A convex-nonconvex variational method for the additive decomposition of functions on surfaces
We present a convex-nonconvex variational approach for the additive decomposition of noisy scalar fields defined over triangulated surfaces into piecewise constant and smooth components. The energy functional to be minimized is defined by the weighted sum of three terms, namely an fidelity term for...
Saved in:
Published in | Inverse problems Vol. 35; no. 12; pp. 124008 - 124040 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a convex-nonconvex variational approach for the additive decomposition of noisy scalar fields defined over triangulated surfaces into piecewise constant and smooth components. The energy functional to be minimized is defined by the weighted sum of three terms, namely an fidelity term for the noise component, a Tikhonov regularization term for the smooth component and a total variation (TV)-like non-convex term for the piecewise constant component. The last term is parametrized such that the free scalar parameter allows to tune its degree of non-convexity and, hence, to separate the piecewise constant component more effectively than by using a classical convex TV regularizer without renouncing to convexity of the total energy functional. A method is also presented for selecting the two regularization parameters. The unique solution of the proposed variational model is determined by means of an efficient ADMM-based minimization algorithm. Numerical experiments show a nearly perfect separation of the different components. |
---|---|
AbstractList | We present a convex-nonconvex variational approach for the additive decomposition of noisy scalar fields defined over triangulated surfaces into piecewise constant and smooth components. The energy functional to be minimized is defined by the weighted sum of three terms, namely an fidelity term for the noise component, a Tikhonov regularization term for the smooth component and a total variation (TV)-like non-convex term for the piecewise constant component. The last term is parametrized such that the free scalar parameter allows to tune its degree of non-convexity and, hence, to separate the piecewise constant component more effectively than by using a classical convex TV regularizer without renouncing to convexity of the total energy functional. A method is also presented for selecting the two regularization parameters. The unique solution of the proposed variational model is determined by means of an efficient ADMM-based minimization algorithm. Numerical experiments show a nearly perfect separation of the different components. |
Author | Huska, Martin Morigi, Serena Lanza, Alessandro Selesnick, Ivan |
Author_xml | – sequence: 1 givenname: Martin surname: Huska fullname: Huska, Martin email: martin.huska@unibo.it organization: University of Bologna Department of Mathematics, Bologna, Italy – sequence: 2 givenname: Alessandro surname: Lanza fullname: Lanza, Alessandro email: alessandro.lanza2@unibo.it organization: University of Bologna Department of Mathematics, Bologna, Italy – sequence: 3 givenname: Serena orcidid: 0000-0001-8334-8798 surname: Morigi fullname: Morigi, Serena email: serena.morigi@unibo.it organization: University of Bologna Department of Mathematics, Bologna, Italy – sequence: 4 givenname: Ivan surname: Selesnick fullname: Selesnick, Ivan email: selesi@nyu.edu organization: New York University Department of Electrical and Computer Engineering, Brooklyn, NY, United States of America |
BookMark | eNp1kM1LAzEQxYNUsK3ePeYPcG0m2Y_ssRS1QsGLHiVM80FTupsl2Rb9791lxZuneTO892B-CzJrQ2sJuQf2CEzKFYgSsjLnbIV7bvL8isz_TjMyZ7wss6IEuCGLlI6MAUio5uRzTXVoL_YrG_omRS8YPfY-tHiije0PwVAXIu0PlqIxvvcXS43VoelC8qOPBkfdudWjTnTY0zk61DbdkmuHp2TvfueSfDw_vW-22e7t5XWz3mVacN5niFBIi1qWTBRGSlcbh7YSHFDoWoAsJBjcY82hAAZVzmpnnYCa1ZU0ORNLwqZeHUNK0TrVRd9g_FbA1IhHjSzUyEJNeIbIwxTxoVPHcI7Dt-l_-w9EdWlD |
CODEN | INPEEY |
CitedBy_id | crossref_primary_10_1007_s10915_020_01295_w crossref_primary_10_1007_s10543_022_00934_y crossref_primary_10_1109_TMECH_2021_3103287 crossref_primary_10_1007_s10444_022_10000_4 crossref_primary_10_1137_20M1355987 crossref_primary_10_1109_TSP_2022_3145665 crossref_primary_10_1137_23M159439X crossref_primary_10_1007_s10851_022_01107_w |
Cites_doi | 10.1007/s11263-006-4331-z 10.1007/s10851-016-0655-7 10.1109/LSP.2015.2432095 10.1109/ICIP.1998.723327 10.1007/s002110050258 10.4208/jcm.1004-m3193 10.1007/s00211-017-0916-4 10.1109/TSP.2014.2298839 10.1137/130930704 10.1090/ulect/022 10.1016/j.sigpro.2012.12.008 10.1137/120885504 10.1007/978-3-319-18461-6_53 10.1016/0167-2789(92)90242-F 10.1137/S1540345902416247 10.1109/LSP.2014.2349356 10.7551/mitpress/7132.001.0001 10.1201/b10688 10.1023/A:1025384832106 10.1007/s00211-016-0842-x 10.1109/TSP.2014.2329274 10.1214/09-AOS729 |
ContentType | Journal Article |
Copyright | 2019 IOP Publishing Ltd |
Copyright_xml | – notice: 2019 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6420/ab2d44 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
DocumentTitleAlternate | A convex-nonconvex variational method for the additive decomposition of functions on surfaces |
EISSN | 1361-6420 |
ExternalDocumentID | 10_1088_1361_6420_ab2d44 ipab2d44 |
GroupedDBID | -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHFT ABHWH ABJNI ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT KZ1 LAP LMP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 UCJ W28 XPP ZMT ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-c322t-aa158eac86035d88f9dfae7321a3c9318581daba92151017409fef3190978d403 |
IEDL.DBID | IOP |
ISSN | 0266-5611 |
IngestDate | Fri Aug 23 03:19:40 EDT 2024 Wed Aug 21 03:33:25 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-aa158eac86035d88f9dfae7321a3c9318581daba92151017409fef3190978d403 |
Notes | IP-102043.R1 |
ORCID | 0000-0001-8334-8798 |
OpenAccessLink | https://cris.unibo.it/bitstream/11585/717295/2/PAPER_ADD_SPLIT_22032019_revision_nored.pdf |
PageCount | 33 |
ParticipantIDs | crossref_primary_10_1088_1361_6420_ab2d44 iop_journals_10_1088_1361_6420_ab2d44 |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Inverse problems |
PublicationTitleAbbrev | IP |
PublicationTitleAlternate | Inverse Problems |
PublicationYear | 2019 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 11 22 12 23 13 14 15 16 17 18 19 Horesh D (20) 2016; 25 1 2 3 4 5 6 7 8 9 10 21 |
References_xml | – ident: 1 doi: 10.1007/s11263-006-4331-z – ident: 11 doi: 10.1007/s10851-016-0655-7 – ident: 14 doi: 10.1109/LSP.2015.2432095 – ident: 13 doi: 10.1109/ICIP.1998.723327 – ident: 2 doi: 10.1007/s002110050258 – ident: 23 doi: 10.4208/jcm.1004-m3193 – ident: 22 doi: 10.1007/s00211-017-0916-4 – ident: 16 doi: 10.1109/TSP.2014.2298839 – ident: 19 doi: 10.1137/130930704 – ident: 6 doi: 10.1090/ulect/022 – ident: 5 doi: 10.1016/j.sigpro.2012.12.008 – volume: 25 start-page: 4260 issn: 1057-7149 year: 2016 ident: 20 publication-title: IEEE Trans. Image Process. contributor: fullname: Horesh D – ident: 8 doi: 10.1137/120885504 – ident: 10 doi: 10.1007/978-3-319-18461-6_53 – ident: 15 doi: 10.1016/0167-2789(92)90242-F – ident: 3 doi: 10.1137/S1540345902416247 – ident: 17 doi: 10.1109/LSP.2014.2349356 – ident: 7 doi: 10.7551/mitpress/7132.001.0001 – ident: 18 doi: 10.1201/b10688 – ident: 4 doi: 10.1023/A:1025384832106 – ident: 12 doi: 10.1007/s00211-016-0842-x – ident: 9 doi: 10.1109/TSP.2014.2329274 – ident: 21 doi: 10.1214/09-AOS729 |
SSID | ssj0011817 |
Score | 2.40038 |
Snippet | We present a convex-nonconvex variational approach for the additive decomposition of noisy scalar fields defined over triangulated surfaces into piecewise... |
SourceID | crossref iop |
SourceType | Aggregation Database Publisher |
StartPage | 124008 |
SubjectTerms | convex non-convex optimization convex non-convex strategy functions on surfaces image decomposition surface processing variational image decomposition |
Title | A convex-nonconvex variational method for the additive decomposition of functions on surfaces |
URI | https://iopscience.iop.org/article/10.1088/1361-6420/ab2d44 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7aetGDb7G-yEEPHtJuNvvI4qmIpQpVDxZ6UJbsJrkIbWm3Iv56J5ttqaIg3hKY7IZJJvNl8mUCcM5MpFmiQ6q5imnAjKJCKUE1yzwpE8W5tvGO_n3UGwR3w3BYg6vlXZjxpFr6W1h0iYKdCitCnGgzHjGKsNlry8xXQVCHNY6mYndetw-PyyMEdF2xC7BEFEECq84of_rCF59Ux_-uuJjuFjwvOueYJa-teZG18o9veRv_2ftt2KygJ-k40R2o6dEubKwkJMRaf5nFdbYHLx1SktLf6Wg8ciXyhnvrKn5I3OvTBGEvwVbEUpPs4kmUtkT1ig1GxoZY51nOb4L12XxqLA9sHwbdm6frHq2eY6A5Wn1BpWShwHVaRB4PlRAmUUbqmPtM8jyxt7AR-8pMJhZFoKHjztFogyZur4qowOMH0MDu6kMgSugoEegmVOQFOTYxecwz7ucoHufab8LlYkDSicu6kZan5UKkVoGpVWDqFNiEC9R1Wpne7Fe5oz_KHcM6gqLEUVZOoFFM5_oUgUeRnZUT7BMuQ9HB |
link.rule.ids | 315,783,787,27936,27937,38877,53854 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4EE6MH30Z89qAHD4Ut3Uf3SFQCKshBEi5m7W7biwkQWIzx1zvdFoJGExNvbTLd7c52Ol-nX6cIXVAdKhqrgCgmI-JTLQmXkhNFU0-IWDKmTLyj0w1bff9uEAzcPafFWZjR2E39VSjaRMFWhY4Qx2uUhZQAbPZqIq1L36-NpS6hVbDcwCTPbz_2FtsI4L4iG2QJCQAF6vYpf3rKF79UgncvuZnmFnqZd9CyS16rszytZh_fcjf-4wu20aaDoLhhxXfQihruoo2lxIRQ6yyyuU730HMDF-T0dzIcDW0Jv8Ea28URsb2FGgP8xdAKG4qSmUSxVIaw7lhheKSxcaLFOMdQn84m2vDB9lG_eft03SLuWgaSgfXnRAgacJiveeixQHKuY6mFilidCpbF5jQ2YGCRitigCTB4WEFqpcHUzZER6XvsAJWhu-oQYclVGHNwFzL0_Aya6CxiKatnIB5lql5BV_Ofkoxt9o2k2DXnPDFKTIwSE6vECroEfSfOBKe_yh39Ue4crfVumslDu3t_jNYBJ8WWxXKCyvlkpk4Bi-TpWTHePgEGa9ch |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convex-nonconvex+variational+method+for+the+additive+decomposition+of+functions+on+surfaces&rft.jtitle=Inverse+problems&rft.au=Huska%2C+Martin&rft.au=Lanza%2C+Alessandro&rft.au=Morigi%2C+Serena&rft.au=Selesnick%2C+Ivan&rft.date=2019-12-01&rft.issn=0266-5611&rft.eissn=1361-6420&rft.volume=35&rft.issue=12&rft.spage=124008&rft_id=info:doi/10.1088%2F1361-6420%2Fab2d44&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6420_ab2d44 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon |