ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides

Abstract Fast and accurate identification of the peptides with anticancer activity potential from large-scale proteins is currently a challenging task. In this study, we propose a new machine learning predictor, namely, ACPred-Fuse, that can automatically and accurately predict protein sequences wit...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 21; no. 5; pp. 1846 - 1855
Main Authors Rao, Bing, Zhou, Chen, Zhang, Guoying, Su, Ran, Wei, Leyi
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.09.2020
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Fast and accurate identification of the peptides with anticancer activity potential from large-scale proteins is currently a challenging task. In this study, we propose a new machine learning predictor, namely, ACPred-Fuse, that can automatically and accurately predict protein sequences with or without anticancer activity in peptide form. Specifically, we establish a feature representation learning model that can explore class and probabilistic information embedded in anticancer peptides (ACPs) by integrating a total of 29 different sequence-based feature descriptors. In order to make full use of various multiview information, we further fused the class and probabilistic features with handcrafted sequential features and then optimized the representation ability of the multiview features, which are ultimately used as input for training our prediction model. By comparing the multiview features and existing feature descriptors, we demonstrate that the fused multiview features have more discriminative ability to capture the characteristics of ACPs. In addition, the information from different views is complementary for the performance improvement. Finally, our benchmarking comparison results showed that the proposed ACPred-Fuse is more precise and promising in the identification of ACPs than existing predictors. To facilitate the use of the proposed predictor, we built a web server, which is now freely available via http://server.malab.cn/ACPred-Fuse.
AbstractList Fast and accurate identification of the peptides with anticancer activity potential from large-scale proteins is currently a challenging task. In this study, we propose a new machine learning predictor, namely, ACPred-Fuse, that can automatically and accurately predict protein sequences with or without anticancer activity in peptide form. Specifically, we establish a feature representation learning model that can explore class and probabilistic information embedded in anticancer peptides (ACPs) by integrating a total of 29 different sequence-based feature descriptors. In order to make full use of various multiview information, we further fused the class and probabilistic features with handcrafted sequential features and then optimized the representation ability of the multiview features, which are ultimately used as input for training our prediction model. By comparing the multiview features and existing feature descriptors, we demonstrate that the fused multiview features have more discriminative ability to capture the characteristics of ACPs. In addition, the information from different views is complementary for the performance improvement. Finally, our benchmarking comparison results showed that the proposed ACPred-Fuse is more precise and promising in the identification of ACPs than existing predictors. To facilitate the use of the proposed predictor, we built a web server, which is now freely available via http://server.malab.cn/ACPred-Fuse.
Abstract Fast and accurate identification of the peptides with anticancer activity potential from large-scale proteins is currently a challenging task. In this study, we propose a new machine learning predictor, namely, ACPred-Fuse, that can automatically and accurately predict protein sequences with or without anticancer activity in peptide form. Specifically, we establish a feature representation learning model that can explore class and probabilistic information embedded in anticancer peptides (ACPs) by integrating a total of 29 different sequence-based feature descriptors. In order to make full use of various multiview information, we further fused the class and probabilistic features with handcrafted sequential features and then optimized the representation ability of the multiview features, which are ultimately used as input for training our prediction model. By comparing the multiview features and existing feature descriptors, we demonstrate that the fused multiview features have more discriminative ability to capture the characteristics of ACPs. In addition, the information from different views is complementary for the performance improvement. Finally, our benchmarking comparison results showed that the proposed ACPred-Fuse is more precise and promising in the identification of ACPs than existing predictors. To facilitate the use of the proposed predictor, we built a web server, which is now freely available via http://server.malab.cn/ACPred-Fuse.
Author Su, Ran
Zhang, Guoying
Wei, Leyi
Zhou, Chen
Rao, Bing
Author_xml – sequence: 1
  givenname: Bing
  surname: Rao
  fullname: Rao, Bing
  email: raobing@cdgdc.edu.cn
– sequence: 2
  givenname: Chen
  surname: Zhou
  fullname: Zhou, Chen
  email: zhouchen@tju.edu.cn
– sequence: 3
  givenname: Guoying
  surname: Zhang
  fullname: Zhang, Guoying
  email: zhangguoying1101@163.com
– sequence: 4
  givenname: Ran
  surname: Su
  fullname: Su, Ran
  email: ran.su@tju.edu.cn
– sequence: 5
  givenname: Leyi
  orcidid: 0000-0003-1444-190X
  surname: Wei
  fullname: Wei, Leyi
  email: weileyi@tju.edu.cn
BookMark eNp9kE9LxDAQxYOs4O7qxU9QEEGEutMm_edtWVwVFvSgB08laSeapU1q0q7opzdrPXnwNDOP3zweb0Ym2mgk5DSCqwgKuhBKLIT4gjw_INOIZVnIIGGT_Z5mYcJSekRmzm0BYsjyaEpelqtHi3W4HhxeB3JwSr8G7dD0Ktwp_AiUlsa2vFdGB6rtrNmhC_o3DDr_paof3ciA615VXFdogw67XtXojsmh5I3Dk985J8_rm6fVXbh5uL1fLTdhReO4D3mCosiklBnDKq5zDpAKrCWLEogykTOskdYAVBYF1DQW3F-UVQicA0pB5-Ri9PXh3gd0fdkqV2HTcI1mcGVMvVPBkgQ8evYH3ZrBap-ujFmaUpZDXnjqcqQqa5yzKMvOqpbbzzKCct9y6Vsux5Y9fD7CZuj-474BhRyAQg
CitedBy_id crossref_primary_10_3390_ijms22115630
crossref_primary_10_1007_s12539_021_00481_0
crossref_primary_10_1021_acs_jcim_3c01860
crossref_primary_10_1093_bioinformatics_btab560
crossref_primary_10_1093_bib_bbad399
crossref_primary_10_1016_j_drudis_2020_04_008
crossref_primary_10_1093_bib_bbac462
crossref_primary_10_3390_molecules28031148
crossref_primary_10_1016_j_ab_2022_114707
crossref_primary_10_1016_j_compbiomed_2022_105700
crossref_primary_10_1093_bib_bbab008
crossref_primary_10_1016_j_isci_2022_104883
crossref_primary_10_1093_bib_bbaa312
crossref_primary_10_1186_s12859_023_05463_1
crossref_primary_10_34133_research_0011
crossref_primary_10_1093_bib_bbac454
crossref_primary_10_1021_acs_jcim_1c00181
crossref_primary_10_1038_s41598_022_20143_5
crossref_primary_10_1093_bib_bbaa275
crossref_primary_10_2174_1381612826666201112142826
crossref_primary_10_1016_j_jmb_2024_168687
crossref_primary_10_1093_bib_bbab358
crossref_primary_10_1007_s00726_022_03145_5
crossref_primary_10_3390_ijms222313124
crossref_primary_10_3390_molecules28186680
crossref_primary_10_1080_07391102_2024_2318482
crossref_primary_10_1093_bib_bbab310
crossref_primary_10_1371_journal_pcbi_1011370
crossref_primary_10_1093_bioinformatics_btad125
crossref_primary_10_1038_s41598_024_55160_z
crossref_primary_10_3390_ijms242417378
crossref_primary_10_1038_s41598_022_11897_z
crossref_primary_10_1016_j_compbiolchem_2024_108033
crossref_primary_10_1186_s12859_022_04771_2
crossref_primary_10_1016_j_ymeth_2022_03_017
crossref_primary_10_1038_s41598_021_82513_9
crossref_primary_10_1109_TCBB_2023_3323295
crossref_primary_10_3390_math12091330
crossref_primary_10_1021_acs_jcim_0c00707
crossref_primary_10_1021_acs_jcim_4c00295
crossref_primary_10_1016_j_ab_2024_115491
crossref_primary_10_1093_bib_bbac476
crossref_primary_10_1093_bib_bbac630
crossref_primary_10_1093_bioinformatics_btac200
crossref_primary_10_3389_fgene_2022_887894
crossref_primary_10_1016_j_compbiomed_2023_107915
crossref_primary_10_1016_j_compbiomed_2022_106368
crossref_primary_10_1016_j_omtn_2020_10_005
crossref_primary_10_1016_j_compbiomed_2023_106784
crossref_primary_10_1093_bib_bbab499
crossref_primary_10_1016_j_biopha_2024_116709
crossref_primary_10_1093_bib_bbab412
crossref_primary_10_1021_acs_jcim_1c00920
crossref_primary_10_1016_j_ymeth_2021_12_001
crossref_primary_10_1016_j_compbiolchem_2022_107711
crossref_primary_10_1021_acs_jcim_3c00297
crossref_primary_10_1109_JBHI_2023_3290014
crossref_primary_10_1016_j_compbiolchem_2024_108091
crossref_primary_10_1093_bib_bbab172
crossref_primary_10_1016_j_compbiomed_2022_105868
crossref_primary_10_1038_s41598_022_08173_5
crossref_primary_10_1016_j_imu_2023_101348
crossref_primary_10_1021_acsomega_1c02569
crossref_primary_10_3389_fgene_2023_1165765
crossref_primary_10_1021_acsomega_1c03132
crossref_primary_10_1021_acs_jcim_2c00089
crossref_primary_10_7717_peerj_11906
crossref_primary_10_1002_pro_4966
crossref_primary_10_1016_j_cmpb_2024_108176
crossref_primary_10_1016_j_compbiolchem_2024_108141
crossref_primary_10_1016_j_compbiomed_2022_105459
crossref_primary_10_1021_acs_jcim_3c00688
crossref_primary_10_1109_ACCESS_2020_3023800
crossref_primary_10_1016_j_compbiomed_2023_106844
crossref_primary_10_1186_s12859_021_03965_4
crossref_primary_10_1093_bib_bbae220
crossref_primary_10_1109_TCBB_2023_3238370
crossref_primary_10_3389_fgene_2024_1376486
crossref_primary_10_2174_0929867328666210810145806
crossref_primary_10_1016_j_biosystems_2024_105246
crossref_primary_10_2217_imt_2020_0312
crossref_primary_10_3390_ph15060707
crossref_primary_10_1016_j_compbiomed_2023_107545
crossref_primary_10_1093_bioinformatics_btae142
crossref_primary_10_3389_fgene_2024_1352504
crossref_primary_10_1016_j_knosys_2023_110307
crossref_primary_10_3390_md22010006
crossref_primary_10_2174_0929867330666230426111157
crossref_primary_10_3390_ijms241310854
crossref_primary_10_1109_ACCESS_2020_3009125
crossref_primary_10_1016_j_inffus_2023_101950
crossref_primary_10_7717_peerj_13581
crossref_primary_10_1016_j_compbiomed_2024_108538
crossref_primary_10_1080_1062936X_2022_2160011
crossref_primary_10_1093_bib_bbad240
crossref_primary_10_1186_s12859_023_05421_x
crossref_primary_10_3390_ijms242015447
crossref_primary_10_1007_s10822_021_00418_1
crossref_primary_10_1093_bib_bbaa124
crossref_primary_10_3390_molecules27051544
crossref_primary_10_1093_bib_bbab335
crossref_primary_10_1016_j_ijbiomac_2023_124228
crossref_primary_10_1186_s12859_022_04789_6
crossref_primary_10_1002_med_21658
Cites_doi 10.1155/2016/7604641
10.1073/pnas.92.19.8700
10.1007/s00726-006-0439-2
10.1186/1471-2105-9-310
10.1517/13543784.15.8.933
10.1021/acs.jproteome.9b00012
10.1093/bib/bbs088
10.1038/nrc3599
10.2174/1574893611666160609081155
10.1016/j.artmed.2017.02.005
10.1109/TNB.2017.2661756
10.1261/rna.069112.118
10.1093/nar/28.1.45
10.1109/INDCON.2011.6139332
10.1007/s10989-014-9435-7
10.1016/j.jtbi.2013.08.037
10.1093/nar/gku892
10.1093/bib/bby091
10.1186/s12918-016-0353-5
10.1186/1471-2105-15-298
10.1038/srep02984
10.2174/1574893613666180118104250
10.2174/157016461104150121115154
10.1109/TNB.2018.2879345
10.1093/nar/gkl305
10.1007/s00726-014-1711-5
10.1021/acs.jproteome.7b00019
10.1093/bioinformatics/bty451
10.1021/jm9700575
10.1016/j.bbamem.2007.11.008
10.1093/protein/9.1.27
10.1186/s12864-017-4128-1
10.1093/bioinformatics/btz246
10.1093/nar/gkm998
10.1089/omi.2015.0095
10.1093/bioinformatics/btl158
10.1023/A:1010933404324
10.1016/j.neucom.2014.12.123
10.1016/j.artmed.2017.03.001
10.3389/fmicb.2013.00294
10.1021/ja902681k
10.1074/jbc.M401932200
10.1016/0169-2607(95)01703-8
10.18632/oncotarget.20365
10.1109/TCDS.2017.2785332
10.18632/oncotarget.7815
10.2174/1389557514666141107120954
10.1002/ijc.25516
10.2307/2531595
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbz088
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef

Genetics Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 1855
ExternalDocumentID 10_1093_bib_bbz088
10.1093/bib/bbz088
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c322t-a5eb97fff74ec2d8a006bedf415017b84ede3d003f990d32ba3d034ce0aa0efb3
IEDL.DBID TOX
ISSN 1467-5463
IngestDate Wed Dec 04 01:02:16 EST 2024
Mon Nov 04 11:43:51 EST 2024
Fri Dec 06 01:27:48 EST 2024
Wed Aug 28 03:17:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords anticancer peptide
random forest
feature representation
machine learning
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-a5eb97fff74ec2d8a006bedf415017b84ede3d003f990d32ba3d034ce0aa0efb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1444-190X
PQID 2466348089
PQPubID 26846
PageCount 10
ParticipantIDs proquest_miscellaneous_2315094550
proquest_journals_2466348089
crossref_primary_10_1093_bib_bbz088
oup_primary_10_1093_bib_bbz088
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2020
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Shen (2021031107441551900_ref49) 2007; 32
Bairoch (2021031107441551900_ref20) 2000; 28
Zou (2021031107441551900_ref23) 2016; 173
Vijayakumar (2021031107441551900_ref12) 2015; 21
Lvd (2021031107441551900_ref31) 2008; 9
Gaspar (2021031107441551900_ref5) 2013; 4
Qiang (2021031107441551900_ref21) 2018
Song (2021031107441551900_ref48) 2014; 15
Tyagi (2021031107441551900_ref10) 2013; 3
Chen (2021031107441551900_ref9) 2016; 7
Wei (2021031107441551900_ref17) 2018; 34
Wei (2021031107441551900_ref26) 2017; 83
Ferlay (2021031107441551900_ref1) 2010; 127
Wei (2021031107441551900_ref14) 2019
Hoskin (2021031107441551900_ref8) 2008; 1778
Lee (2021031107441551900_ref41) 2011; 6
Antos (2021031107441551900_ref51) 2009; 131
Zou (2021031107441551900_ref35) 2014; 15
Chen (2021031107441551900_ref40) 2018; 1
Tomii (2021031107441551900_ref47) 1996; 9
Tung (2021031107441551900_ref56) 2008; 9
Song (2021031107441551900_ref37) 2018; 10
Hajisharifi (2021031107441551900_ref16) 2014; 341
Sandberg (2021031107441551900_ref57) 1998; 41
Wei (2021031107441551900_ref25) 2017; 83
Zhao (2021031107441551900_ref28) 2014; 11
Wei (2021031107441551900_ref43) 2017; 16
Schoonjans (2021031107441551900_ref30) 1995; 48
Li (2021031107441551900_ref19) 2006; 22
Zou (2021031107441551900_ref33) 2019; 25
Manavalan (2021031107441551900_ref15) 2017; 8
Liao (2021031107441551900_ref3) 2018; 13
Liu (2021031107441551900_ref2) 2018; 13
Huang (2021031107441551900_ref6) 2015; 15
Su (2021031107441551900_ref27)
Zhang (2021031107441551900_ref32) 2018
Zhang (2021031107441551900_ref11) 2016; 2016
Breiman (2021031107441551900_ref22) 2001; 45
DeLong (2021031107441551900_ref29) 1988
Dou (2021031107441551900_ref53) 2014; 46
Mader (2021031107441551900_ref7) 2006; 15
Wei (2021031107441551900_ref44) 2017; 18
Saravanan (2021031107441551900_ref42) 2015; 19
Wei (2021031107441551900_ref54) 2017; 16
Guo (2021031107441551900_ref36) 2018; 7
Tyagi (2021031107441551900_ref18) 2014; 43
Wei (2021031107441551900_ref50); 2017
Govindan (2021031107441551900_ref52) 2011
Li (2021031107441551900_ref34) 2019; 18
Holohan (2021031107441551900_ref4) 2013; 13
Li (2021031107441551900_ref45) 2006; 34
Wei (2021031107441551900_ref13) 2018
Kawashima (2021031107441551900_ref55) 2007; 36
Dubchak (2021031107441551900_ref46) 1995; 92
Zou (2021031107441551900_ref24) 2016; 10
Cabarle (2021031107441551900_ref38) 2018; 17
Bhasin (2021031107441551900_ref39) 2004; 279
References_xml – volume: 2016
  start-page: 7604641
  year: 2016
  ident: 2021031107441551900_ref11
  article-title: Accurate identification of Cancerlectins through hybrid machine learning technology
  publication-title: Int J Genomics
  doi: 10.1155/2016/7604641
  contributor:
    fullname: Zhang
– volume: 92
  start-page: 8700
  year: 1995
  ident: 2021031107441551900_ref46
  article-title: Prediction of protein folding class using global description of amino acid sequence
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.92.19.8700
  contributor:
    fullname: Dubchak
– volume: 32
  start-page: 483
  year: 2007
  ident: 2021031107441551900_ref49
  article-title: Using ensemble classifier to identify membrane protein types
  publication-title: Amino Acids
  doi: 10.1007/s00726-006-0439-2
  contributor:
    fullname: Shen
– volume: 9
  start-page: 310
  year: 2008
  ident: 2021031107441551900_ref56
  article-title: Computational identification of ubiquitylation sites from protein sequences
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-310
  contributor:
    fullname: Tung
– volume: 15
  start-page: 933
  year: 2006
  ident: 2021031107441551900_ref7
  article-title: Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment
  publication-title: Expert Opin Investig Drugs
  doi: 10.1517/13543784.15.8.933
  contributor:
    fullname: Mader
– volume: 18
  start-page: 1392
  year: 2019
  ident: 2021031107441551900_ref34
  article-title: ELM-MHC: an improved MHC identification method with extreme learning machine algorithm
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.9b00012
  contributor:
    fullname: Li
– volume: 15
  start-page: 637
  year: 2014
  ident: 2021031107441551900_ref35
  article-title: Survey of MapReduce frame operation in bioinformatics
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbs088
  contributor:
    fullname: Zou
– volume: 13
  start-page: 714
  year: 2013
  ident: 2021031107441551900_ref4
  article-title: Cancer drug resistance: an evolving paradigm
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3599
  contributor:
    fullname: Holohan
– volume: 13
  start-page: 57
  year: 2018
  ident: 2021031107441551900_ref3
  article-title: Cancer diagnosis from isomiR expression with machine learning method
  publication-title: Curr Bioinform
  doi: 10.2174/1574893611666160609081155
  contributor:
    fullname: Liao
– volume: 83
  start-page: 82
  year: 2017
  ident: 2021031107441551900_ref26
  article-title: A novel hierarchical selective ensemble classifier with bioinformatics application
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2017.02.005
  contributor:
    fullname: Wei
– volume: 16
  start-page: 240
  year: 2017
  ident: 2021031107441551900_ref54
  article-title: PhosPred-RF: a novel sequence-based predictor for phosphorylation sites using sequential information only
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2017.2661756
  contributor:
    fullname: Wei
– volume: 25
  start-page: 205
  year: 2019
  ident: 2021031107441551900_ref33
  article-title: Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA
  publication-title: RNA
  doi: 10.1261/rna.069112.118
  contributor:
    fullname: Zou
– volume: 28
  start-page: 45
  year: 2000
  ident: 2021031107441551900_ref20
  article-title: The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.45
  contributor:
    fullname: Bairoch
– volume-title: India Conference (INDICON)
  year: 2011
  ident: 2021031107441551900_ref52
  article-title: Composition, transition and distribution (CTD)—a dynamic feature for predictions based on hierarchical structure of cellular sorting
  doi: 10.1109/INDCON.2011.6139332
  contributor:
    fullname: Govindan
– volume: 21
  start-page: 99
  year: 2015
  ident: 2021031107441551900_ref12
  article-title: ACPP: a web server for prediction and design of anti-cancer peptides
  publication-title: Int J Pept Res Ther
  doi: 10.1007/s10989-014-9435-7
  contributor:
    fullname: Vijayakumar
– volume: 341
  start-page: 34
  year: 2014
  ident: 2021031107441551900_ref16
  article-title: Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2013.08.037
  contributor:
    fullname: Hajisharifi
– volume: 43
  start-page: D837
  year: 2014
  ident: 2021031107441551900_ref18
  article-title: CancerPPD: a database of anticancer peptides and proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku892
  contributor:
    fullname: Tyagi
– year: 2018
  ident: 2021031107441551900_ref21
  article-title: CPPred-FL: a sequence-based predictor for large-scale identification of cell-penetrating peptides by feature representation learning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby091
  contributor:
    fullname: Qiang
– volume: 10
  start-page: 114
  year: 2016
  ident: 2021031107441551900_ref24
  article-title: Pretata: predicting TATA binding proteins with novel features and dimensionality reduction strategy
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-016-0353-5
  contributor:
    fullname: Zou
– volume: 15
  start-page: 298
  year: 2014
  ident: 2021031107441551900_ref48
  article-title: nDNA-prot: identification of DNA-binding proteins based on unbalanced classification
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-298
  contributor:
    fullname: Song
– volume: 3
  start-page: 2984
  year: 2013
  ident: 2021031107441551900_ref10
  article-title: In silico models for designing and discovering novel anticancer peptides
  publication-title: Sci Rep
  doi: 10.1038/srep02984
  contributor:
    fullname: Tyagi
– volume: 1
  start-page: 4
  year: 2018
  ident: 2021031107441551900_ref40
  article-title: iFeature: a python package and web server for features extraction and selection from protein and peptide sequences
  publication-title: Bioinformatics
  contributor:
    fullname: Chen
– volume: 13
  start-page: 437
  year: 2018
  ident: 2021031107441551900_ref2
  article-title: Group-sparse modeling drug-kinase networks for predicting combinatorial drug sensitivity in cancer cells
  publication-title: Curr Bioinform
  doi: 10.2174/1574893613666180118104250
  contributor:
    fullname: Liu
– volume: 11
  start-page: 289
  year: 2014
  ident: 2021031107441551900_ref28
  article-title: Exploratory predicting protein folding model with random Forest and hybrid features
  publication-title: Curr Proteomics
  doi: 10.2174/157016461104150121115154
  contributor:
    fullname: Zhao
– volume: 17
  start-page: 560
  year: 2018
  ident: 2021031107441551900_ref38
  article-title: On string languages generated by spiking neural P systems with structural plasticity
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2018.2879345
  contributor:
    fullname: Cabarle
– volume: 6
  year: 2011
  ident: 2021031107441551900_ref41
  article-title: Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites
  publication-title: PLoS One
  contributor:
    fullname: Lee
– volume: 34
  start-page: W32
  year: 2006
  ident: 2021031107441551900_ref45
  article-title: PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl305
  contributor:
    fullname: Li
– volume: 2017
  start-page: 1
  ident: 2021031107441551900_ref50
  article-title: Fast prediction of protein methylation sites using a sequence-based feature selection technique
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  contributor:
    fullname: Wei
– volume: 46
  start-page: 1459
  year: 2014
  ident: 2021031107441551900_ref53
  article-title: PhosphoSVM: prediction of phosphorylation sites by integrating various protein sequence attributes with a support vector machine
  publication-title: Amino Acids
  doi: 10.1007/s00726-014-1711-5
  contributor:
    fullname: Dou
– volume: 9
  start-page: 2579
  year: 2008
  ident: 2021031107441551900_ref31
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
  contributor:
    fullname: Lvd
– volume: 16
  start-page: 2044
  year: 2017
  ident: 2021031107441551900_ref43
  article-title: CPPred-RF: a sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.7b00019
  contributor:
    fullname: Wei
– volume: 34
  start-page: 4007
  year: 2018
  ident: 2021031107441551900_ref17
  article-title: ACPred-FL: a sequence-based predictor based on effective feature representation to improve the prediction of anti-cancer peptides
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty451
  contributor:
    fullname: Wei
– volume: 41
  start-page: 2481
  year: 1998
  ident: 2021031107441551900_ref57
  article-title: New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids
  publication-title: J Med Chem
  doi: 10.1021/jm9700575
  contributor:
    fullname: Sandberg
– volume: 1778
  start-page: 357
  year: 2008
  ident: 2021031107441551900_ref8
  article-title: Studies on anticancer activities of antimicrobial peptides
  publication-title: Biochim Biophys Acta Biomembr
  doi: 10.1016/j.bbamem.2007.11.008
  contributor:
    fullname: Hoskin
– volume: 9
  start-page: 27
  year: 1996
  ident: 2021031107441551900_ref47
  article-title: Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins
  publication-title: Protein Eng Des Sel
  doi: 10.1093/protein/9.1.27
  contributor:
    fullname: Tomii
– year: 2018
  ident: 2021031107441551900_ref13
  article-title: ACPred-FL: a sequence-based predictor based on effective feature representation to improve the prediction of anti-cancer peptides
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty451
  contributor:
    fullname: Wei
– volume: 18
  start-page: 1
  year: 2017
  ident: 2021031107441551900_ref44
  article-title: SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-4128-1
  contributor:
    fullname: Wei
– year: 2019
  ident: 2021031107441551900_ref14
  article-title: PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz246
  contributor:
    fullname: Wei
– volume: 36
  start-page: D202
  year: 2007
  ident: 2021031107441551900_ref55
  article-title: AAindex: amino acid index database, progress report 2008
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm998
  contributor:
    fullname: Kawashima
– volume: 19
  start-page: 648
  year: 2015
  ident: 2021031107441551900_ref42
  article-title: Harnessing computational biology for exact linear B-cell epitope prediction: a novel amino acid composition-based feature descriptor
  publication-title: OMICS
  doi: 10.1089/omi.2015.0095
  contributor:
    fullname: Saravanan
– volume: 22
  start-page: 1658
  year: 2006
  ident: 2021031107441551900_ref19
  article-title: CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl158
  contributor:
    fullname: Li
– volume: 45
  start-page: 5
  year: 2001
  ident: 2021031107441551900_ref22
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 173
  start-page: 346
  year: 2016
  ident: 2021031107441551900_ref23
  article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.123
  contributor:
    fullname: Zou
– volume-title: Brief Funct Genomics
  year: 2018
  ident: 2021031107441551900_ref32
  contributor:
    fullname: Zhang
– volume: 83
  start-page: 67
  year: 2017
  ident: 2021031107441551900_ref25
  article-title: Improved prediction of protein–protein interactions using novel negative samples, features, and an ensemble classifier
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2017.03.001
  contributor:
    fullname: Wei
– volume: 4
  start-page: 294
  year: 2013
  ident: 2021031107441551900_ref5
  article-title: From antimicrobial to anticancer peptides. A review
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2013.00294
  contributor:
    fullname: Gaspar
– volume: 131
  start-page: 10800
  year: 2009
  ident: 2021031107441551900_ref51
  article-title: Site-specific N-and C-terminal labeling of a single polypeptide using sortases of different specificity
  publication-title: J Am Chem Soc
  doi: 10.1021/ja902681k
  contributor:
    fullname: Antos
– volume: 279
  start-page: 23262
  year: 2004
  ident: 2021031107441551900_ref39
  article-title: Classification of nuclear receptors based on amino acid composition and dipeptide composition
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M401932200
  contributor:
    fullname: Bhasin
– volume: 48
  start-page: 257
  year: 1995
  ident: 2021031107441551900_ref30
  article-title: MedCalc: a new computer program for medical statistics
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/0169-2607(95)01703-8
  contributor:
    fullname: Schoonjans
– volume: 8
  start-page: 77121
  year: 2017
  ident: 2021031107441551900_ref15
  article-title: MLACP: machine-learning-based prediction of anticancer peptides
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20365
  contributor:
    fullname: Manavalan
– volume: 10
  start-page: 1106
  year: 2018
  ident: 2021031107441551900_ref37
  article-title: Spiking neural P systems with colored spikes
  publication-title: IEEE T Cogn Dev Syst
  doi: 10.1109/TCDS.2017.2785332
  contributor:
    fullname: Song
– volume: 7
  start-page: giy098
  year: 2018
  ident: 2021031107441551900_ref36
  article-title: Bioinformatics applications on Apache Spark
  publication-title: GigaScience
  contributor:
    fullname: Guo
– volume: 7
  start-page: 16895
  year: 2016
  ident: 2021031107441551900_ref9
  article-title: iACP: a sequence-based tool for identifying anticancer peptides
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7815
  contributor:
    fullname: Chen
– start-page: 1231
  volume-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  ident: 2021031107441551900_ref27
  article-title: Developing a multi-dose computational model for drug-induced hepatotoxicity prediction based on Toxicogenomics data
  contributor:
    fullname: Su
– volume: 15
  start-page: 73
  year: 2015
  ident: 2021031107441551900_ref6
  article-title: Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs
  publication-title: Mini Rev Med Chem
  doi: 10.2174/1389557514666141107120954
  contributor:
    fullname: Huang
– volume: 127
  start-page: 2893
  year: 2010
  ident: 2021031107441551900_ref1
  article-title: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25516
  contributor:
    fullname: Ferlay
– start-page: 837
  year: 1988
  ident: 2021031107441551900_ref29
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
  contributor:
    fullname: DeLong
SSID ssj0020781
Score 2.631727
Snippet Abstract Fast and accurate identification of the peptides with anticancer activity potential from large-scale proteins is currently a challenging task. In this...
Fast and accurate identification of the peptides with anticancer activity potential from large-scale proteins is currently a challenging task. In this study,...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Publisher
StartPage 1846
SubjectTerms Anticancer properties
Antitumor activity
Cancer
Learning algorithms
Machine learning
Peptides
Prediction models
Proteins
Representations
Servers
Title ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides
URI https://www.proquest.com/docview/2466348089
https://search.proquest.com/docview/2315094550
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA4iCF7EJ1Zrieg1dHeTfXmrxVIEH4cW6mlJNhPppS277UF_vTP7KBREj5vNsvBlnpnJF8budRDKGJQnTJhGQsU5CGNDX0QpoMcAjR6czju_vEbjqXqehbOmiab8pYSfyr6Zm74x36gOaGl9DL9Raidvs21aRXQ19RmiWBC5e0tCuvPpjtvZOcrW2t7KoYyO2VETCfJBvXQnbA8Wp-ygvhvy64x9DIbvBVgx2pTwwB31p3_yqv1P0G4-bxhPCVc-r3YGoOQYzfFVQbWXanzpOAJHhi6Hgq-ogcVCec6mo6fJcCyaexBEjuq2FjoEk8bOuVhBHthEo6YYsA59L-qTSRRYkBbV06FrsTIwGp-kysHT2gNn5AXbXywXcMl4oEwCgY3Aj3KVe4kOqY5KQ5Lqh9Bhdy1M2aqmu8jqMrXMEMysBrPDeojgnxO6LbhZoxNlFiiMblTiJWmH3W5fozRTiUIvYLnBOdInRj9Mm67--8c1Owwo9636vbpsf11s4AYDhLXpYVD8OO1VUvIDNJm6qQ
link.rule.ids 315,781,785,1605,27929,27930
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACPred-Fuse%3A+fusing+multi-view+information+improves+the+prediction+of+anticancer+peptides&rft.jtitle=Briefings+in+bioinformatics&rft.au=Rao%2C+Bing&rft.au=Zhou%2C+Chen&rft.au=Zhang%2C+Guoying&rft.au=Su%2C+Ran&rft.date=2020-09-01&rft.eissn=1477-4054&rft.volume=21&rft.issue=5&rft.spage=1846&rft.epage=1855&rft_id=info:doi/10.1093%2Fbib%2Fbbz088&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon