A convex-nonconvex variational method for the additive decomposition of functions on surfaces

We present a convex-nonconvex variational approach for the additive decomposition of noisy scalar fields defined over triangulated surfaces into piecewise constant and smooth components. The energy functional to be minimized is defined by the weighted sum of three terms, namely an fidelity term for...

Full description

Saved in:
Bibliographic Details
Published inInverse problems Vol. 35; no. 12; pp. 124008 - 124040
Main Authors Huska, Martin, Lanza, Alessandro, Morigi, Serena, Selesnick, Ivan
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a convex-nonconvex variational approach for the additive decomposition of noisy scalar fields defined over triangulated surfaces into piecewise constant and smooth components. The energy functional to be minimized is defined by the weighted sum of three terms, namely an fidelity term for the noise component, a Tikhonov regularization term for the smooth component and a total variation (TV)-like non-convex term for the piecewise constant component. The last term is parametrized such that the free scalar parameter allows to tune its degree of non-convexity and, hence, to separate the piecewise constant component more effectively than by using a classical convex TV regularizer without renouncing to convexity of the total energy functional. A method is also presented for selecting the two regularization parameters. The unique solution of the proposed variational model is determined by means of an efficient ADMM-based minimization algorithm. Numerical experiments show a nearly perfect separation of the different components.
AbstractList We present a convex-nonconvex variational approach for the additive decomposition of noisy scalar fields defined over triangulated surfaces into piecewise constant and smooth components. The energy functional to be minimized is defined by the weighted sum of three terms, namely an fidelity term for the noise component, a Tikhonov regularization term for the smooth component and a total variation (TV)-like non-convex term for the piecewise constant component. The last term is parametrized such that the free scalar parameter allows to tune its degree of non-convexity and, hence, to separate the piecewise constant component more effectively than by using a classical convex TV regularizer without renouncing to convexity of the total energy functional. A method is also presented for selecting the two regularization parameters. The unique solution of the proposed variational model is determined by means of an efficient ADMM-based minimization algorithm. Numerical experiments show a nearly perfect separation of the different components.
Author Huska, Martin
Morigi, Serena
Lanza, Alessandro
Selesnick, Ivan
Author_xml – sequence: 1
  givenname: Martin
  surname: Huska
  fullname: Huska, Martin
  email: martin.huska@unibo.it
  organization: University of Bologna Department of Mathematics, Bologna, Italy
– sequence: 2
  givenname: Alessandro
  surname: Lanza
  fullname: Lanza, Alessandro
  email: alessandro.lanza2@unibo.it
  organization: University of Bologna Department of Mathematics, Bologna, Italy
– sequence: 3
  givenname: Serena
  orcidid: 0000-0001-8334-8798
  surname: Morigi
  fullname: Morigi, Serena
  email: serena.morigi@unibo.it
  organization: University of Bologna Department of Mathematics, Bologna, Italy
– sequence: 4
  givenname: Ivan
  surname: Selesnick
  fullname: Selesnick, Ivan
  email: selesi@nyu.edu
  organization: New York University Department of Electrical and Computer Engineering, Brooklyn, NY, United States of America
BookMark eNp1kM1LAzEQxYNUsK3ePeYPcG0m2Y_ssRS1QsGLHiVM80FTupsl2Rb9791lxZuneTO892B-CzJrQ2sJuQf2CEzKFYgSsjLnbIV7bvL8isz_TjMyZ7wss6IEuCGLlI6MAUio5uRzTXVoL_YrG_omRS8YPfY-tHiije0PwVAXIu0PlqIxvvcXS43VoelC8qOPBkfdudWjTnTY0zk61DbdkmuHp2TvfueSfDw_vW-22e7t5XWz3mVacN5niFBIi1qWTBRGSlcbh7YSHFDoWoAsJBjcY82hAAZVzmpnnYCa1ZU0ORNLwqZeHUNK0TrVRd9g_FbA1IhHjSzUyEJNeIbIwxTxoVPHcI7Dt-l_-w9EdWlD
CODEN INPEEY
CitedBy_id crossref_primary_10_1007_s10915_020_01295_w
crossref_primary_10_1007_s10543_022_00934_y
crossref_primary_10_1109_TMECH_2021_3103287
crossref_primary_10_1007_s10444_022_10000_4
crossref_primary_10_1137_20M1355987
crossref_primary_10_1109_TSP_2022_3145665
crossref_primary_10_1137_23M159439X
crossref_primary_10_1007_s10851_022_01107_w
Cites_doi 10.1007/s11263-006-4331-z
10.1007/s10851-016-0655-7
10.1109/LSP.2015.2432095
10.1109/ICIP.1998.723327
10.1007/s002110050258
10.4208/jcm.1004-m3193
10.1007/s00211-017-0916-4
10.1109/TSP.2014.2298839
10.1137/130930704
10.1090/ulect/022
10.1016/j.sigpro.2012.12.008
10.1137/120885504
10.1007/978-3-319-18461-6_53
10.1016/0167-2789(92)90242-F
10.1137/S1540345902416247
10.1109/LSP.2014.2349356
10.7551/mitpress/7132.001.0001
10.1201/b10688
10.1023/A:1025384832106
10.1007/s00211-016-0842-x
10.1109/TSP.2014.2329274
10.1214/09-AOS729
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Copyright_xml – notice: 2019 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-6420/ab2d44
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
DocumentTitleAlternate A convex-nonconvex variational method for the additive decomposition of functions on surfaces
EISSN 1361-6420
ExternalDocumentID 10_1088_1361_6420_ab2d44
ipab2d44
GroupedDBID -~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHFT
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
KZ1
LAP
LMP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
ZMT
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c322t-aa158eac86035d88f9dfae7321a3c9318581daba92151017409fef3190978d403
IEDL.DBID IOP
ISSN 0266-5611
IngestDate Fri Aug 23 03:19:40 EDT 2024
Wed Aug 21 03:33:25 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-aa158eac86035d88f9dfae7321a3c9318581daba92151017409fef3190978d403
Notes IP-102043.R1
ORCID 0000-0001-8334-8798
OpenAccessLink https://cris.unibo.it/bitstream/11585/717295/2/PAPER_ADD_SPLIT_22032019_revision_nored.pdf
PageCount 33
ParticipantIDs crossref_primary_10_1088_1361_6420_ab2d44
iop_journals_10_1088_1361_6420_ab2d44
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Inverse problems
PublicationTitleAbbrev IP
PublicationTitleAlternate Inverse Problems
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 11
22
12
23
13
14
15
16
17
18
19
Horesh D (20) 2016; 25
1
2
3
4
5
6
7
8
9
10
21
References_xml – ident: 1
  doi: 10.1007/s11263-006-4331-z
– ident: 11
  doi: 10.1007/s10851-016-0655-7
– ident: 14
  doi: 10.1109/LSP.2015.2432095
– ident: 13
  doi: 10.1109/ICIP.1998.723327
– ident: 2
  doi: 10.1007/s002110050258
– ident: 23
  doi: 10.4208/jcm.1004-m3193
– ident: 22
  doi: 10.1007/s00211-017-0916-4
– ident: 16
  doi: 10.1109/TSP.2014.2298839
– ident: 19
  doi: 10.1137/130930704
– ident: 6
  doi: 10.1090/ulect/022
– ident: 5
  doi: 10.1016/j.sigpro.2012.12.008
– volume: 25
  start-page: 4260
  issn: 1057-7149
  year: 2016
  ident: 20
  publication-title: IEEE Trans. Image Process.
  contributor:
    fullname: Horesh D
– ident: 8
  doi: 10.1137/120885504
– ident: 10
  doi: 10.1007/978-3-319-18461-6_53
– ident: 15
  doi: 10.1016/0167-2789(92)90242-F
– ident: 3
  doi: 10.1137/S1540345902416247
– ident: 17
  doi: 10.1109/LSP.2014.2349356
– ident: 7
  doi: 10.7551/mitpress/7132.001.0001
– ident: 18
  doi: 10.1201/b10688
– ident: 4
  doi: 10.1023/A:1025384832106
– ident: 12
  doi: 10.1007/s00211-016-0842-x
– ident: 9
  doi: 10.1109/TSP.2014.2329274
– ident: 21
  doi: 10.1214/09-AOS729
SSID ssj0011817
Score 2.40038
Snippet We present a convex-nonconvex variational approach for the additive decomposition of noisy scalar fields defined over triangulated surfaces into piecewise...
SourceID crossref
iop
SourceType Aggregation Database
Publisher
StartPage 124008
SubjectTerms convex non-convex optimization
convex non-convex strategy
functions on surfaces
image decomposition
surface processing
variational image decomposition
Title A convex-nonconvex variational method for the additive decomposition of functions on surfaces
URI https://iopscience.iop.org/article/10.1088/1361-6420/ab2d44
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7aetGDb7G-yEEPHtJuNvvI4qmIpQpVDxZ6UJbsJrkIbWm3Iv56J5ttqaIg3hKY7IZJJvNl8mUCcM5MpFmiQ6q5imnAjKJCKUE1yzwpE8W5tvGO_n3UGwR3w3BYg6vlXZjxpFr6W1h0iYKdCitCnGgzHjGKsNlry8xXQVCHNY6mYndetw-PyyMEdF2xC7BEFEECq84of_rCF59Ux_-uuJjuFjwvOueYJa-teZG18o9veRv_2ftt2KygJ-k40R2o6dEubKwkJMRaf5nFdbYHLx1SktLf6Wg8ciXyhnvrKn5I3OvTBGEvwVbEUpPs4kmUtkT1ig1GxoZY51nOb4L12XxqLA9sHwbdm6frHq2eY6A5Wn1BpWShwHVaRB4PlRAmUUbqmPtM8jyxt7AR-8pMJhZFoKHjztFogyZur4qowOMH0MDu6kMgSugoEegmVOQFOTYxecwz7ucoHufab8LlYkDSicu6kZan5UKkVoGpVWDqFNiEC9R1Wpne7Fe5oz_KHcM6gqLEUVZOoFFM5_oUgUeRnZUT7BMuQ9HB
link.rule.ids 315,783,787,27936,27937,38877,53854
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4EE6MH30Z89qAHD4Ut3Uf3SFQCKshBEi5m7W7biwkQWIzx1zvdFoJGExNvbTLd7c52Ol-nX6cIXVAdKhqrgCgmI-JTLQmXkhNFU0-IWDKmTLyj0w1bff9uEAzcPafFWZjR2E39VSjaRMFWhY4Qx2uUhZQAbPZqIq1L36-NpS6hVbDcwCTPbz_2FtsI4L4iG2QJCQAF6vYpf3rKF79UgncvuZnmFnqZd9CyS16rszytZh_fcjf-4wu20aaDoLhhxXfQihruoo2lxIRQ6yyyuU730HMDF-T0dzIcDW0Jv8Ea28URsb2FGgP8xdAKG4qSmUSxVIaw7lhheKSxcaLFOMdQn84m2vDB9lG_eft03SLuWgaSgfXnRAgacJiveeixQHKuY6mFilidCpbF5jQ2YGCRitigCTB4WEFqpcHUzZER6XvsAJWhu-oQYclVGHNwFzL0_Aya6CxiKatnIB5lql5BV_Ofkoxt9o2k2DXnPDFKTIwSE6vECroEfSfOBKe_yh39Ue4crfVumslDu3t_jNYBJ8WWxXKCyvlkpk4Bi-TpWTHePgEGa9ch
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convex-nonconvex+variational+method+for+the+additive+decomposition+of+functions+on+surfaces&rft.jtitle=Inverse+problems&rft.au=Huska%2C+Martin&rft.au=Lanza%2C+Alessandro&rft.au=Morigi%2C+Serena&rft.au=Selesnick%2C+Ivan&rft.date=2019-12-01&rft.issn=0266-5611&rft.eissn=1361-6420&rft.volume=35&rft.issue=12&rft.spage=124008&rft_id=info:doi/10.1088%2F1361-6420%2Fab2d44&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6420_ab2d44
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon