ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides
Abstract Fast and accurate identification of the peptides with anticancer activity potential from large-scale proteins is currently a challenging task. In this study, we propose a new machine learning predictor, namely, ACPred-Fuse, that can automatically and accurately predict protein sequences wit...
Saved in:
Published in | Briefings in bioinformatics Vol. 21; no. 5; pp. 1846 - 1855 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.09.2020
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Fast and accurate identification of the peptides with anticancer activity potential from large-scale proteins is currently a challenging task. In this study, we propose a new machine learning predictor, namely, ACPred-Fuse, that can automatically and accurately predict protein sequences with or without anticancer activity in peptide form. Specifically, we establish a feature representation learning model that can explore class and probabilistic information embedded in anticancer peptides (ACPs) by integrating a total of 29 different sequence-based feature descriptors. In order to make full use of various multiview information, we further fused the class and probabilistic features with handcrafted sequential features and then optimized the representation ability of the multiview features, which are ultimately used as input for training our prediction model. By comparing the multiview features and existing feature descriptors, we demonstrate that the fused multiview features have more discriminative ability to capture the characteristics of ACPs. In addition, the information from different views is complementary for the performance improvement. Finally, our benchmarking comparison results showed that the proposed ACPred-Fuse is more precise and promising in the identification of ACPs than existing predictors. To facilitate the use of the proposed predictor, we built a web server, which is now freely available via http://server.malab.cn/ACPred-Fuse. |
---|---|
AbstractList | Fast and accurate identification of the peptides with anticancer activity potential from large-scale proteins is currently a challenging task. In this study, we propose a new machine learning predictor, namely, ACPred-Fuse, that can automatically and accurately predict protein sequences with or without anticancer activity in peptide form. Specifically, we establish a feature representation learning model that can explore class and probabilistic information embedded in anticancer peptides (ACPs) by integrating a total of 29 different sequence-based feature descriptors. In order to make full use of various multiview information, we further fused the class and probabilistic features with handcrafted sequential features and then optimized the representation ability of the multiview features, which are ultimately used as input for training our prediction model. By comparing the multiview features and existing feature descriptors, we demonstrate that the fused multiview features have more discriminative ability to capture the characteristics of ACPs. In addition, the information from different views is complementary for the performance improvement. Finally, our benchmarking comparison results showed that the proposed ACPred-Fuse is more precise and promising in the identification of ACPs than existing predictors. To facilitate the use of the proposed predictor, we built a web server, which is now freely available via http://server.malab.cn/ACPred-Fuse. Abstract Fast and accurate identification of the peptides with anticancer activity potential from large-scale proteins is currently a challenging task. In this study, we propose a new machine learning predictor, namely, ACPred-Fuse, that can automatically and accurately predict protein sequences with or without anticancer activity in peptide form. Specifically, we establish a feature representation learning model that can explore class and probabilistic information embedded in anticancer peptides (ACPs) by integrating a total of 29 different sequence-based feature descriptors. In order to make full use of various multiview information, we further fused the class and probabilistic features with handcrafted sequential features and then optimized the representation ability of the multiview features, which are ultimately used as input for training our prediction model. By comparing the multiview features and existing feature descriptors, we demonstrate that the fused multiview features have more discriminative ability to capture the characteristics of ACPs. In addition, the information from different views is complementary for the performance improvement. Finally, our benchmarking comparison results showed that the proposed ACPred-Fuse is more precise and promising in the identification of ACPs than existing predictors. To facilitate the use of the proposed predictor, we built a web server, which is now freely available via http://server.malab.cn/ACPred-Fuse. |
Author | Su, Ran Zhang, Guoying Wei, Leyi Zhou, Chen Rao, Bing |
Author_xml | – sequence: 1 givenname: Bing surname: Rao fullname: Rao, Bing email: raobing@cdgdc.edu.cn – sequence: 2 givenname: Chen surname: Zhou fullname: Zhou, Chen email: zhouchen@tju.edu.cn – sequence: 3 givenname: Guoying surname: Zhang fullname: Zhang, Guoying email: zhangguoying1101@163.com – sequence: 4 givenname: Ran surname: Su fullname: Su, Ran email: ran.su@tju.edu.cn – sequence: 5 givenname: Leyi orcidid: 0000-0003-1444-190X surname: Wei fullname: Wei, Leyi email: weileyi@tju.edu.cn |
BookMark | eNp9kE9LxDAQxYOs4O7qxU9QEEGEutMm_edtWVwVFvSgB08laSeapU1q0q7opzdrPXnwNDOP3zweb0Ym2mgk5DSCqwgKuhBKLIT4gjw_INOIZVnIIGGT_Z5mYcJSekRmzm0BYsjyaEpelqtHi3W4HhxeB3JwSr8G7dD0Ktwp_AiUlsa2vFdGB6rtrNmhC_o3DDr_paof3ciA615VXFdogw67XtXojsmh5I3Dk985J8_rm6fVXbh5uL1fLTdhReO4D3mCosiklBnDKq5zDpAKrCWLEogykTOskdYAVBYF1DQW3F-UVQicA0pB5-Ri9PXh3gd0fdkqV2HTcI1mcGVMvVPBkgQ8evYH3ZrBap-ujFmaUpZDXnjqcqQqa5yzKMvOqpbbzzKCct9y6Vsux5Y9fD7CZuj-474BhRyAQg |
CitedBy_id | crossref_primary_10_3390_ijms22115630 crossref_primary_10_1007_s12539_021_00481_0 crossref_primary_10_1021_acs_jcim_3c01860 crossref_primary_10_1093_bioinformatics_btab560 crossref_primary_10_1093_bib_bbad399 crossref_primary_10_1016_j_drudis_2020_04_008 crossref_primary_10_1093_bib_bbac462 crossref_primary_10_3390_molecules28031148 crossref_primary_10_1016_j_ab_2022_114707 crossref_primary_10_1016_j_compbiomed_2022_105700 crossref_primary_10_1093_bib_bbab008 crossref_primary_10_1016_j_isci_2022_104883 crossref_primary_10_1093_bib_bbaa312 crossref_primary_10_1186_s12859_023_05463_1 crossref_primary_10_34133_research_0011 crossref_primary_10_1093_bib_bbac454 crossref_primary_10_1021_acs_jcim_1c00181 crossref_primary_10_1038_s41598_022_20143_5 crossref_primary_10_1093_bib_bbaa275 crossref_primary_10_2174_1381612826666201112142826 crossref_primary_10_1016_j_jmb_2024_168687 crossref_primary_10_1093_bib_bbab358 crossref_primary_10_1007_s00726_022_03145_5 crossref_primary_10_3390_ijms222313124 crossref_primary_10_3390_molecules28186680 crossref_primary_10_1080_07391102_2024_2318482 crossref_primary_10_1093_bib_bbab310 crossref_primary_10_1371_journal_pcbi_1011370 crossref_primary_10_1093_bioinformatics_btad125 crossref_primary_10_1038_s41598_024_55160_z crossref_primary_10_3390_ijms242417378 crossref_primary_10_1038_s41598_022_11897_z crossref_primary_10_1016_j_compbiolchem_2024_108033 crossref_primary_10_1186_s12859_022_04771_2 crossref_primary_10_1016_j_ymeth_2022_03_017 crossref_primary_10_1038_s41598_021_82513_9 crossref_primary_10_1109_TCBB_2023_3323295 crossref_primary_10_3390_math12091330 crossref_primary_10_1021_acs_jcim_0c00707 crossref_primary_10_1021_acs_jcim_4c00295 crossref_primary_10_1016_j_ab_2024_115491 crossref_primary_10_1093_bib_bbac476 crossref_primary_10_1093_bib_bbac630 crossref_primary_10_1093_bioinformatics_btac200 crossref_primary_10_3389_fgene_2022_887894 crossref_primary_10_1016_j_compbiomed_2023_107915 crossref_primary_10_1016_j_compbiomed_2022_106368 crossref_primary_10_1016_j_omtn_2020_10_005 crossref_primary_10_1016_j_compbiomed_2023_106784 crossref_primary_10_1093_bib_bbab499 crossref_primary_10_1016_j_biopha_2024_116709 crossref_primary_10_1093_bib_bbab412 crossref_primary_10_1021_acs_jcim_1c00920 crossref_primary_10_1016_j_ymeth_2021_12_001 crossref_primary_10_1016_j_compbiolchem_2022_107711 crossref_primary_10_1021_acs_jcim_3c00297 crossref_primary_10_1109_JBHI_2023_3290014 crossref_primary_10_1016_j_compbiolchem_2024_108091 crossref_primary_10_1093_bib_bbab172 crossref_primary_10_1016_j_compbiomed_2022_105868 crossref_primary_10_1038_s41598_022_08173_5 crossref_primary_10_1016_j_imu_2023_101348 crossref_primary_10_1021_acsomega_1c02569 crossref_primary_10_3389_fgene_2023_1165765 crossref_primary_10_1021_acsomega_1c03132 crossref_primary_10_1021_acs_jcim_2c00089 crossref_primary_10_7717_peerj_11906 crossref_primary_10_1002_pro_4966 crossref_primary_10_1016_j_cmpb_2024_108176 crossref_primary_10_1016_j_compbiolchem_2024_108141 crossref_primary_10_1016_j_compbiomed_2022_105459 crossref_primary_10_1021_acs_jcim_3c00688 crossref_primary_10_1109_ACCESS_2020_3023800 crossref_primary_10_1016_j_compbiomed_2023_106844 crossref_primary_10_1186_s12859_021_03965_4 crossref_primary_10_1093_bib_bbae220 crossref_primary_10_1109_TCBB_2023_3238370 crossref_primary_10_3389_fgene_2024_1376486 crossref_primary_10_2174_0929867328666210810145806 crossref_primary_10_1016_j_biosystems_2024_105246 crossref_primary_10_2217_imt_2020_0312 crossref_primary_10_3390_ph15060707 crossref_primary_10_1016_j_compbiomed_2023_107545 crossref_primary_10_1093_bioinformatics_btae142 crossref_primary_10_3389_fgene_2024_1352504 crossref_primary_10_1016_j_knosys_2023_110307 crossref_primary_10_3390_md22010006 crossref_primary_10_2174_0929867330666230426111157 crossref_primary_10_3390_ijms241310854 crossref_primary_10_1109_ACCESS_2020_3009125 crossref_primary_10_1016_j_inffus_2023_101950 crossref_primary_10_7717_peerj_13581 crossref_primary_10_1016_j_compbiomed_2024_108538 crossref_primary_10_1080_1062936X_2022_2160011 crossref_primary_10_1093_bib_bbad240 crossref_primary_10_1186_s12859_023_05421_x crossref_primary_10_3390_ijms242015447 crossref_primary_10_1007_s10822_021_00418_1 crossref_primary_10_1093_bib_bbaa124 crossref_primary_10_3390_molecules27051544 crossref_primary_10_1093_bib_bbab335 crossref_primary_10_1016_j_ijbiomac_2023_124228 crossref_primary_10_1186_s12859_022_04789_6 crossref_primary_10_1002_med_21658 |
Cites_doi | 10.1155/2016/7604641 10.1073/pnas.92.19.8700 10.1007/s00726-006-0439-2 10.1186/1471-2105-9-310 10.1517/13543784.15.8.933 10.1021/acs.jproteome.9b00012 10.1093/bib/bbs088 10.1038/nrc3599 10.2174/1574893611666160609081155 10.1016/j.artmed.2017.02.005 10.1109/TNB.2017.2661756 10.1261/rna.069112.118 10.1093/nar/28.1.45 10.1109/INDCON.2011.6139332 10.1007/s10989-014-9435-7 10.1016/j.jtbi.2013.08.037 10.1093/nar/gku892 10.1093/bib/bby091 10.1186/s12918-016-0353-5 10.1186/1471-2105-15-298 10.1038/srep02984 10.2174/1574893613666180118104250 10.2174/157016461104150121115154 10.1109/TNB.2018.2879345 10.1093/nar/gkl305 10.1007/s00726-014-1711-5 10.1021/acs.jproteome.7b00019 10.1093/bioinformatics/bty451 10.1021/jm9700575 10.1016/j.bbamem.2007.11.008 10.1093/protein/9.1.27 10.1186/s12864-017-4128-1 10.1093/bioinformatics/btz246 10.1093/nar/gkm998 10.1089/omi.2015.0095 10.1093/bioinformatics/btl158 10.1023/A:1010933404324 10.1016/j.neucom.2014.12.123 10.1016/j.artmed.2017.03.001 10.3389/fmicb.2013.00294 10.1021/ja902681k 10.1074/jbc.M401932200 10.1016/0169-2607(95)01703-8 10.18632/oncotarget.20365 10.1109/TCDS.2017.2785332 10.18632/oncotarget.7815 10.2174/1389557514666141107120954 10.1002/ijc.25516 10.2307/2531595 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbz088 |
DatabaseName | CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 1855 |
ExternalDocumentID | 10_1093_bib_bbz088 10.1093/bib/bbz088 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c322t-a5eb97fff74ec2d8a006bedf415017b84ede3d003f990d32ba3d034ce0aa0efb3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 |
IngestDate | Wed Dec 04 01:02:16 EST 2024 Mon Nov 04 11:43:51 EST 2024 Fri Dec 06 01:27:48 EST 2024 Wed Aug 28 03:17:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | anticancer peptide random forest feature representation machine learning |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-a5eb97fff74ec2d8a006bedf415017b84ede3d003f990d32ba3d034ce0aa0efb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1444-190X |
PQID | 2466348089 |
PQPubID | 26846 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2315094550 proquest_journals_2466348089 crossref_primary_10_1093_bib_bbz088 oup_primary_10_1093_bib_bbz088 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationYear | 2020 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Shen (2021031107441551900_ref49) 2007; 32 Bairoch (2021031107441551900_ref20) 2000; 28 Zou (2021031107441551900_ref23) 2016; 173 Vijayakumar (2021031107441551900_ref12) 2015; 21 Lvd (2021031107441551900_ref31) 2008; 9 Gaspar (2021031107441551900_ref5) 2013; 4 Qiang (2021031107441551900_ref21) 2018 Song (2021031107441551900_ref48) 2014; 15 Tyagi (2021031107441551900_ref10) 2013; 3 Chen (2021031107441551900_ref9) 2016; 7 Wei (2021031107441551900_ref17) 2018; 34 Wei (2021031107441551900_ref26) 2017; 83 Ferlay (2021031107441551900_ref1) 2010; 127 Wei (2021031107441551900_ref14) 2019 Hoskin (2021031107441551900_ref8) 2008; 1778 Lee (2021031107441551900_ref41) 2011; 6 Antos (2021031107441551900_ref51) 2009; 131 Zou (2021031107441551900_ref35) 2014; 15 Chen (2021031107441551900_ref40) 2018; 1 Tomii (2021031107441551900_ref47) 1996; 9 Tung (2021031107441551900_ref56) 2008; 9 Song (2021031107441551900_ref37) 2018; 10 Hajisharifi (2021031107441551900_ref16) 2014; 341 Sandberg (2021031107441551900_ref57) 1998; 41 Wei (2021031107441551900_ref25) 2017; 83 Zhao (2021031107441551900_ref28) 2014; 11 Wei (2021031107441551900_ref43) 2017; 16 Schoonjans (2021031107441551900_ref30) 1995; 48 Li (2021031107441551900_ref19) 2006; 22 Zou (2021031107441551900_ref33) 2019; 25 Manavalan (2021031107441551900_ref15) 2017; 8 Liao (2021031107441551900_ref3) 2018; 13 Liu (2021031107441551900_ref2) 2018; 13 Huang (2021031107441551900_ref6) 2015; 15 Su (2021031107441551900_ref27) Zhang (2021031107441551900_ref32) 2018 Zhang (2021031107441551900_ref11) 2016; 2016 Breiman (2021031107441551900_ref22) 2001; 45 DeLong (2021031107441551900_ref29) 1988 Dou (2021031107441551900_ref53) 2014; 46 Mader (2021031107441551900_ref7) 2006; 15 Wei (2021031107441551900_ref44) 2017; 18 Saravanan (2021031107441551900_ref42) 2015; 19 Wei (2021031107441551900_ref54) 2017; 16 Guo (2021031107441551900_ref36) 2018; 7 Tyagi (2021031107441551900_ref18) 2014; 43 Wei (2021031107441551900_ref50); 2017 Govindan (2021031107441551900_ref52) 2011 Li (2021031107441551900_ref34) 2019; 18 Holohan (2021031107441551900_ref4) 2013; 13 Li (2021031107441551900_ref45) 2006; 34 Wei (2021031107441551900_ref13) 2018 Kawashima (2021031107441551900_ref55) 2007; 36 Dubchak (2021031107441551900_ref46) 1995; 92 Zou (2021031107441551900_ref24) 2016; 10 Cabarle (2021031107441551900_ref38) 2018; 17 Bhasin (2021031107441551900_ref39) 2004; 279 |
References_xml | – volume: 2016 start-page: 7604641 year: 2016 ident: 2021031107441551900_ref11 article-title: Accurate identification of Cancerlectins through hybrid machine learning technology publication-title: Int J Genomics doi: 10.1155/2016/7604641 contributor: fullname: Zhang – volume: 92 start-page: 8700 year: 1995 ident: 2021031107441551900_ref46 article-title: Prediction of protein folding class using global description of amino acid sequence publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.92.19.8700 contributor: fullname: Dubchak – volume: 32 start-page: 483 year: 2007 ident: 2021031107441551900_ref49 article-title: Using ensemble classifier to identify membrane protein types publication-title: Amino Acids doi: 10.1007/s00726-006-0439-2 contributor: fullname: Shen – volume: 9 start-page: 310 year: 2008 ident: 2021031107441551900_ref56 article-title: Computational identification of ubiquitylation sites from protein sequences publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-310 contributor: fullname: Tung – volume: 15 start-page: 933 year: 2006 ident: 2021031107441551900_ref7 article-title: Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment publication-title: Expert Opin Investig Drugs doi: 10.1517/13543784.15.8.933 contributor: fullname: Mader – volume: 18 start-page: 1392 year: 2019 ident: 2021031107441551900_ref34 article-title: ELM-MHC: an improved MHC identification method with extreme learning machine algorithm publication-title: J Proteome Res doi: 10.1021/acs.jproteome.9b00012 contributor: fullname: Li – volume: 15 start-page: 637 year: 2014 ident: 2021031107441551900_ref35 article-title: Survey of MapReduce frame operation in bioinformatics publication-title: Brief Bioinform doi: 10.1093/bib/bbs088 contributor: fullname: Zou – volume: 13 start-page: 714 year: 2013 ident: 2021031107441551900_ref4 article-title: Cancer drug resistance: an evolving paradigm publication-title: Nat Rev Cancer doi: 10.1038/nrc3599 contributor: fullname: Holohan – volume: 13 start-page: 57 year: 2018 ident: 2021031107441551900_ref3 article-title: Cancer diagnosis from isomiR expression with machine learning method publication-title: Curr Bioinform doi: 10.2174/1574893611666160609081155 contributor: fullname: Liao – volume: 83 start-page: 82 year: 2017 ident: 2021031107441551900_ref26 article-title: A novel hierarchical selective ensemble classifier with bioinformatics application publication-title: Artif Intell Med doi: 10.1016/j.artmed.2017.02.005 contributor: fullname: Wei – volume: 16 start-page: 240 year: 2017 ident: 2021031107441551900_ref54 article-title: PhosPred-RF: a novel sequence-based predictor for phosphorylation sites using sequential information only publication-title: IEEE Trans Nanobioscience doi: 10.1109/TNB.2017.2661756 contributor: fullname: Wei – volume: 25 start-page: 205 year: 2019 ident: 2021031107441551900_ref33 article-title: Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA publication-title: RNA doi: 10.1261/rna.069112.118 contributor: fullname: Zou – volume: 28 start-page: 45 year: 2000 ident: 2021031107441551900_ref20 article-title: The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.45 contributor: fullname: Bairoch – volume-title: India Conference (INDICON) year: 2011 ident: 2021031107441551900_ref52 article-title: Composition, transition and distribution (CTD)—a dynamic feature for predictions based on hierarchical structure of cellular sorting doi: 10.1109/INDCON.2011.6139332 contributor: fullname: Govindan – volume: 21 start-page: 99 year: 2015 ident: 2021031107441551900_ref12 article-title: ACPP: a web server for prediction and design of anti-cancer peptides publication-title: Int J Pept Res Ther doi: 10.1007/s10989-014-9435-7 contributor: fullname: Vijayakumar – volume: 341 start-page: 34 year: 2014 ident: 2021031107441551900_ref16 article-title: Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test publication-title: J Theor Biol doi: 10.1016/j.jtbi.2013.08.037 contributor: fullname: Hajisharifi – volume: 43 start-page: D837 year: 2014 ident: 2021031107441551900_ref18 article-title: CancerPPD: a database of anticancer peptides and proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gku892 contributor: fullname: Tyagi – year: 2018 ident: 2021031107441551900_ref21 article-title: CPPred-FL: a sequence-based predictor for large-scale identification of cell-penetrating peptides by feature representation learning publication-title: Brief Bioinform doi: 10.1093/bib/bby091 contributor: fullname: Qiang – volume: 10 start-page: 114 year: 2016 ident: 2021031107441551900_ref24 article-title: Pretata: predicting TATA binding proteins with novel features and dimensionality reduction strategy publication-title: BMC Syst Biol doi: 10.1186/s12918-016-0353-5 contributor: fullname: Zou – volume: 15 start-page: 298 year: 2014 ident: 2021031107441551900_ref48 article-title: nDNA-prot: identification of DNA-binding proteins based on unbalanced classification publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-298 contributor: fullname: Song – volume: 3 start-page: 2984 year: 2013 ident: 2021031107441551900_ref10 article-title: In silico models for designing and discovering novel anticancer peptides publication-title: Sci Rep doi: 10.1038/srep02984 contributor: fullname: Tyagi – volume: 1 start-page: 4 year: 2018 ident: 2021031107441551900_ref40 article-title: iFeature: a python package and web server for features extraction and selection from protein and peptide sequences publication-title: Bioinformatics contributor: fullname: Chen – volume: 13 start-page: 437 year: 2018 ident: 2021031107441551900_ref2 article-title: Group-sparse modeling drug-kinase networks for predicting combinatorial drug sensitivity in cancer cells publication-title: Curr Bioinform doi: 10.2174/1574893613666180118104250 contributor: fullname: Liu – volume: 11 start-page: 289 year: 2014 ident: 2021031107441551900_ref28 article-title: Exploratory predicting protein folding model with random Forest and hybrid features publication-title: Curr Proteomics doi: 10.2174/157016461104150121115154 contributor: fullname: Zhao – volume: 17 start-page: 560 year: 2018 ident: 2021031107441551900_ref38 article-title: On string languages generated by spiking neural P systems with structural plasticity publication-title: IEEE Trans Nanobioscience doi: 10.1109/TNB.2018.2879345 contributor: fullname: Cabarle – volume: 6 year: 2011 ident: 2021031107441551900_ref41 article-title: Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites publication-title: PLoS One contributor: fullname: Lee – volume: 34 start-page: W32 year: 2006 ident: 2021031107441551900_ref45 article-title: PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl305 contributor: fullname: Li – volume: 2017 start-page: 1 ident: 2021031107441551900_ref50 article-title: Fast prediction of protein methylation sites using a sequence-based feature selection technique publication-title: IEEE/ACM Trans Comput Biol Bioinform contributor: fullname: Wei – volume: 46 start-page: 1459 year: 2014 ident: 2021031107441551900_ref53 article-title: PhosphoSVM: prediction of phosphorylation sites by integrating various protein sequence attributes with a support vector machine publication-title: Amino Acids doi: 10.1007/s00726-014-1711-5 contributor: fullname: Dou – volume: 9 start-page: 2579 year: 2008 ident: 2021031107441551900_ref31 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res contributor: fullname: Lvd – volume: 16 start-page: 2044 year: 2017 ident: 2021031107441551900_ref43 article-title: CPPred-RF: a sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency publication-title: J Proteome Res doi: 10.1021/acs.jproteome.7b00019 contributor: fullname: Wei – volume: 34 start-page: 4007 year: 2018 ident: 2021031107441551900_ref17 article-title: ACPred-FL: a sequence-based predictor based on effective feature representation to improve the prediction of anti-cancer peptides publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty451 contributor: fullname: Wei – volume: 41 start-page: 2481 year: 1998 ident: 2021031107441551900_ref57 article-title: New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids publication-title: J Med Chem doi: 10.1021/jm9700575 contributor: fullname: Sandberg – volume: 1778 start-page: 357 year: 2008 ident: 2021031107441551900_ref8 article-title: Studies on anticancer activities of antimicrobial peptides publication-title: Biochim Biophys Acta Biomembr doi: 10.1016/j.bbamem.2007.11.008 contributor: fullname: Hoskin – volume: 9 start-page: 27 year: 1996 ident: 2021031107441551900_ref47 article-title: Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins publication-title: Protein Eng Des Sel doi: 10.1093/protein/9.1.27 contributor: fullname: Tomii – year: 2018 ident: 2021031107441551900_ref13 article-title: ACPred-FL: a sequence-based predictor based on effective feature representation to improve the prediction of anti-cancer peptides publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty451 contributor: fullname: Wei – volume: 18 start-page: 1 year: 2017 ident: 2021031107441551900_ref44 article-title: SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides publication-title: BMC Genomics doi: 10.1186/s12864-017-4128-1 contributor: fullname: Wei – year: 2019 ident: 2021031107441551900_ref14 article-title: PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz246 contributor: fullname: Wei – volume: 36 start-page: D202 year: 2007 ident: 2021031107441551900_ref55 article-title: AAindex: amino acid index database, progress report 2008 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm998 contributor: fullname: Kawashima – volume: 19 start-page: 648 year: 2015 ident: 2021031107441551900_ref42 article-title: Harnessing computational biology for exact linear B-cell epitope prediction: a novel amino acid composition-based feature descriptor publication-title: OMICS doi: 10.1089/omi.2015.0095 contributor: fullname: Saravanan – volume: 22 start-page: 1658 year: 2006 ident: 2021031107441551900_ref19 article-title: CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 contributor: fullname: Li – volume: 45 start-page: 5 year: 2001 ident: 2021031107441551900_ref22 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 173 start-page: 346 year: 2016 ident: 2021031107441551900_ref23 article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.123 contributor: fullname: Zou – volume-title: Brief Funct Genomics year: 2018 ident: 2021031107441551900_ref32 contributor: fullname: Zhang – volume: 83 start-page: 67 year: 2017 ident: 2021031107441551900_ref25 article-title: Improved prediction of protein–protein interactions using novel negative samples, features, and an ensemble classifier publication-title: Artif Intell Med doi: 10.1016/j.artmed.2017.03.001 contributor: fullname: Wei – volume: 4 start-page: 294 year: 2013 ident: 2021031107441551900_ref5 article-title: From antimicrobial to anticancer peptides. A review publication-title: Front Microbiol doi: 10.3389/fmicb.2013.00294 contributor: fullname: Gaspar – volume: 131 start-page: 10800 year: 2009 ident: 2021031107441551900_ref51 article-title: Site-specific N-and C-terminal labeling of a single polypeptide using sortases of different specificity publication-title: J Am Chem Soc doi: 10.1021/ja902681k contributor: fullname: Antos – volume: 279 start-page: 23262 year: 2004 ident: 2021031107441551900_ref39 article-title: Classification of nuclear receptors based on amino acid composition and dipeptide composition publication-title: J Biol Chem doi: 10.1074/jbc.M401932200 contributor: fullname: Bhasin – volume: 48 start-page: 257 year: 1995 ident: 2021031107441551900_ref30 article-title: MedCalc: a new computer program for medical statistics publication-title: Comput Methods Programs Biomed doi: 10.1016/0169-2607(95)01703-8 contributor: fullname: Schoonjans – volume: 8 start-page: 77121 year: 2017 ident: 2021031107441551900_ref15 article-title: MLACP: machine-learning-based prediction of anticancer peptides publication-title: Oncotarget doi: 10.18632/oncotarget.20365 contributor: fullname: Manavalan – volume: 10 start-page: 1106 year: 2018 ident: 2021031107441551900_ref37 article-title: Spiking neural P systems with colored spikes publication-title: IEEE T Cogn Dev Syst doi: 10.1109/TCDS.2017.2785332 contributor: fullname: Song – volume: 7 start-page: giy098 year: 2018 ident: 2021031107441551900_ref36 article-title: Bioinformatics applications on Apache Spark publication-title: GigaScience contributor: fullname: Guo – volume: 7 start-page: 16895 year: 2016 ident: 2021031107441551900_ref9 article-title: iACP: a sequence-based tool for identifying anticancer peptides publication-title: Oncotarget doi: 10.18632/oncotarget.7815 contributor: fullname: Chen – start-page: 1231 volume-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics ident: 2021031107441551900_ref27 article-title: Developing a multi-dose computational model for drug-induced hepatotoxicity prediction based on Toxicogenomics data contributor: fullname: Su – volume: 15 start-page: 73 year: 2015 ident: 2021031107441551900_ref6 article-title: Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs publication-title: Mini Rev Med Chem doi: 10.2174/1389557514666141107120954 contributor: fullname: Huang – volume: 127 start-page: 2893 year: 2010 ident: 2021031107441551900_ref1 article-title: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 publication-title: Int J Cancer doi: 10.1002/ijc.25516 contributor: fullname: Ferlay – start-page: 837 year: 1988 ident: 2021031107441551900_ref29 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 contributor: fullname: DeLong |
SSID | ssj0020781 |
Score | 2.631727 |
Snippet | Abstract
Fast and accurate identification of the peptides with anticancer activity potential from large-scale proteins is currently a challenging task. In this... Fast and accurate identification of the peptides with anticancer activity potential from large-scale proteins is currently a challenging task. In this study,... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Publisher |
StartPage | 1846 |
SubjectTerms | Anticancer properties Antitumor activity Cancer Learning algorithms Machine learning Peptides Prediction models Proteins Representations Servers |
Title | ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides |
URI | https://www.proquest.com/docview/2466348089 https://search.proquest.com/docview/2315094550 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA4iCF7EJ1Zrieg1dHeTfXmrxVIEH4cW6mlJNhPppS277UF_vTP7KBREj5vNsvBlnpnJF8budRDKGJQnTJhGQsU5CGNDX0QpoMcAjR6czju_vEbjqXqehbOmiab8pYSfyr6Zm74x36gOaGl9DL9Raidvs21aRXQ19RmiWBC5e0tCuvPpjtvZOcrW2t7KoYyO2VETCfJBvXQnbA8Wp-ygvhvy64x9DIbvBVgx2pTwwB31p3_yqv1P0G4-bxhPCVc-r3YGoOQYzfFVQbWXanzpOAJHhi6Hgq-ogcVCec6mo6fJcCyaexBEjuq2FjoEk8bOuVhBHthEo6YYsA59L-qTSRRYkBbV06FrsTIwGp-kysHT2gNn5AXbXywXcMl4oEwCgY3Aj3KVe4kOqY5KQ5Lqh9Bhdy1M2aqmu8jqMrXMEMysBrPDeojgnxO6LbhZoxNlFiiMblTiJWmH3W5fozRTiUIvYLnBOdInRj9Mm67--8c1Owwo9636vbpsf11s4AYDhLXpYVD8OO1VUvIDNJm6qQ |
link.rule.ids | 315,781,785,1605,27929,27930 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACPred-Fuse%3A+fusing+multi-view+information+improves+the+prediction+of+anticancer+peptides&rft.jtitle=Briefings+in+bioinformatics&rft.au=Rao%2C+Bing&rft.au=Zhou%2C+Chen&rft.au=Zhang%2C+Guoying&rft.au=Su%2C+Ran&rft.date=2020-09-01&rft.eissn=1477-4054&rft.volume=21&rft.issue=5&rft.spage=1846&rft.epage=1855&rft_id=info:doi/10.1093%2Fbib%2Fbbz088&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |