Robust Access Point Clustering in Edge Computing Resource Optimization
Multi-access Edge Computing (MEC) technology has emerged to overcome traditional cloud computing limitations, challenged by the new 5G services with heavy and heterogeneous requirements on both latency and bandwidth. In this work, we tackle the problem of clustering access points in MEC environments...
Saved in:
Published in | IEEE eTransactions on network and service management Vol. 19; no. 3; pp. 2738 - 2750 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi-access Edge Computing (MEC) technology has emerged to overcome traditional cloud computing limitations, challenged by the new 5G services with heavy and heterogeneous requirements on both latency and bandwidth. In this work, we tackle the problem of clustering access points in MEC environments, introducing a set of clustering models to be deployed at the pre-provisioning phase. We go through extensive simulations on real-world traffic demands to evaluate the performance of the proposed solutions. In addition, we show how MEC hosts capacity violation can be decreased when integrating access points clustering into the orchestration model, by investigating on solution accuracy when applied on held-out users traffic demands. The obtained results show that our approach outperforms two state-of-the-art algorithms, reducing both memory usage and execution time, by 46% and 50%, respectively, in comparison to a baseline algorithm. It surpasses the two methods in gaining control over MEC hosts capacity usage for different maximum achieved occupancy levels on MEC hosts. |
---|---|
AbstractList | Multi-access Edge Computing (MEC) technology has emerged to overcome traditional cloud computing limitations, challenged by the new 5G services with heavy and heterogeneous requirements on both latency and bandwidth. In this work, we tackle the problem of clustering access points in MEC environments, introducing a set of clustering models to be deployed at the pre-provisioning phase. We go through extensive simulations on real-world traffic demands to evaluate the performance of the proposed solutions. In addition, we show how MEC hosts capacity violation can be decreased when integrating access points clustering into the orchestration model, by investigating on solution accuracy when applied on held-out users traffic demands. The obtained results show that our approach outperforms two state-of-the-art algorithms, reducing both memory usage and execution time, by 46% and 50%, respectively, in comparison to a baseline algorithm. It surpasses the two methods in gaining control over MEC hosts capacity usage for different maximum achieved occupancy levels on MEC hosts. Multi-access Edge Computing (MEC) technology has emerged to overcome traditional cloud computing limitations, challenged by the new 5G services with heavy and heterogeneous requirements on both latency and bandwidth. In this work, we tackle the problem of clustering access points in MEC environments, introducing a set of clustering models to be deployed at the pre-provisioning phase. We go through extensive simulations on real-world traffic demands to evaluate the performance of the proposed solutions. In addition, we show how MEC hosts capacity violation can be decreased when integrating access points clustering into the orchestration model, by investigating on solution accuracy when applied on heldout users traffic demands. The obtained results show that our approach outperforms two state-of-the-art algorithms, reducing both memory usage and execution time, by 46% and 50%, respectively, in comparison to a baseline algorithm. It surpasses the two methods in gaining control over MEC hosts capacity usage for different maximum achieved occupancy levels on MEC hosts. |
Author | Yellas, Nour-El-Houda Secci, Stefano Maaz, Bilal Boumerdassi, Selma Ceselli, Alberto |
Author_xml | – sequence: 1 givenname: Nour-El-Houda orcidid: 0000-0001-7769-6243 surname: Yellas fullname: Yellas, Nour-El-Houda email: nour-el-houda.yellas@cnam.fr organization: Center for Studies and Research in Computer Science and Communication (CEDRIC), Cnam, Paris, France – sequence: 2 givenname: Selma surname: Boumerdassi fullname: Boumerdassi, Selma organization: Center for Studies and Research in Computer Science and Communication (CEDRIC), Cnam, Paris, France – sequence: 3 givenname: Alberto orcidid: 0000-0002-0983-2706 surname: Ceselli fullname: Ceselli, Alberto email: alberto.ceselli@unimi.it organization: Department of Informatics, Università degli Studi di Milano, Milan, Italy – sequence: 4 givenname: Bilal orcidid: 0000-0001-8376-3529 surname: Maaz fullname: Maaz, Bilal organization: Center for Studies and Research in Computer Science and Communication (CEDRIC), Cnam, Paris, France – sequence: 5 givenname: Stefano orcidid: 0000-0002-6129-0676 surname: Secci fullname: Secci, Stefano organization: Center for Studies and Research in Computer Science and Communication (CEDRIC), Cnam, Paris, France |
BackLink | https://hal.science/hal-03719676$$DView record in HAL |
BookMark | eNpNkEFLw0AQhRepYFv9AeIl4MlD6s4mm2SPJbRWqFZqPS_JZlK3tNmaTQT99W5IKR6GGR7fGx5vRAaVqZCQW6ATACoeN6_vLxNGGZsEkEQJjy7IEETA_JAH8eDffUVG1u4o5QkINiTztclb23hTpdBa783oqvHSvZOw1tXW05U3K7bopeZwbJtOWaM1ba3QWx0bfdC_WaNNdU0uy2xv8ea0x-RjPtukC3-5enpOp0tfBYw1vghyCkow5YZBnjBUGOWMY1iUCVUCCqGAAy8EZjxKsAhjQM4ECFFGIaPBmDz0fz-zvTzW-pDVP9JkWi6mS9lpNIhBRHH0DY6979ljbb5atI3cueCViydZzIJECBFzR0FPqdpYW2N5fgtUdtXKrlrZVStP1TrPXe_RiHjmRQKUuox_GqN1Fw |
CODEN | ITNSC4 |
Cites_doi | 10.1109/JSAC.2018.2874142 10.1109/TMC.2016.2563429 10.1109/TNET.2017.2652850 10.1109/WoWMoM.2018.8449803 10.23919/IFIPNetworking.2018.8696508 10.1109/WCNC.2018.8377343 10.1109/UIC-ATC.2017.8397526 10.1145/3266276.3266281 10.1109/TITS.2020.2982186 10.1109/INFOCOM.2018.8486021 10.1016/j.jnca.2018.07.015 10.1109/WCNCW48565.2020.9124820 10.1109/TNSM.2018.2816263 10.1109/LCOMM.2016.2618788 10.1109/ACCESS.2020.3034136 10.23919/CNSM50824.2020.9269106 10.1109/COMST.2017.2705720 10.1109/ICC.2019.8761727 10.1109/GLOCOM.2018.8647858 10.1109/DRCN51631.2021.9477332 10.1109/GLOCOM.2017.8254083 10.1109/INFOCOM.2018.8486003 10.1016/j.comcom.2021.06.021 10.1007/978-3-319-94295-7_16 10.1109/WD.2019.8734210 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION 1XC VOOES |
DOI | 10.1109/TNSM.2022.3186856 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1932-4537 |
EndPage | 2750 |
ExternalDocumentID | oai_HAL_hal_03719676v1 10_1109_TNSM_2022_3186856 9810020 |
Genre | orig-research |
GrantInformation_xml | – fundername: AMI-5G ENE5AI projects – fundername: ANR CANCAN grantid: ANR-18-CE25-0011 – fundername: H2020 AI@EDGE grantid: 101015922 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE AAYXX CITATION RIG 1XC VOOES |
ID | FETCH-LOGICAL-c322t-93b01c92cc9221b82ece6b25e4df80c91d9c1515d9ea568ed471e529199f64203 |
IEDL.DBID | RIE |
ISSN | 1932-4537 |
IngestDate | Thu Jul 10 09:10:49 EDT 2025 Sun Jun 29 15:40:27 EDT 2025 Tue Jul 01 01:55:20 EDT 2025 Wed Aug 27 02:18:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Access Point Clustering RAN virtualization Multi-access Edge Computing MEC Resource Allocation |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-93b01c92cc9221b82ece6b25e4df80c91d9c1515d9ea568ed471e529199f64203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0983-2706 0000-0001-7769-6243 0000-0001-8376-3529 0000-0002-6129-0676 |
OpenAccessLink | https://hal.science/hal-03719676 |
PQID | 2723899975 |
PQPubID | 85504 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9810020 proquest_journals_2723899975 hal_primary_oai_HAL_hal_03719676v1 crossref_primary_10_1109_TNSM_2022_3186856 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Sept. 2022-9-00 20220901 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-Sept. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE eTransactions on network and service management |
PublicationTitleAbbrev | T-NSM |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref14 ref31 ref30 reznik (ref18) 2018 ref33 ref11 ref32 ref10 giust (ref6) 2018 ref2 ref1 ref17 ref19 yu (ref15) 2019 (ref36) 2013 (ref4) 2019 (ref16) 2018 ref24 ref23 diego (ref20) 2020 ref26 ref25 ref22 ref21 ref28 ref27 (ref35) 2010 ref29 ref7 (ref3) 2019 ref9 kekki (ref5) 2018 (ref8) 2018 |
References_xml | – year: 2018 ident: ref6 publication-title: MEC deployments in 4G and evolution towards 5G – ident: ref1 doi: 10.1109/JSAC.2018.2874142 – ident: ref31 doi: 10.1109/TMC.2016.2563429 – year: 2010 ident: ref35 publication-title: IBM ILOG AMPL Version 12 2 User's Guide – ident: ref14 doi: 10.1109/TNET.2017.2652850 – ident: ref29 doi: 10.1109/WoWMoM.2018.8449803 – ident: ref7 doi: 10.23919/IFIPNetworking.2018.8696508 – ident: ref25 doi: 10.1109/WCNC.2018.8377343 – start-page: 82 year: 2019 ident: ref15 article-title: DU/CU placement for C-RAN over optical metro-aggregation networks publication-title: Proc ONDM – ident: ref28 doi: 10.1109/UIC-ATC.2017.8397526 – year: 2018 ident: ref5 publication-title: MEC in 5g networks – ident: ref19 doi: 10.1145/3266276.3266281 – year: 2019 ident: ref4 publication-title: Multi-access edge computing (MEC) Radio network information API – ident: ref26 doi: 10.1109/TITS.2020.2982186 – ident: ref11 doi: 10.1109/INFOCOM.2018.8486021 – ident: ref27 doi: 10.1016/j.jnca.2018.07.015 – ident: ref21 doi: 10.1109/WCNCW48565.2020.9124820 – ident: ref30 doi: 10.1109/TNSM.2018.2816263 – ident: ref12 doi: 10.1109/LCOMM.2016.2618788 – year: 2019 ident: ref3 publication-title: Multi-access Edge Computing (MEC) Support for network slicing – ident: ref9 doi: 10.1109/ACCESS.2020.3034136 – ident: ref17 doi: 10.23919/CNSM50824.2020.9269106 – start-page: 685 year: 2020 ident: ref20 article-title: Evolution toward the next generation radio access network publication-title: Proc IFIP Netw – ident: ref13 doi: 10.1109/COMST.2017.2705720 – ident: ref22 doi: 10.1109/ICC.2019.8761727 – year: 2018 ident: ref18 publication-title: Cloud RAN and MEC A Perfect Pairing – year: 2013 ident: ref36 publication-title: IBM ILOG CPLEX 12 0 User Manual – ident: ref10 doi: 10.1109/GLOCOM.2018.8647858 – year: 2018 ident: ref8 publication-title: Deployment of Mobile Edge Computing in an NFV Environment – ident: ref34 doi: 10.1109/DRCN51631.2021.9477332 – ident: ref2 doi: 10.1109/GLOCOM.2017.8254083 – year: 2018 ident: ref16 publication-title: Transport network support for IMT-2020/5G – ident: ref33 doi: 10.1109/INFOCOM.2018.8486003 – ident: ref32 doi: 10.1016/j.comcom.2021.06.021 – ident: ref23 doi: 10.1007/978-3-319-94295-7_16 – ident: ref24 doi: 10.1109/WD.2019.8734210 |
SSID | ssj0058192 |
Score | 2.2601118 |
Snippet | Multi-access Edge Computing (MEC) technology has emerged to overcome traditional cloud computing limitations, challenged by the new 5G services with heavy and... |
SourceID | hal proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2738 |
SubjectTerms | 5G mobile communication access point clustering Algorithms Cloud computing Clustering Clustering algorithms Computational modeling Computer architecture Computer Science Edge computing MEC resource allocation Mobile computing Multi-access edge computing Networking and Internet Architecture Optimization Provisioning RAN virtualization Robustness Task analysis Virtualization |
Title | Robust Access Point Clustering in Edge Computing Resource Optimization |
URI | https://ieeexplore.ieee.org/document/9810020 https://www.proquest.com/docview/2723899975 https://hal.science/hal-03719676 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3IAWkAsXSqr6gmRJXFsJz6uVqxWVZciHhK3KH4EVrRZBEkP_Hpm8lih0kMPkSLHkaz5bM-MPfMNwLfEhTm3wgSpUjoQPDdBLpM88GHhhEiEKDglOM_P1exGfL-Vt2twssqF8d43wWd-RK_NXb5b2pqOyk51SoSh6KCvo-PW5mr1u64kYq_u1jIK9en1-dUcvT_O0SlNVUr1qd_onfV7inpsyqm824MbxTLdhnk_pDae5GFUV2ZkX_5ia_zfMe_AVmdhsnE7JT7Cmi8_weYb3sFdmF4uTf1csXFTLZFdLBdlxSa_aiJNwA5sUbIzd-dZW_KBWvpTfvYTt5jfXe7mHtxMz64ns6ArqBBYXLdVoGMTRlZziw-PTMq99cpw6YUr0tDqyGlLBo7TPpcq9Q41l5dcR1oX6KeE8T5slMvSHwCL8TPCKWORFgip007FSkorhVGo8fwAjntxZ48tb0bW-BuhzgibjLDJOmwG8BUBWfUjxuvZ-EdGbcQoqFWi_kQD2CXprnp1gh3AsMcv65bfc8aplBqavok8_Pdfn-EDDaANFhvCRvVU-yO0LirzpZlWrwGiy94 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOtFAqlpZiVT0hsk0c24mPq6qrBXa3FWyl3qz4EaiALKIJB349M3msKuDAIVLkOJI1n-2ZsWe-ATjJfFxwJ2yUK6UjwQsbFTIrohCXXohMiJJTgvNiqWZX4t21vN6CN5tcmBBCG3wWxvTa3uX7tWvoqOxU50QYig76fdT7knfZWsO-K4naq7-3TGJ9ulp-XKD_xzm6pbnKqUL1Hc1z7zPFPbYFVf7ahVvVMt2BxTCoLqLky7ip7dj9-oOv8X9HvQuPexuTTbpJ8QS2QvUUHt1hHtyD6Ye1bW5rNmnrJbLL9U1Vs7OvDdEmYAd2U7Fz_ymwrugDtQzn_OwCN5lvffbmM7ianq_OZlFfUiFyuHLrSKc2TpzmDh-e2JwHF5TlMghf5rHTideOTByvQyFVHjzqriC5TrQu0VOJ033YrtZVeA4sxc8IqExFXiKoXnuVKimdFFahzgsjeD2I23zvmDNM63HE2hA2hrAxPTYjOEZANv2I83o2mRtqI05BrTL1MxnBHkl306sX7AgOB_xMvwBvDadiamj8ZvLFv_96BQ9mq8XczN8u3x_AQxpMFzp2CNv1jya8RFujtkftFPsN0tnPKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Access+Point+Clustering+in+Edge+Computing+Resource+Optimization&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Yellas%2C+Nour-El-Houda&rft.au=Boumerdassi%2C+Selma&rft.au=Ceselli%2C+Alberto&rft.au=Maaz%2C+Bilal&rft.date=2022-09-01&rft.pub=IEEE&rft.eissn=1932-4537&rft.volume=19&rft.issue=3&rft.spage=2738&rft.epage=2750&rft_id=info:doi/10.1109%2FTNSM.2022.3186856&rft.externalDocID=9810020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon |