Statistical Dataset and Data Acquisition System for Monitoring the Voltage and Frequency of the Electrical Network in an Environment Based on Python and Grafana
This article presents a unique dataset, from a public building, of voltage data, acquired using a hybrid measurement solution that combines PythonTM for acquisition and GrafanaTM for results representation. This study aims to benefit communities, by demonstrating how to achieve more efficient energy...
Saved in:
Published in | Data (Basel) Vol. 7; no. 6; p. 77 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article presents a unique dataset, from a public building, of voltage data, acquired using a hybrid measurement solution that combines PythonTM for acquisition and GrafanaTM for results representation. This study aims to benefit communities, by demonstrating how to achieve more efficient energy management. The study outlines how to obtain a more realistic vision of the quality of the supply, that is oriented to the monitoring of the state of the network; this should allow for better understanding, which should in turn enable the optimization of the operation and maintenance of power systems. Our work focused on frequency and higher order statistical estimators which, combined with exploratory data analysis techniques, improved the characterization of the shape of the stress signal. These techniques and data, together with the acquisition and monitoring system, present a unique combination of low-cost measurement solutions, which have the underlying benefit of contributing to industrial benchmarking. Our study proposes an effective and versatile system, which can do acquisition, statistical analysis, database management and results representation in less than a second. The system offers a wide variety of graphs to present the results of the analysis, so that the user can observe them and identify, with relative ease, any anomalies in the supply which could damage the sensitive equipment of the correspondent installation. It is a system, therefore, that not only provides information about the power quality, but also significantly contributes to the safety and maintenance of the installation. This system can be practically realized, subject to the availability of internet access. |
---|---|
AbstractList | This article presents a unique dataset, from a public building, of voltage data, acquired using a hybrid measurement solution that combines PythonTM for acquisition and GrafanaTM for results representation. This study aims to benefit communities, by demonstrating how to achieve more efficient energy management. The study outlines how to obtain a more realistic vision of the quality of the supply, that is oriented to the monitoring of the state of the network; this should allow for better understanding, which should in turn enable the optimization of the operation and maintenance of power systems. Our work focused on frequency and higher order statistical estimators which, combined with exploratory data analysis techniques, improved the characterization of the shape of the stress signal. These techniques and data, together with the acquisition and monitoring system, present a unique combination of low-cost measurement solutions, which have the underlying benefit of contributing to industrial benchmarking. Our study proposes an effective and versatile system, which can do acquisition, statistical analysis, database management and results representation in less than a second. The system offers a wide variety of graphs to present the results of the analysis, so that the user can observe them and identify, with relative ease, any anomalies in the supply which could damage the sensitive equipment of the correspondent installation. It is a system, therefore, that not only provides information about the power quality, but also significantly contributes to the safety and maintenance of the installation. This system can be practically realized, subject to the availability of internet access.Dataset:https://doi.org/10.7910/DVN/EGI7X1Dataset License: CC0 1.0 This article presents a unique dataset, from a public building, of voltage data, acquired using a hybrid measurement solution that combines PythonTM for acquisition and GrafanaTM for results representation. This study aims to benefit communities, by demonstrating how to achieve more efficient energy management. The study outlines how to obtain a more realistic vision of the quality of the supply, that is oriented to the monitoring of the state of the network; this should allow for better understanding, which should in turn enable the optimization of the operation and maintenance of power systems. Our work focused on frequency and higher order statistical estimators which, combined with exploratory data analysis techniques, improved the characterization of the shape of the stress signal. These techniques and data, together with the acquisition and monitoring system, present a unique combination of low-cost measurement solutions, which have the underlying benefit of contributing to industrial benchmarking. Our study proposes an effective and versatile system, which can do acquisition, statistical analysis, database management and results representation in less than a second. The system offers a wide variety of graphs to present the results of the analysis, so that the user can observe them and identify, with relative ease, any anomalies in the supply which could damage the sensitive equipment of the correspondent installation. It is a system, therefore, that not only provides information about the power quality, but also significantly contributes to the safety and maintenance of the installation. This system can be practically realized, subject to the availability of internet access. |
Author | Remigio-Carmona, Paula González-de-la Rosa, Juan-José González-de-la Florencias-Oliveros, Olivia Palomares-Salas, José-Carlos Sierra-Fernández, José-María Fernández-Morales, Javier Espinosa-Gavira, Manuel-Jesús Agüera-Pérez, Agustín |
Author_xml | – sequence: 1 givenname: Javier surname: Fernández-Morales fullname: Fernández-Morales, Javier – sequence: 2 givenname: Juan-José González-de-la orcidid: 0000-0003-0972-8375 surname: González-de-la Rosa fullname: González-de-la Rosa, Juan-José González-de-la – sequence: 3 givenname: José-María orcidid: 0000-0002-9931-0353 surname: Sierra-Fernández fullname: Sierra-Fernández, José-María – sequence: 4 givenname: Manuel-Jesús orcidid: 0000-0003-2510-0561 surname: Espinosa-Gavira fullname: Espinosa-Gavira, Manuel-Jesús – sequence: 5 givenname: Olivia orcidid: 0000-0003-4385-3209 surname: Florencias-Oliveros fullname: Florencias-Oliveros, Olivia – sequence: 6 givenname: Agustín orcidid: 0000-0001-6662-0235 surname: Agüera-Pérez fullname: Agüera-Pérez, Agustín – sequence: 7 givenname: José-Carlos orcidid: 0000-0003-0096-7134 surname: Palomares-Salas fullname: Palomares-Salas, José-Carlos – sequence: 8 givenname: Paula orcidid: 0000-0002-9686-2726 surname: Remigio-Carmona fullname: Remigio-Carmona, Paula |
BookMark | eNpNkcFuFDEMhiNUJErbEy8QiSNaSDIzycyxlG2pVKDSVlwjT-Jss8wmbZIt2rfpoxJmEerJlv37-y37LTkKMSAh7zj72DQD-2ShgGKSMaVekWPRMLnolBiOXuRvyFnOG8aYEG0nRX9MnlcFis_FG5jol0rIWCgEO-f03DzufPbFx0BX-1xwS11M9FsMvsTkw5qWe6Q_41RgjfPYZcLHHQazp9HNzeWEpqQZ_x3L75h-UR-qlC7Dk08xbDEU-rnaWlpNbvflPoaZdJXAQYBT8trBlPHsXzwhq8vl3cXXxc2Pq-uL85uFaYQoi7Hvx2awDpTt-45zC0o4wSXjwFoHEq3kDPvBSeNYJwbTCePU6KQaeDc2J-T6QLURNvoh-S2kvY7g9VyIaa0h1SNNqK3CQVloenSqxaEdeS8aOTLurLCuxcp6f2A9pFhvkYvexF0KdXktqp0c2la1VfXhoDIp5pzQ_XflTP_9p37xz-YP2smXGg |
Cites_doi | 10.1109/EPQU.2011.6128842 10.3390/su132111836 10.20944/preprints202110.0260.v1 10.1109/ICHQP.2014.6842886 10.1109/EEEIC.2010.5489989 10.1109/AMPS.2014.6947712 10.1109/PECON.2006.346639 10.1109/PSCC.2014.7038371 10.1109/PEE.2017.8171702 10.1109/IGESSC53124.2021.9618689 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/data7060077 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2306-5729 |
ExternalDocumentID | oai_doaj_org_article_d7e97da38ef74e94b18236b01fd2df4e 10_3390_data7060077 |
GroupedDBID | 8FE 8FG AADQD AAYXX ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC MODMG M~E P62 PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c322t-b88b39dfa7d88511da72f21601a04fa6ed610e89f6cf0529c52cf7bf67915b3 |
IEDL.DBID | DOA |
ISSN | 2306-5729 |
IngestDate | Wed Aug 27 01:27:25 EDT 2025 Mon Jul 14 07:51:00 EDT 2025 Tue Jul 01 02:31:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-b88b39dfa7d88511da72f21601a04fa6ed610e89f6cf0529c52cf7bf67915b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9686-2726 0000-0002-9931-0353 0000-0003-4385-3209 0000-0003-0096-7134 0000-0003-2510-0561 0000-0001-6662-0235 0000-0003-0972-8375 |
OpenAccessLink | https://doaj.org/article/d7e97da38ef74e94b18236b01fd2df4e |
PQID | 2679694474 |
PQPubID | 2055419 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d7e97da38ef74e94b18236b01fd2df4e proquest_journals_2679694474 crossref_primary_10_3390_data7060077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Data (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | (ref_2) 2018; 125 Moreno (ref_12) 2006; 39 ref_14 ref_13 ref_11 ref_10 ref_1 ref_3 ref_15 ref_9 ref_8 ref_5 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_7 – ident: ref_8 doi: 10.1109/EPQU.2011.6128842 – ident: ref_3 doi: 10.3390/su132111836 – ident: ref_13 doi: 10.20944/preprints202110.0260.v1 – ident: ref_4 doi: 10.1109/ICHQP.2014.6842886 – ident: ref_10 – ident: ref_15 doi: 10.1109/EEEIC.2010.5489989 – ident: ref_6 doi: 10.1109/AMPS.2014.6947712 – ident: ref_14 doi: 10.1109/PECON.2006.346639 – ident: ref_5 doi: 10.1109/PSCC.2014.7038371 – ident: ref_9 doi: 10.1109/PEE.2017.8171702 – ident: ref_11 doi: 10.1109/IGESSC53124.2021.9618689 – ident: ref_1 – volume: 125 start-page: 350 year: 2018 ident: ref_2 article-title: Power quality event dynamics characterization via 2D trajectories using deviations of higher-order statistics publication-title: Meas. J. Int. Meas. Confed. – volume: 39 start-page: 664 year: 2006 ident: ref_12 article-title: Characterisation of frequency instability and frequency offset using instruments with incomplete data sheets publication-title: Meas. J. Int. Meas. Confed. |
SSID | ssj0002245628 |
Score | 2.2131867 |
Snippet | This article presents a unique dataset, from a public building, of voltage data, acquired using a hybrid measurement solution that combines PythonTM for... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 77 |
SubjectTerms | Anomalies Data acquisition Data analysis Data base management systems Datasets Electric potential Electrical networks Energy management GrafanaTM grid frequency higher-order statistics LabVIEWTM Maintenance Monitoring network-attached storage Optimization Power power quality Public buildings Representations Statistical analysis Uniqueness Voltage Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELUoXHqpSkvVbSnygUM5RCSOHdsnxJbdokpdoRYQt8ifFRJKYDcc-Df9qcw4XmhVqbcodmwp4xm_GY_fELIvpBONc00hJPcFjyoUxgtfMO0aV0VnfWLb_75oTi_4tytxlQNuq5xWubaJyVD73mGM_JBhwENzLvnR7V2BVaPwdDWX0HhBtsAEK3C-tqazxdmPpygLw3M9psaLeTX494eYeImMMaWUf21FibH_H4Ocdpn5a_Iqw0N6PMpzm2yE7g3Zzgq4op8zS_TBW_IbYWJiWYb-JzDdKgzUdD4902N3d389pmPRkZScAjqlowZjKI8C8KOX_c0A9iR9Nl-OSdUPtI-pcZYK5KThF2OuOL3uoCudPd-No1OY1lOY5OwBSQjSSF-XJprO7JCf89n5l9Mil1soHGj1UFilbK19NNIrxGHeSBZZBR6bKXk0TfAAtYLSsXERzwedYC5KG0EwlbD1O7LZ9V14T2itDIAW60qjNTcaEEETAreaR116IZoJ2V__9_Z25NRowRdB8bR_iGdCpiiTpy5IhJ1e9Mtfbdar1sugpTe1ClHyoLmtsIK7LavomY88TMjuWqJt1s5V-7yWPvy_-SN5yfC6Q4q67JLNYXkfPgEIGexeXmmPZcfgnA priority: 102 providerName: ProQuest |
Title | Statistical Dataset and Data Acquisition System for Monitoring the Voltage and Frequency of the Electrical Network in an Environment Based on Python and Grafana |
URI | https://www.proquest.com/docview/2679694474 https://doaj.org/article/d7e97da38ef74e94b18236b01fd2df4e |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELba9MKlAgoikEY-cIDDin34eSRtAqpEhMpD3FZ-SiC0gWQ55N_wUzu2N5CqBy69rXa9npVnxv7GO_4GoUPKDWXGsIxyYjPihcuUpTYrpWGm8EbbyLZ_MWXnN-TXHb1bK_UVcsISPXAauBPLneRWVcJ5TpwkugglunVeeFtaT1yYfWHNWwumHiKpS0D2Ih3IqyCuPwkJl4EpJuf8ryUoMvX_MxHH1WWyib52sBCfps_ZQp9cs422Osdb4KOOHfr4G3oN8DCyK0P7nyBu4VqsGhuv8al5frlPaVg4kZFjQKU4eW7YwsMA-PDt7LGFeSS-NpmnZOolnvn4cBwL48TupylHHN830BSP38_E4RGItRiEXC4D-UDs6WyuvGrUDrqajK9_nGddmYXMgDe3mRZCV9J6xa0I-MsqXvqygEhN5cQr5ixALCekZ8aH_4KGlsZz7RmXBdXVLuo1s8btIVwJBWBFm1xJSZQEJMCcI1oSL3NLKeujw9W410-JS6OGGCSop15TTx-Ngk7emgQC7HgDzKLuzKL-yCz6aLDSaN155aIuw6aZJIST_f8h4wBtlOEwRNyTGaBeO39x3wGitHqIPovJ2RB9GY2nl7-H0Tb_AM7b6ws |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFUR5ioaU-FAkOURPHjuMDQn3sdkvbFRIF9UTkJ6qEknY3Fdp_ww_oj2TGSVoQErfeotixpcx4_Hk88w0hW0JaUVhbJEJyl_BQ-kQ74RKmbGGzYI2LbPsns2L6hX88E2cr5HrIhcGwysEmRkPtGos-8m2GDg_FueQfLi4TrBqFt6tDCY1OLY788icc2RbvD_dBvm8Ym4xP96ZJX1UgsaC8bWLK0uTKBS1diXDDackCy-BgolMedOEdIApfqlDYgNdgVjAbpAkwfyZMDqPeI_d5nitcT-Xk4Majw_AOkZVdEiC0p9sY5InsNKmUf217sTrAP8Y_7miTx-RRD0XpTqc7a2TF10_IWr_YF_Rtz0j97in5hZA0MjpD_32YbuFbqmsXn-mOvbw670K_aEeATgEJ085aoNuQAsikX5sfLdiu-Nlk3gVwL2kTYuM4FuOJw8-6uHR6XkNXOr7Nw6O7MK2jMMmnJRIexJEO5jroWj8jn-9ACM_Jat3U_gWheakBIBmbaqW4VoA-Cu-5UTyo1AlRjMjW8N-ri46_o4JzD4qn-kM8I7KLMrnpgqTb8UUz_171a7hy0ivpdF76ILlX3GRYLd6kWXDMBe5HZH2QaNVbgkV1q7cv_9-8SR5MT0-Oq-PD2dEr8pBhmkX09qyT1XZ-5TcA_LTmddQ5Sr7drYr_BoZQGyk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IMpDLBTqQ5HgEG3iOHF8QKjL7tJSWK14qSciP6tKKGl3U6H9N_yM_ryOnaQtQuLWW5Q4dpQZj78Zj78B2M24znKt8yjjzETMFTaSJjMRFTrXidPKBLb9z_N8_zv7eJQdbcBFfxbGp1X2NjEYalNrHyMfUR_wEIxxNnJdWsRiMnt3ehb5ClJ-p7Uvp9GqyKFd_0b3bfX2YIKyfkXpbPrt_X7UVRiINCpyE6miUKkwTnJTeOhhJKeOJuikyJg5mVuD6MIWwuXa-S0xnVHtuHL4LUmmUuz1Dmxy9IniAWyOp_PFl6v4DvU7irRojwSmqYhHPuXTc9XEnP-1CIZaAf8sBWF9mz2A-x0wJXutJm3Bhq0ewlY39VfkdcdP_eYR_PEANfA7Y_sJDreyDZGVCddkT5-dn7SJYKSlQyeIi0lrO3wQkSDkJD_qXw1asvDabNmmc69J7cLDaSjNE7qft1nq5KTCpmR6fSqPjHFYQ3CQxdrTH4SePiylk5V8DF9vQQxPYFDVlX0KJC0kwiWlYykEkwKxSG4tU4I5EZssy4ew2__38rRl8yjRC_LiKW-IZwhjL5OrJp6CO9yol8dlN6NLw63gRqaFdZxZwVTia8erOHGGGsfsELZ7iZadXViV11r87P-Pd-Auqnf56WB--BzuUX_mIoR-tmHQLM_tC0RCjXrZKR2Bn7er5ZcM1CC7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Dataset+and+Data+Acquisition+System+for+Monitoring+the+Voltage+and+Frequency+of+the+Electrical+Network+in+an+Environment+Based+on+Python+and+Grafana&rft.jtitle=Data+%28Basel%29&rft.au=Javier+Fern%C3%A1ndez-Morales&rft.au=Juan-Jos%C3%A9+Gonz%C3%A1lez-de-la+Rosa&rft.au=Jos%C3%A9-Mar%C3%ADa+Sierra-Fern%C3%A1ndez&rft.au=Manuel-Jes%C3%BAs+Espinosa-Gavira&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.eissn=2306-5729&rft.volume=7&rft.issue=6&rft.spage=77&rft_id=info:doi/10.3390%2Fdata7060077&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d7e97da38ef74e94b18236b01fd2df4e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5729&client=summon |