Influence of grain size and composition on the contraction rates of planetary envelopes and on planetary migration

A crucial phase during planetary growth is the migration, when the planetary core has been assembled but has not yet opened a deep gap. During this phase, the planet is subject to fast type-I migration, which is mostly directed inwards, and the planet can lose a significant fraction of its semi-majo...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 647; p. A96
Main Authors Bitsch, Bertram, Savvidou, Sofia
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.03.2021
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
DOI10.1051/0004-6361/202039272

Cover

Loading…
Abstract A crucial phase during planetary growth is the migration, when the planetary core has been assembled but has not yet opened a deep gap. During this phase, the planet is subject to fast type-I migration, which is mostly directed inwards, and the planet can lose a significant fraction of its semi-major axis. The duration of this phase is set by the time required for the planetary envelope to contract before it reaches a mass similar to that of the planetary core, which is when runaway gas accretion can set in and the planet can open a deeper gap in the disc, transitioning into the slower type-II migration. This envelope contraction phase depends crucially on the planetary mass and on the opacity inside the planetary envelope. Here we study how different opacity prescriptions influence the envelope contraction time and how this in turn influences how far the planet migrates through the disc. We find within our simulations that the size distribution of the grains as well as the chemical composition of the grains crucially influences how far the planet migrates before reaches the runaway gas accretion phase. Grain size distributions with larger grain sizes result in less inward migration of the growing planet because of faster gas accretion enabled by more efficient cooling. In addition, we find that planets forming in water-poor environments can contract their envelope faster and therefore migrate less, implying that gas giants forming in water-poor environments might be located further away from their central star compared to gas giants forming in water-rich environments. Future studies of planet formation that aim to investigate the chemical composition of formed gas giants need to take these effects into account self-consistently.
AbstractList A crucial phase during planetary growth is the migration, when the planetary core has been assembled but has not yet opened a deep gap. During this phase, the planet is subject to fast type-I migration, which is mostly directed inwards, and the planet can lose a significant fraction of its semi-major axis. The duration of this phase is set by the time required for the planetary envelope to contract before it reaches a mass similar to that of the planetary core, which is when runaway gas accretion can set in and the planet can open a deeper gap in the disc, transitioning into the slower type-II migration. This envelope contraction phase depends crucially on the planetary mass and on the opacity inside the planetary envelope. Here we study how different opacity prescriptions influence the envelope contraction time and how this in turn influences how far the planet migrates through the disc. We find within our simulations that the size distribution of the grains as well as the chemical composition of the grains crucially influences how far the planet migrates before reaches the runaway gas accretion phase. Grain size distributions with larger grain sizes result in less inward migration of the growing planet because of faster gas accretion enabled by more efficient cooling. In addition, we find that planets forming in water-poor environments can contract their envelope faster and therefore migrate less, implying that gas giants forming in water-poor environments might be located further away from their central star compared to gas giants forming in water-rich environments. Future studies of planet formation that aim to investigate the chemical composition of formed gas giants need to take these effects into account self-consistently.
Author Bitsch, Bertram
Savvidou, Sofia
Author_xml – sequence: 1
  givenname: Bertram
  surname: Bitsch
  fullname: Bitsch, Bertram
– sequence: 2
  givenname: Sofia
  surname: Savvidou
  fullname: Savvidou, Sofia
BookMark eNp9kE9LAzEQxYNUsK1-Ai8Lntcmmd3s9ijFP4WCFz2HkJ1oyjZZk1TQT2-2SgUPwkDI5P3eZN6MTJx3SMglo9eM1mxBKa1KAYItOOUUlrzhJ2TKKuAlbSoxIdOj4ozMYtzmK2ctTElYO9Pv0WksvClegrKuiPYTC-W6Qvvd4KNN1rsiV3rF3HIpKH1oBZUwjtjQK4dJhY8C3Tv2fsjtkc-a36edze4jd05OjeojXvycc_J8d_u0eig3j_fr1c2m1MB5KltkDGohFCxbLminsa0qCg0IFI1SXcUYBWhqMK02qu1qU0OVdUIbbHLBnFx9-w7Bv-0xJrn1--DySMlrTllb02wwJ8tvlQ4-xoBGapsO_8x72l4yKseI5RigHAOUx4gzC3_YIdhdXvZf6gti5IDE
CitedBy_id crossref_primary_10_1021_acsearthspacechem_1c00342
crossref_primary_10_1051_0004_6361_202140476
crossref_primary_10_1051_0004_6361_202347169
crossref_primary_10_3847_2041_8213_ad2463
crossref_primary_10_1051_0004_6361_202348798
crossref_primary_10_1093_mnras_stac569
crossref_primary_10_1051_0004_6361_202245040
crossref_primary_10_1051_0004_6361_202346835
crossref_primary_10_1051_0004_6361_202451017
crossref_primary_10_1051_0004_6361_202346748
crossref_primary_10_1051_0004_6361_202039640
crossref_primary_10_3847_1538_4365_abfcc1
crossref_primary_10_1051_0004_6361_202244988
crossref_primary_10_1051_0004_6361_202245636
Cites_doi 10.1088/2041-8205/791/1/L9
10.1146/annurev-earth-063016-020226
10.1051/0004-6361:20077759
10.1016/j.icarus.2016.10.017
10.1088/0004-637X/782/2/88
10.1051/0004-6361/201936463
10.1088/0004-637X/778/1/77
10.1051/0004-6361/201424964
10.1086/375492
10.3847/1538-4357/aac8d9
10.1086/655775
10.1051/0004-6361:20054449
10.1051/0004-6361/200912072
10.1051/0004-6361/201526463
10.1016/j.icarus.2007.09.018
10.1051/0004-6361/201220536
10.1088/0004-637X/798/1/34
10.1093/mnras/stx2815
10.1051/0004-6361/201527131
10.1093/mnras/stv025
10.1103/RevModPhys.29.547
10.1051/0004-6361/201219824
10.1088/0004-637X/769/1/41
10.1051/0004-6361/201423814
10.1051/0004-6361:200400053
10.1051/0004-6361/201527676
10.1086/428383
10.1051/0004-6361:20034469
10.1146/annurev.astro.46.060407.145222
10.1051/0004-6361/201423702
10.1093/mnras/stx1924
10.1146/annurev-astro-081811-125523
10.1111/j.1365-2966.2010.17442.x
10.1029/2007JD009744
10.1088/0004-637X/779/1/59
10.1051/0004-6361/201731931
10.1051/0004-6361:20030916
10.1088/0004-637X/800/2/82
10.1086/344437
10.1051/0004-6361/201118136
10.1093/mnras/180.2.57
10.1051/0004-6361/201015228
10.1051/0004-6361/201118490
10.1093/mnras/stu304
10.1088/2041-8205/789/1/L18
10.1093/mnras/stx1946
10.1111/j.1365-2966.2008.14184.x
10.1051/0004-6361/201117350
10.1051/0004-6361/202037579
10.1051/0004-6361/201731014
10.1086/191796
10.1051/0004-6361:20020735
10.3847/1538-4357/ab9604
10.1051/0004-6361/201936576
10.1051/0004-6361/201935473
10.1093/mnras/sty1281
10.3847/1538-4357/836/2/221
10.1006/icar.1996.0190
10.1016/0019-1035(86)90182-X
10.1051/0004-6361/201935877
10.1086/309050
10.1088/0004-637X/797/2/95
10.1088/0004-637X/811/1/41
10.1051/0004-6361/201732026
10.1086/523667
10.1051/0004-6361/202038304
10.1093/mnras/sty1710
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1051/0004-6361/202039272
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_202039272
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
ID FETCH-LOGICAL-c322t-8e113566a398260dce84403736e67aad411033753f8cfa8d5f53460d6cfe7fe73
ISSN 0004-6361
IngestDate Mon Jun 30 04:35:24 EDT 2025
Tue Jul 01 03:53:50 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-8e113566a398260dce84403736e67aad411033753f8cfa8d5f53460d6cfe7fe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2021/03/aa39272-20.pdf
PQID 2520185003
PQPubID 1796397
ParticipantIDs proquest_journals_2520185003
crossref_citationtrail_10_1051_0004_6361_202039272
crossref_primary_10_1051_0004_6361_202039272
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2021
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Kley (R42) 2009; 506
Bitsch (R16) 2018; 479
Chen (R21) 2002; 390
Burbidge (R20) 1957; 29
Piso (R61) 2015; 800
Lee (R45) 2015; 811
Kanagawa (R40) 2018; 861
Fung (R29) 2014; 782
Movshovitz (R54) 2008; 194
Lee (R46) 2014; 797
R27
Warren (R70) 2008; 113
Paardekooper (R58) 2006; 453
Santos (R65) 2004; 415
Pollack (R62) 1996; 124
Brauer (R18) 2008; 480
R5
Ward (R69) 1986; 67
Takeuchi (R68) 2002; 581
D’Angelo (R25) 2013; 778
Johnson (R38) 2010; 122
Bitsch (R10) 2019; 630
Preibisch (R63) 1993; 279
Baumann (R6) 2020; 637
Lega (R47) 2014; 440
Paardekooper (R59) 2011; 410
Bergez-Casalou (R7) 2020; 643
Bitsch (R17) 2018; 612
Pinilla (R60) 2016; 585
Hudgins (R33) 1993; 86
Baruteau (R4) 2008; 672
Savvidou (R66) 2020; 640
Ndugu (R55) 2018; 474
Paardekooper (R57) 2004; 425
Ayliffe (R3) 2009; 393
Henning (R32) 1997; 327
Asplund (R1) 2009; 47
Weidenschilling (R71) 1977; 180
Kley (R41) 2012; 50
Bitsch (R15) 2015; 575
Lambrechts (R43) 2017; 606
R44
Duffell (R26) 2013; 769
Ikoma (R34) 2000; 537
Birnstiel (R8) 2011; 525
Schulik (R67) 2019; 632
Fischer (R28) 2005; 622
Madhusudhan (R49) 2014; 791
Bitsch (R14) 2015; 582
Jiménez (R36) 2017; 471
Johansen (R37) 2017; 45
Ataiee (R2) 2018; 615
Bitsch (R11) 2020; 633
Mordasini (R52) 2014; 572
Bitsch (R13) 2013; 550
Kanagawa (R39) 2015; 448
Birnstiel (R9) 2012; 539
Crida (R24) 2017; 285
Chen (R22) 2020; 896
Buder (R19) 2018; 478
Bitsch (R12) 2016; 590
Ormel (R56) 2014; 789
Ros (R64) 2013; 552
Gressel (R30) 2013; 779
Morbidelli (R51) 2012; 546
Mordasini (R53) 2012; 541
Marleau (R50) 2017; 836
Lodders (R48) 2003; 591
Cimerman (R23) 2017; 471
Jäger (R35) 2003; 408
Gundlach (R31) 2015; 798
References_xml – volume: 791
  start-page: L9
  year: 2014
  ident: R49
  publication-title: ApJ
  doi: 10.1088/2041-8205/791/1/L9
– volume: 45
  start-page: 359
  year: 2017
  ident: R37
  publication-title: Ann. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-063016-020226
– volume: 480
  start-page: 859
  year: 2008
  ident: R18
  publication-title: A&A
  doi: 10.1051/0004-6361:20077759
– volume: 285
  start-page: 145
  year: 2017
  ident: R24
  publication-title: Icarus
  doi: 10.1016/j.icarus.2016.10.017
– volume: 782
  start-page: 88
  year: 2014
  ident: R29
  publication-title: ApJ
  doi: 10.1088/0004-637X/782/2/88
– volume: 633
  start-page: A10
  year: 2020
  ident: R11
  publication-title: A&A
  doi: 10.1051/0004-6361/201936463
– volume: 778
  start-page: 77
  year: 2013
  ident: R25
  publication-title: ApJ
  doi: 10.1088/0004-637X/778/1/77
– volume: 575
  start-page: A28
  year: 2015
  ident: R15
  publication-title: A&A
  doi: 10.1051/0004-6361/201424964
– volume: 591
  start-page: 1220
  year: 2003
  ident: R48
  publication-title: ApJ
  doi: 10.1086/375492
– volume: 861
  start-page: 140
  year: 2018
  ident: R40
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac8d9
– volume: 122
  start-page: 905
  year: 2010
  ident: R38
  publication-title: PASP
  doi: 10.1086/655775
– volume: 453
  start-page: 1129
  year: 2006
  ident: R58
  publication-title: A&A
  doi: 10.1051/0004-6361:20054449
– volume: 506
  start-page: 971
  year: 2009
  ident: R42
  publication-title: A&A
  doi: 10.1051/0004-6361/200912072
– volume: 582
  start-page: A112
  year: 2015
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361/201526463
– volume: 194
  start-page: 368
  year: 2008
  ident: R54
  publication-title: Icarus
  doi: 10.1016/j.icarus.2007.09.018
– volume: 552
  start-page: A137
  year: 2013
  ident: R64
  publication-title: A&A
  doi: 10.1051/0004-6361/201220536
– ident: R5
– volume: 798
  start-page: 34
  year: 2015
  ident: R31
  publication-title: ApJ
  doi: 10.1088/0004-637X/798/1/34
– volume: 474
  start-page: 886
  year: 2018
  ident: R55
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2815
– volume: 585
  start-page: A35
  year: 2016
  ident: R60
  publication-title: A&A
  doi: 10.1051/0004-6361/201527131
– volume: 327
  start-page: 743
  year: 1997
  ident: R32
  publication-title: A&A
– volume: 448
  start-page: 994
  year: 2015
  ident: R39
  publication-title: MNRAS
  doi: 10.1093/mnras/stv025
– volume: 29
  start-page: 547
  year: 1957
  ident: R20
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.29.547
– volume: 546
  start-page: A18
  year: 2012
  ident: R51
  publication-title: A&A
  doi: 10.1051/0004-6361/201219824
– volume: 769
  start-page: 41
  year: 2013
  ident: R26
  publication-title: ApJ
  doi: 10.1088/0004-637X/769/1/41
– ident: R44
  doi: 10.1051/0004-6361/201423814
– volume: 425
  start-page: L9
  year: 2004
  ident: R57
  publication-title: A&A
  doi: 10.1051/0004-6361:200400053
– volume: 590
  start-page: A101
  year: 2016
  ident: R12
  publication-title: A&A
  doi: 10.1051/0004-6361/201527676
– volume: 622
  start-page: 1102
  year: 2005
  ident: R28
  publication-title: ApJ
  doi: 10.1086/428383
– volume: 415
  start-page: p.1153
  year: 2004
  ident: R65
  publication-title: A&A
  doi: 10.1051/0004-6361:20034469
– volume: 47
  start-page: 481
  year: 2009
  ident: R1
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.46.060407.145222
– volume: 572
  start-page: A118
  year: 2014
  ident: R52
  publication-title: A&A
  doi: 10.1051/0004-6361/201423702
– volume: 471
  start-page: 4662
  year: 2017
  ident: R23
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1924
– volume: 50
  start-page: 211
  year: 2012
  ident: R41
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081811-125523
– volume: 410
  start-page: 293
  year: 2011
  ident: R59
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17442.x
– volume: 113
  start-page: D14220
  year: 2008
  ident: R70
  publication-title: J. Geophys. Res. Atm.
  doi: 10.1029/2007JD009744
– volume: 779
  start-page: 59
  year: 2013
  ident: R30
  publication-title: ApJ
  doi: 10.1088/0004-637X/779/1/59
– volume: 612
  start-page: A30
  year: 2018
  ident: R17
  publication-title: A&A
  doi: 10.1051/0004-6361/201731931
– volume: 408
  start-page: 193
  year: 2003
  ident: R35
  publication-title: A&A
  doi: 10.1051/0004-6361:20030916
– volume: 800
  start-page: 82
  year: 2015
  ident: R61
  publication-title: ApJ
  doi: 10.1088/0004-637X/800/2/82
– volume: 581
  start-page: 1344
  year: 2002
  ident: R68
  publication-title: ApJ
  doi: 10.1086/344437
– volume: 539
  start-page: A148
  year: 2012
  ident: R9
  publication-title: A&A
  doi: 10.1051/0004-6361/201118136
– volume: 180
  start-page: 57
  year: 1977
  ident: R71
  publication-title: MNRAS
  doi: 10.1093/mnras/180.2.57
– volume: 525
  start-page: A11
  year: 2011
  ident: R8
  publication-title: A&A
  doi: 10.1051/0004-6361/201015228
– volume: 550
  start-page: A52
  year: 2013
  ident: R13
  publication-title: A&A
  doi: 10.1051/0004-6361/201118490
– volume: 440
  start-page: 683
  year: 2014
  ident: R47
  publication-title: MNRAS
  doi: 10.1093/mnras/stu304
– volume: 789
  start-page: L18
  year: 2014
  ident: R56
  publication-title: ApJ
  doi: 10.1088/2041-8205/789/1/L18
– volume: 471
  start-page: 4917
  year: 2017
  ident: R36
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1946
– volume: 393
  start-page: 49
  year: 2009
  ident: R3
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14184.x
– volume: 541
  start-page: A97
  year: 2012
  ident: R53
  publication-title: A&A
  doi: 10.1051/0004-6361/201117350
– volume: 637
  start-page: A11
  year: 2020
  ident: R6
  publication-title: A&A
  doi: 10.1051/0004-6361/202037579
– volume: 606
  start-page: A146
  year: 2017
  ident: R43
  publication-title: A&A
  doi: 10.1051/0004-6361/201731014
– volume: 86
  start-page: 713
  year: 1993
  ident: R33
  publication-title: ApJS
  doi: 10.1086/191796
– volume: 390
  start-page: 225
  year: 2002
  ident: R21
  publication-title: A&A
  doi: 10.1051/0004-6361:20020735
– volume: 279
  start-page: 577
  year: 1993
  ident: R63
  publication-title: A&A
– volume: 896
  start-page: 135
  year: 2020
  ident: R22
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab9604
– volume: 640
  start-page: A63
  year: 2020
  ident: R66
  publication-title: A&A
  doi: 10.1051/0004-6361/201936576
– volume: 632
  start-page: A118
  year: 2019
  ident: R67
  publication-title: A&A
  doi: 10.1051/0004-6361/201935473
– volume: 478
  start-page: 4513
  year: 2018
  ident: R19
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1281
– volume: 836
  start-page: 221
  year: 2017
  ident: R50
  publication-title: ApJ
  doi: 10.3847/1538-4357/836/2/221
– volume: 124
  start-page: 62
  year: 1996
  ident: R62
  publication-title: Icarus
  doi: 10.1006/icar.1996.0190
– volume: 67
  start-page: 164
  year: 1986
  ident: R69
  publication-title: Icarus
  doi: 10.1016/0019-1035(86)90182-X
– volume: 630
  start-page: A51
  year: 2019
  ident: R10
  publication-title: A&A
  doi: 10.1051/0004-6361/201935877
– ident: R27
– volume: 537
  start-page: 1013
  year: 2000
  ident: R34
  publication-title: ApJ
  doi: 10.1086/309050
– volume: 797
  start-page: 95
  year: 2014
  ident: R46
  publication-title: ApJ
  doi: 10.1088/0004-637X/797/2/95
– volume: 811
  start-page: 41
  year: 2015
  ident: R45
  publication-title: ApJ
  doi: 10.1088/0004-637X/811/1/41
– volume: 615
  start-page: A110
  year: 2018
  ident: R2
  publication-title: A&A
  doi: 10.1051/0004-6361/201732026
– volume: 672
  start-page: 1054
  year: 2008
  ident: R4
  publication-title: ApJ
  doi: 10.1086/523667
– volume: 643
  start-page: A133
  year: 2020
  ident: R7
  publication-title: A&A
  doi: 10.1051/0004-6361/202038304
– volume: 479
  start-page: 3690
  year: 2018
  ident: R16
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1710
SSID ssj0002183
Score 2.4739184
Snippet A crucial phase during planetary growth is the migration, when the planetary core has been assembled but has not yet opened a deep gap. During this phase, the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage A96
SubjectTerms Chemical composition
Contraction
Deposition
Gas giant planets
Grain size
Grain size distribution
Opacity
Planet formation
Planetary cores
Planetary evolution
Planetary mass
Star formation
Title Influence of grain size and composition on the contraction rates of planetary envelopes and on planetary migration
URI https://www.proquest.com/docview/2520185003
Volume 647
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCImXiQ3QxgbyA-IFsiWx46aPBTE2JBAPm7S3yLGdqRJtpzbbwx72t-_O5zgpoIkhRVHi2Ncqv8v5fL4Pxt4p40ShnUlsbtNEGsACtCKRNGhLlrkdjX0c9_cf6vhMfjsvznurko8uaesDc_PXuJL_QRXaAFeMkn0AspEoNMA14AtnQBjO_4TxSVdhBFW-Cyz28GE1vXFdrFrnkBU2BMgtPdQGxwwR3ovjEr1dWx-TO_f-Q46yNkOf_tFserHsIeyS1q7QjL6YUQYnjXdkJ_GGXMqjNTA0fJq2K6o7BY_gf8yicUdfX0_t4sobYuF96KElIh-4YkXpKhMlKLn6gSOBKgV6twYzY5C4ipJsBpk5oZK2f8hyEBfk_EhEMXQFt03HOdX6Wc-d_ducFj0N_R57keEeu6yQTBWJPGZPclhbYNmLrye3cfpGnZHWTPS7XaqqIjuMbYeRyLo6sz6bexXl9DnbDGsLPiFG2WKP3Hyb7USY-Hs-GYC0zZ7-pKsXbBk5iS8a7jmJIydxQJYPOInDAZzEB5zEPSfhsMguPHKSHw99-keRk16ys6Mvp5-Pk1CNIzEg9NukdFkmQPnXYgxL0tQaV0qZipFQTo20thIUSSFg9duUptGlLZpCSOinTONGcIhXbGO-mLsdxnM11rUxUtTWyMaJ0jpVm6xJUwPrBVXvsrx7qZUJqeqxYsqv6h44d9nHOOiSMrXc332_Q6sKn_SqygvQh8sCZrrXD6O2x571X8Q-22iXV-4NaKtt_dZz1x3hdpCe
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+grain+size+and+composition+on+the+contraction+rates+of+planetary+envelopes+and+on+planetary+migration&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Bitsch%2C+Bertram&rft.au=Savvidou%2C+Sofia&rft.date=2021-03-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=647&rft.spage=A96&rft_id=info:doi/10.1051%2F0004-6361%2F202039272&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202039272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon