: ppcfad48b7bib12
  article-title: Disruption precursor detection: combining the time and frequency domains
– volume: 76
  start-page: 901
  year: 2020
  ident: ppcfad48b7bib13
  article-title: Deep learning for the analysis of disruption precursors based on plasma tomography
  publication-title: Fusion Sci. Technol.
  doi: 10.1080/15361055.2020.1820749
– volume: 19
  year: 2012
  ident: ppcfad48b7bib1
  article-title: Understanding disruptions in tokamaks
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4705694
– volume: 568
  start-page: 526
  year: 2019
  ident: ppcfad48b7bib11
  article-title: Predicting disruptive instabilities in controlled fusion plasmas through deep learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1116-4
– volume: 88
  year: 2002
  ident: ppcfad48b7bib50
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.174102
– volume: 59
  year: 2019
  ident: ppcfad48b7bib23
  article-title: Machine learning for disruption warnings on alcator C-Mod, DIII-D and EAST
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab1df4
– volume: 35
  start-page: 126
  year: 2018
  ident: ppcfad48b7bib65
  article-title: Model compression and acceleration for deep neural networks: The principles, progress and challenges
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2765695
– start-page: pp 2980
  year: 2017
  ident: ppcfad48b7bib57
  article-title: Focal loss for dense object detection
– volume: 2
  start-page: 359
  year: 1989
  ident: ppcfad48b7bib26
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 72
  start-page: 513
  year: 2001
  ident: ppcfad48b7bib28
  article-title: Newly developed double neural network concept for reliable fast plasma position control
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1323251
– volume: 64
  year: 2024
  ident: ppcfad48b7bib61
  article-title: A hybrid physics/data-driven logic to detect, classify and predict anomalies and disruptions in tokamak plasmas
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ad2723
– start-page: pp 1613
  year: 2015
  ident: ppcfad48b7bib45
  article-title: Weight uncertainty in neural network
– volume: 104
  year: 2021
  ident: ppcfad48b7bib38
  article-title: Uncovering turbulent plasma dynamics via deep learning from partial observations
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.104.025205
– volume: 193
  year: 2023
  ident: ppcfad48b7bib63
  article-title: Cnn disruption predictor at jet: early versus late data fusion approach
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2023.113668
SSID ssj0011826
Score 2.454356
Snippet In this research, we develop a data-driven disruption predictor based on Bayesian deep probabilistic learning, capable of predicting disruptions and modeling...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 75001
SubjectTerms Bayesian neural network
deep learning
disruption
tokamak
uncertainty estimation
Title Enhancing disruption prediction through Bayesian neural network in KSTAR
URI https://iopscience.iop.org/article/10.1088/1361-6587/ad48b7
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7aiuDFt1hf7EEPHtI23TTZ4KlKS1V8oC30IIR9alHS0qYH_fXOZrdFRUW87WGyWb7MK8zsNwgdBsbnGz5tqSPtQf4feCxiBFZcE0WZz_IfxavrsNMLLvqNfgGdzO_CDEfO9VdgaYmCLYSuIY5WfRL6HgTOyBDgUh4V0YIZXGnU-_zmdl5CMImz5eD0PUJIw9Uov9vhU0wqwns_hJj2CnqYHc52ljxXphmviLcvvI3_PP0qWnapJ25a0TVUUOk6WsxbQMVkA3Va6ZMh30gfsRxMxtPcl-DR2FRy8qUb6YNP2asyVy-x4cKEDVPbSY4HKb687zbvNlGv3eqedTw3Z8ETYM6Zx-MaD4UkmgZM8FCxmm5wEouAM19zLeFbSh7xugZ7jzWnNR5wBXI0gmRG6pBsoVI6TNU2wpqFoBSKxEQEuTcAmbqWQispiC_9MqrOkE6EIyE3szBekrwYTmli8EkMPonFp4yO50-MLAHHL7JHAHvirHDyo9zOH-V20VIdchjbnbuHStl4qvYhB8n4Qa5r7z0b1MU
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4IRuPFtxGfPejBQ4GypY8jKgREkSgk3Oo-lWhKA-Wgv97Z7kLUqDHxNofptp3uPJr59huETlwV8xWfNpe-tKH-d23iEwwSlVgExCHZj-JNx2v23atBdWDmnGZnYUaJCf1FEDVRsDahAcQFJQd7jg2J01cEuAH1SwmXObRYhVCsMF2t2-68jaCKZ83D6dgY46rpU363yqe8lIN7f0gzjTX0MHtAjS55Lk5TWmRvX7gb__EG62jVlKBWTatvoAURb6KlDArKJluoWY-fFAlH_Gjx4WQ8zWKKlYxVRycTzWgf65y8CnUE01KcmLBgrBHl1jC22ve92t026jfqvYumbeYt2AzcOrVpWKYe41gGLmHUE6QsqxSHzKXEkVRy-Kac-rQiwe9DSYMydakAvcCHooZLD--gfDyKxS6yJPFgcwgcYuZmUQF0KpIzKTjDDncKqDSzdsQMGbmaifESZU3xIIiUjSJlo0jbqIDO5lckmojjF91TMH1kvHHyo97eH_WO0XL3shFdtzrtfbRSgbJGA3YPUD4dT8UhlCUpPcq23jtZFNop
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+disruption+prediction+through+Bayesian+neural+network+in+KSTAR&rft.jtitle=Plasma+physics+and+controlled+fusion&rft.au=Kim%2C+Jinsu&rft.au=Lee%2C+Jeongwon&rft.au=Seo%2C+Jaemin&rft.au=Ghim%2C+Young-Chul&rft.date=2024-07-01&rft.pub=IOP+Publishing&rft.issn=0741-3335&rft.eissn=1361-6587&rft.volume=66&rft.issue=7&rft_id=info:doi/10.1088%2F1361-6587%2Fad48b7&rft.externalDocID=ppcfad48b7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-3335&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-3335&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-3335&client=summon