The Isolation Limits Of Stochastic Vibration

The limits on the active isolation of stochastic vibrations are explored. These limits are due to the restricted actuator stroke available for vibration isolation. A one-degree-of-freedom system is analyzed using an ideal actuator, resulting in a kinematic representation. The problem becomes one of...

Full description

Saved in:
Bibliographic Details
Published inJournal of sound and vibration Vol. 160; no. 2; pp. 205 - 223
Main Authors Knopse, C.R., Allaire, P.E.
Format Journal Article
LanguageEnglish
Published Legacy CDMS Elsevier Ltd 15.01.1993
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The limits on the active isolation of stochastic vibrations are explored. These limits are due to the restricted actuator stroke available for vibration isolation. A one-degree-of-freedom system is analyzed using an ideal actuator, resulting in a kinematic representation. The problem becomes one of finding the minimum acceleration trajectory within a pair of stochastic walls. These walls arise from the constraints on actuator stroke. The wall motion is characterized by an ergodic, stationary, zero-mean, Gaussian random process with known power spectral density. The geometry of the wall trajectories is defined in terms of their significant extrema and zero crossings. This geometry is used in defining a composite trajectory which has a mean square acceleration lower than that on the optimal r.m.s. acceleration path satisfying the stochastic wall inequality constraints. The optimal control problem is solved on a return path yielding the mean square acceleration in terms of the distributions of significant maxima and first-passage time of the wall process. This provides an estimate of the stochastic vibration isolation limit. Two methods of Monte Carlo simulation for obtaining the first-passage time moment are discussed. The methodology is applied to an example isolation problem to find a lower bound on the root-mean-square acceleration given the disturbance power spectral density.
AbstractList The limits on the active isolation of stochastic vibrations are explored. These limits are due to the restricted actuator stroke available for vibration isolation. A one-degree-of-freedom system is analyzed using an ideal actuator, resulting in a kinematic representation. The problem becomes one of finding the minimum acceleration trajectory within a pair of stochastic walls. These walls arise from the constraints on actuator stroke. The wall motion is characterized by an ergodic, stationary, zero-mean, Gaussian random process with known power spectral density. The geometry of the wall trajectories is defined in terms of their significant extrema and zero crossings. This geometry is used in defining a composite trajectory which has a mean square acceleration lower than that on the optimal r.m.s. acceleration path satisfying the stochastic wall inequality constraints. The optimal control problem is solved on a return path yielding the mean square acceleration in terms of the distributions of significant maxima and first-passage time of the wall process. This provides an estimate of the stochastic vibration isolation limit. Two methods of Monte Carlo simulation for obtaining the first-passage time moment are discussed. The methodology is applied to an example isolation problem to find a lower bound on the root-mean-square acceleration given the disturbance power spectral density.
The limits on the active isolation of stochastic vibrations are explored. These limits are due to the restricted actuator stroke available for vibration isolation. A one-degree-of-freedom system is analyzed using an ideal actuator, resulting in a kinematic representation. The problem becomes one of finding the minimum acceleration trajectory within a pair of stochastic walls. The optimal control problem is solved on a return path yielding the mean square acceleration in terms of the distributions of significant maxima and first-passage time of the wall process. This provides an estimate of the stochastic vibration isolation limit. Two methods of Monte Carlo simulation for obtaining the first-passage time moment are discussed. The methodology is applied to an example isolation problem to find a lower bound on the root-mean-square acceleration given the disturbance power spectral density.
The vibration isolation problem is formulated as a 1D kinematic problem. The geometry of the stochastic wall trajectories arising from the stroke constraint is defined in terms of their significant extrema. An optimal control solution for the minimum acceleration return path determines a lower bound on platform mean square acceleration. This bound is expressed in terms of the probability density function on the significant maxima and the conditional fourth moment of the first passage time inverse. The first of these is found analytically while the second is found using a Monte Carlo simulation. The rms acceleration lower bound as a function of available space is then determined through numerical quadrature.
Audience PUBLIC
Author Allaire, P.E.
Knopse, C.R.
Author_xml – sequence: 1
  givenname: C.R.
  surname: Knopse
  fullname: Knopse, C.R.
– sequence: 2
  givenname: P.E.
  surname: Allaire
  fullname: Allaire, P.E.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4544803$$DView record in Pascal Francis
BookMark eNp1kL1PwzAQxS0EEm1hZWLIgJhIsWPHcUZU8VGpUgcKYrMc56y6SpPiSyvx35M0FRvLnU7v3dPTb0zO66YGQm4YnTJK5eMGD37K8px3J1NnZMRonsYqleqcjChNklhI-nVJxogbSmkuuBiRh9Uaojk2lWl9U0cLv_UtRksXvbeNXRtsvY0-fRGO8hW5cKZCuD7tCfl4eV7N3uLF8nU-e1rElidJGxsqbKGyDKwrUpM5y3lqLTO8SAwoIYtuZhJkLoUQCiBLLRelEqUQjjPm-ITcD7m70HzvAVu99WihqkwNzR51IhOlmOSdcToYbWgQAzi9C35rwo9mVPdQdA9F91B0D6V7uDslG7SmcsHU1uPfl0i7QrTPvR1stUGj6zbgMYPSjqBIO1kNMnQQDh6CRuuhtlD6ALbVZeP_K_ALgZN-7w
CODEN JSVIAG
ContentType Journal Article
Copyright 1993 Academic Press
1993 INIST-CNRS
Copyright_xml – notice: 1993 Academic Press
– notice: 1993 INIST-CNRS
DBID CYE
CYI
IQODW
AAYXX
CITATION
7SM
8FD
F28
FR3
H8D
L7M
DOI 10.1006/jsvi.1993.1018
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
Pascal-Francis
CrossRef
Earthquake Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Earthquake Engineering Abstracts
Aerospace Database
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Earthquake Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1095-8568
EndPage 223
ExternalDocumentID 10_1006_jsvi_1993_1018
4544803
19930046045
S0022460X83710187
GroupedDBID --Z
-~X
.~1
1RT
1~5
457
4G.
5GY
5VS
6TJ
7-5
8P~
9JN
AABNK
AACTN
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ACGFS
ACIWK
ACNNM
ACRLP
ADFGL
ADMUD
AENEX
AFKWA
AFTJW
AGUBO
AHHHB
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
BBWZM
BJAXD
BLXMC
CAG
COF
CS3
DM4
E.L
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
G-2
G-Q
HMV
HVGLF
J1W
KOM
LG5
M24
M37
MO0
N9A
NDZJH
O-L
OAUVE
P2P
Q38
R2-
RNS
ROL
SDF
SDG
SDP
SES
SMS
SPCBC
SPG
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZY4
~G-
AKRWK
CYE
CYI
FYGXN
--K
--M
08R
0R~
1B1
1~.
29L
4.4
71M
AAEDT
AAIKJ
ABNEU
ABPIF
ABPTK
ABXDB
ABYKQ
ACDAQ
ACFVG
ADBBV
ADEZE
ADIYS
ADTZH
AEBSH
AECPX
AEKER
AGHFR
AGYEJ
AHJVU
AHPGS
AIEXJ
AIVDX
AJBFU
AJOXV
AMFUW
AMRAJ
AXJTR
BKOJK
EJD
FNPLU
GBLVA
HZ~
H~9
IHE
IQODW
JJJVA
M41
O9-
OGIMB
OZT
P-8
P-9
PC.
RIG
RPZ
SEW
SPC
SSQ
SST
ZMT
AAXKI
AAYXX
AFJKZ
CITATION
7SM
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c322t-a04cb877ecfb5a7fc335cc1a3b2ae846bae876e6964448ee75c34d84d44f311f3
ISSN 0022-460X
IngestDate Sat Aug 17 01:53:56 EDT 2024
Thu Sep 26 17:28:09 EDT 2024
Sun Oct 29 17:09:11 EDT 2023
Fri Sep 20 14:20:19 EDT 2024
Fri Feb 23 02:35:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Level crossing
Monte Carlo method
Probabilistic approach
Active system
Optimal control
Control system
Vibration control
Vibration isolation
Random vibration
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-a04cb877ecfb5a7fc335cc1a3b2ae846bae876e6964448ee75c34d84d44f311f3
Notes CDMS
Legacy CDMS
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 26288163
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_26288163
crossref_primary_10_1006_jsvi_1993_1018
pascalfrancis_primary_4544803
nasa_ntrs_19930046045
elsevier_sciencedirect_doi_10_1006_jsvi_1993_1018
PublicationCentury 1900
PublicationDate 1993-01-15
PublicationDateYYYYMMDD 1993-01-15
PublicationDate_xml – month: 01
  year: 1993
  text: 1993-01-15
  day: 15
PublicationDecade 1990
PublicationPlace Legacy CDMS
PublicationPlace_xml – name: Legacy CDMS
– name: London
PublicationTitle Journal of sound and vibration
PublicationYear 1993
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
SSID ssj0009434
Score 1.449924
Snippet The limits on the active isolation of stochastic vibrations are explored. These limits are due to the restricted actuator stroke available for vibration...
The vibration isolation problem is formulated as a 1D kinematic problem. The geometry of the stochastic wall trajectories arising from the stroke constraint is...
SourceID proquest
crossref
pascalfrancis
nasa
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 205
SubjectTerms Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Structural Mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Title The Isolation Limits Of Stochastic Vibration
URI https://dx.doi.org/10.1006/jsvi.1993.1018
https://ntrs.nasa.gov/citations/19930046045
https://search.proquest.com/docview/26288163
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyQuiEcRWyjNAYkDBJL4keS4Qq0qWoqEdsXeLNux1UpVtmrSHvj1zNh57GqpKFysyMo6yXzO-Mt6vhlC3mnNqVHCxYUQJoYlII9La1Wc26oSaaUK6oMxv52J4wX7uuTLsYSqV5e0-pP59Uddyf-gCn2AK6pk_wHZYVDogGPAF1pAGNp7Y3wBlwggXqJWyUdmAKEz5wozMH-4xc_hwfjbLLTBskp-B2HzTOUrYl-FsotrYYUzmDa9MqxTMVSdiA4jpuKgmlyL4WciWW74wZDYvwM8W_dqCV9bILMgEN7yvfD-ou9tbi9QAknxf4FiXGX6nfWz7_JocXoq54fL-UOyk-Ul5xOyMzv58fNkzJbMKOvTvONt9tk2E_F5c_y72MSkVo3COFfVwFR3oUbJ1nLrOcT8KXnSmT2aBSSfkQe2fk4e-SBc07wgHwHPaMAzCnhGKxeNeEYDSrtkcXQ4_3Icd9UsYgNOs41Vwowu8twap7nKnaGUG5MqqjNlgQVqaHNhRQkMlRXW5txQVhWsYszRNHX0JTzVqravSKRT64QomUE6q4BiwjBlwRRXnKvEuCl531tFXoWkJTKkpxYS7SfRfhjcV0xJ2htNdpQrUCkJqN75m120rqzb68b3egEy41Oyv2Hu4dKMwwMldEoOevNL8GG4MaVqu7ppZIY1r-HDYO-vZ7wmj8f5_IZM2usbuw-ssNVvuzn0G4aDY54
link.rule.ids 315,786,790,27955,27956
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+isolation+limits+of+stochastic+vibration&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Knopse%2C+C+R&rft.au=Allaire%2C+P+E&rft.date=1993-01-15&rft.issn=0022-460X&rft.volume=160&rft.issue=2&rft.spage=205&rft.epage=223&rft_id=info:doi/10.1006%2Fjsvi.1993.1018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon