Influence of grain size and composition on the contraction rates of planetary envelopes and on planetary migration
A crucial phase during planetary growth is the migration, when the planetary core has been assembled but has not yet opened a deep gap. During this phase, the planet is subject to fast type-I migration, which is mostly directed inwards, and the planet can lose a significant fraction of its semi-majo...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 647; p. A96 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 |
DOI | 10.1051/0004-6361/202039272 |
Cover
Loading…
Abstract | A crucial phase during planetary growth is the migration, when the planetary core has been assembled but has not yet opened a deep gap. During this phase, the planet is subject to fast type-I migration, which is mostly directed inwards, and the planet can lose a significant fraction of its semi-major axis. The duration of this phase is set by the time required for the planetary envelope to contract before it reaches a mass similar to that of the planetary core, which is when runaway gas accretion can set in and the planet can open a deeper gap in the disc, transitioning into the slower type-II migration. This envelope contraction phase depends crucially on the planetary mass and on the opacity inside the planetary envelope. Here we study how different opacity prescriptions influence the envelope contraction time and how this in turn influences how far the planet migrates through the disc. We find within our simulations that the size distribution of the grains as well as the chemical composition of the grains crucially influences how far the planet migrates before reaches the runaway gas accretion phase. Grain size distributions with larger grain sizes result in less inward migration of the growing planet because of faster gas accretion enabled by more efficient cooling. In addition, we find that planets forming in water-poor environments can contract their envelope faster and therefore migrate less, implying that gas giants forming in water-poor environments might be located further away from their central star compared to gas giants forming in water-rich environments. Future studies of planet formation that aim to investigate the chemical composition of formed gas giants need to take these effects into account self-consistently. |
---|---|
AbstractList | A crucial phase during planetary growth is the migration, when the planetary core has been assembled but has not yet opened a deep gap. During this phase, the planet is subject to fast type-I migration, which is mostly directed inwards, and the planet can lose a significant fraction of its semi-major axis. The duration of this phase is set by the time required for the planetary envelope to contract before it reaches a mass similar to that of the planetary core, which is when runaway gas accretion can set in and the planet can open a deeper gap in the disc, transitioning into the slower type-II migration. This envelope contraction phase depends crucially on the planetary mass and on the opacity inside the planetary envelope. Here we study how different opacity prescriptions influence the envelope contraction time and how this in turn influences how far the planet migrates through the disc. We find within our simulations that the size distribution of the grains as well as the chemical composition of the grains crucially influences how far the planet migrates before reaches the runaway gas accretion phase. Grain size distributions with larger grain sizes result in less inward migration of the growing planet because of faster gas accretion enabled by more efficient cooling. In addition, we find that planets forming in water-poor environments can contract their envelope faster and therefore migrate less, implying that gas giants forming in water-poor environments might be located further away from their central star compared to gas giants forming in water-rich environments. Future studies of planet formation that aim to investigate the chemical composition of formed gas giants need to take these effects into account self-consistently. |
Author | Bitsch, Bertram Savvidou, Sofia |
Author_xml | – sequence: 1 givenname: Bertram surname: Bitsch fullname: Bitsch, Bertram – sequence: 2 givenname: Sofia surname: Savvidou fullname: Savvidou, Sofia |
BookMark | eNp9kE9LAzEQxYNUsK1-Ai8Lntcmmd3s9ijFP4WCFz2HkJ1oyjZZk1TQT2-2SgUPwkDI5P3eZN6MTJx3SMglo9eM1mxBKa1KAYItOOUUlrzhJ2TKKuAlbSoxIdOj4ozMYtzmK2ctTElYO9Pv0WksvClegrKuiPYTC-W6Qvvd4KNN1rsiV3rF3HIpKH1oBZUwjtjQK4dJhY8C3Tv2fsjtkc-a36edze4jd05OjeojXvycc_J8d_u0eig3j_fr1c2m1MB5KltkDGohFCxbLminsa0qCg0IFI1SXcUYBWhqMK02qu1qU0OVdUIbbHLBnFx9-w7Bv-0xJrn1--DySMlrTllb02wwJ8tvlQ4-xoBGapsO_8x72l4yKseI5RigHAOUx4gzC3_YIdhdXvZf6gti5IDE |
CitedBy_id | crossref_primary_10_1021_acsearthspacechem_1c00342 crossref_primary_10_1051_0004_6361_202140476 crossref_primary_10_1051_0004_6361_202347169 crossref_primary_10_3847_2041_8213_ad2463 crossref_primary_10_1051_0004_6361_202348798 crossref_primary_10_1093_mnras_stac569 crossref_primary_10_1051_0004_6361_202245040 crossref_primary_10_1051_0004_6361_202346835 crossref_primary_10_1051_0004_6361_202451017 crossref_primary_10_1051_0004_6361_202346748 crossref_primary_10_1051_0004_6361_202039640 crossref_primary_10_3847_1538_4365_abfcc1 crossref_primary_10_1051_0004_6361_202244988 crossref_primary_10_1051_0004_6361_202245636 |
Cites_doi | 10.1088/2041-8205/791/1/L9 10.1146/annurev-earth-063016-020226 10.1051/0004-6361:20077759 10.1016/j.icarus.2016.10.017 10.1088/0004-637X/782/2/88 10.1051/0004-6361/201936463 10.1088/0004-637X/778/1/77 10.1051/0004-6361/201424964 10.1086/375492 10.3847/1538-4357/aac8d9 10.1086/655775 10.1051/0004-6361:20054449 10.1051/0004-6361/200912072 10.1051/0004-6361/201526463 10.1016/j.icarus.2007.09.018 10.1051/0004-6361/201220536 10.1088/0004-637X/798/1/34 10.1093/mnras/stx2815 10.1051/0004-6361/201527131 10.1093/mnras/stv025 10.1103/RevModPhys.29.547 10.1051/0004-6361/201219824 10.1088/0004-637X/769/1/41 10.1051/0004-6361/201423814 10.1051/0004-6361:200400053 10.1051/0004-6361/201527676 10.1086/428383 10.1051/0004-6361:20034469 10.1146/annurev.astro.46.060407.145222 10.1051/0004-6361/201423702 10.1093/mnras/stx1924 10.1146/annurev-astro-081811-125523 10.1111/j.1365-2966.2010.17442.x 10.1029/2007JD009744 10.1088/0004-637X/779/1/59 10.1051/0004-6361/201731931 10.1051/0004-6361:20030916 10.1088/0004-637X/800/2/82 10.1086/344437 10.1051/0004-6361/201118136 10.1093/mnras/180.2.57 10.1051/0004-6361/201015228 10.1051/0004-6361/201118490 10.1093/mnras/stu304 10.1088/2041-8205/789/1/L18 10.1093/mnras/stx1946 10.1111/j.1365-2966.2008.14184.x 10.1051/0004-6361/201117350 10.1051/0004-6361/202037579 10.1051/0004-6361/201731014 10.1086/191796 10.1051/0004-6361:20020735 10.3847/1538-4357/ab9604 10.1051/0004-6361/201936576 10.1051/0004-6361/201935473 10.1093/mnras/sty1281 10.3847/1538-4357/836/2/221 10.1006/icar.1996.0190 10.1016/0019-1035(86)90182-X 10.1051/0004-6361/201935877 10.1086/309050 10.1088/0004-637X/797/2/95 10.1088/0004-637X/811/1/41 10.1051/0004-6361/201732026 10.1086/523667 10.1051/0004-6361/202038304 10.1093/mnras/sty1710 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1051/0004-6361/202039272 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_202039272 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD H8D L7M |
ID | FETCH-LOGICAL-c322t-8e113566a398260dce84403736e67aad411033753f8cfa8d5f53460d6cfe7fe73 |
ISSN | 0004-6361 |
IngestDate | Mon Jun 30 04:35:24 EDT 2025 Tue Jul 01 03:53:50 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c322t-8e113566a398260dce84403736e67aad411033753f8cfa8d5f53460d6cfe7fe73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.aanda.org/articles/aa/pdf/2021/03/aa39272-20.pdf |
PQID | 2520185003 |
PQPubID | 1796397 |
ParticipantIDs | proquest_journals_2520185003 crossref_citationtrail_10_1051_0004_6361_202039272 crossref_primary_10_1051_0004_6361_202039272 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2021 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Kley (R42) 2009; 506 Bitsch (R16) 2018; 479 Chen (R21) 2002; 390 Burbidge (R20) 1957; 29 Piso (R61) 2015; 800 Lee (R45) 2015; 811 Kanagawa (R40) 2018; 861 Fung (R29) 2014; 782 Movshovitz (R54) 2008; 194 Lee (R46) 2014; 797 R27 Warren (R70) 2008; 113 Paardekooper (R58) 2006; 453 Santos (R65) 2004; 415 Pollack (R62) 1996; 124 Brauer (R18) 2008; 480 R5 Ward (R69) 1986; 67 Takeuchi (R68) 2002; 581 D’Angelo (R25) 2013; 778 Johnson (R38) 2010; 122 Bitsch (R10) 2019; 630 Preibisch (R63) 1993; 279 Baumann (R6) 2020; 637 Lega (R47) 2014; 440 Paardekooper (R59) 2011; 410 Bergez-Casalou (R7) 2020; 643 Bitsch (R17) 2018; 612 Pinilla (R60) 2016; 585 Hudgins (R33) 1993; 86 Baruteau (R4) 2008; 672 Savvidou (R66) 2020; 640 Ndugu (R55) 2018; 474 Paardekooper (R57) 2004; 425 Ayliffe (R3) 2009; 393 Henning (R32) 1997; 327 Asplund (R1) 2009; 47 Weidenschilling (R71) 1977; 180 Kley (R41) 2012; 50 Bitsch (R15) 2015; 575 Lambrechts (R43) 2017; 606 R44 Duffell (R26) 2013; 769 Ikoma (R34) 2000; 537 Birnstiel (R8) 2011; 525 Schulik (R67) 2019; 632 Fischer (R28) 2005; 622 Madhusudhan (R49) 2014; 791 Bitsch (R14) 2015; 582 Jiménez (R36) 2017; 471 Johansen (R37) 2017; 45 Ataiee (R2) 2018; 615 Bitsch (R11) 2020; 633 Mordasini (R52) 2014; 572 Bitsch (R13) 2013; 550 Kanagawa (R39) 2015; 448 Birnstiel (R9) 2012; 539 Crida (R24) 2017; 285 Chen (R22) 2020; 896 Buder (R19) 2018; 478 Bitsch (R12) 2016; 590 Ormel (R56) 2014; 789 Ros (R64) 2013; 552 Gressel (R30) 2013; 779 Morbidelli (R51) 2012; 546 Mordasini (R53) 2012; 541 Marleau (R50) 2017; 836 Lodders (R48) 2003; 591 Cimerman (R23) 2017; 471 Jäger (R35) 2003; 408 Gundlach (R31) 2015; 798 |
References_xml | – volume: 791 start-page: L9 year: 2014 ident: R49 publication-title: ApJ doi: 10.1088/2041-8205/791/1/L9 – volume: 45 start-page: 359 year: 2017 ident: R37 publication-title: Ann. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-063016-020226 – volume: 480 start-page: 859 year: 2008 ident: R18 publication-title: A&A doi: 10.1051/0004-6361:20077759 – volume: 285 start-page: 145 year: 2017 ident: R24 publication-title: Icarus doi: 10.1016/j.icarus.2016.10.017 – volume: 782 start-page: 88 year: 2014 ident: R29 publication-title: ApJ doi: 10.1088/0004-637X/782/2/88 – volume: 633 start-page: A10 year: 2020 ident: R11 publication-title: A&A doi: 10.1051/0004-6361/201936463 – volume: 778 start-page: 77 year: 2013 ident: R25 publication-title: ApJ doi: 10.1088/0004-637X/778/1/77 – volume: 575 start-page: A28 year: 2015 ident: R15 publication-title: A&A doi: 10.1051/0004-6361/201424964 – volume: 591 start-page: 1220 year: 2003 ident: R48 publication-title: ApJ doi: 10.1086/375492 – volume: 861 start-page: 140 year: 2018 ident: R40 publication-title: ApJ doi: 10.3847/1538-4357/aac8d9 – volume: 122 start-page: 905 year: 2010 ident: R38 publication-title: PASP doi: 10.1086/655775 – volume: 453 start-page: 1129 year: 2006 ident: R58 publication-title: A&A doi: 10.1051/0004-6361:20054449 – volume: 506 start-page: 971 year: 2009 ident: R42 publication-title: A&A doi: 10.1051/0004-6361/200912072 – volume: 582 start-page: A112 year: 2015 ident: R14 publication-title: A&A doi: 10.1051/0004-6361/201526463 – volume: 194 start-page: 368 year: 2008 ident: R54 publication-title: Icarus doi: 10.1016/j.icarus.2007.09.018 – volume: 552 start-page: A137 year: 2013 ident: R64 publication-title: A&A doi: 10.1051/0004-6361/201220536 – ident: R5 – volume: 798 start-page: 34 year: 2015 ident: R31 publication-title: ApJ doi: 10.1088/0004-637X/798/1/34 – volume: 474 start-page: 886 year: 2018 ident: R55 publication-title: MNRAS doi: 10.1093/mnras/stx2815 – volume: 585 start-page: A35 year: 2016 ident: R60 publication-title: A&A doi: 10.1051/0004-6361/201527131 – volume: 327 start-page: 743 year: 1997 ident: R32 publication-title: A&A – volume: 448 start-page: 994 year: 2015 ident: R39 publication-title: MNRAS doi: 10.1093/mnras/stv025 – volume: 29 start-page: 547 year: 1957 ident: R20 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.29.547 – volume: 546 start-page: A18 year: 2012 ident: R51 publication-title: A&A doi: 10.1051/0004-6361/201219824 – volume: 769 start-page: 41 year: 2013 ident: R26 publication-title: ApJ doi: 10.1088/0004-637X/769/1/41 – ident: R44 doi: 10.1051/0004-6361/201423814 – volume: 425 start-page: L9 year: 2004 ident: R57 publication-title: A&A doi: 10.1051/0004-6361:200400053 – volume: 590 start-page: A101 year: 2016 ident: R12 publication-title: A&A doi: 10.1051/0004-6361/201527676 – volume: 622 start-page: 1102 year: 2005 ident: R28 publication-title: ApJ doi: 10.1086/428383 – volume: 415 start-page: p.1153 year: 2004 ident: R65 publication-title: A&A doi: 10.1051/0004-6361:20034469 – volume: 47 start-page: 481 year: 2009 ident: R1 publication-title: ARA&A doi: 10.1146/annurev.astro.46.060407.145222 – volume: 572 start-page: A118 year: 2014 ident: R52 publication-title: A&A doi: 10.1051/0004-6361/201423702 – volume: 471 start-page: 4662 year: 2017 ident: R23 publication-title: MNRAS doi: 10.1093/mnras/stx1924 – volume: 50 start-page: 211 year: 2012 ident: R41 publication-title: ARA&A doi: 10.1146/annurev-astro-081811-125523 – volume: 410 start-page: 293 year: 2011 ident: R59 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17442.x – volume: 113 start-page: D14220 year: 2008 ident: R70 publication-title: J. Geophys. Res. Atm. doi: 10.1029/2007JD009744 – volume: 779 start-page: 59 year: 2013 ident: R30 publication-title: ApJ doi: 10.1088/0004-637X/779/1/59 – volume: 612 start-page: A30 year: 2018 ident: R17 publication-title: A&A doi: 10.1051/0004-6361/201731931 – volume: 408 start-page: 193 year: 2003 ident: R35 publication-title: A&A doi: 10.1051/0004-6361:20030916 – volume: 800 start-page: 82 year: 2015 ident: R61 publication-title: ApJ doi: 10.1088/0004-637X/800/2/82 – volume: 581 start-page: 1344 year: 2002 ident: R68 publication-title: ApJ doi: 10.1086/344437 – volume: 539 start-page: A148 year: 2012 ident: R9 publication-title: A&A doi: 10.1051/0004-6361/201118136 – volume: 180 start-page: 57 year: 1977 ident: R71 publication-title: MNRAS doi: 10.1093/mnras/180.2.57 – volume: 525 start-page: A11 year: 2011 ident: R8 publication-title: A&A doi: 10.1051/0004-6361/201015228 – volume: 550 start-page: A52 year: 2013 ident: R13 publication-title: A&A doi: 10.1051/0004-6361/201118490 – volume: 440 start-page: 683 year: 2014 ident: R47 publication-title: MNRAS doi: 10.1093/mnras/stu304 – volume: 789 start-page: L18 year: 2014 ident: R56 publication-title: ApJ doi: 10.1088/2041-8205/789/1/L18 – volume: 471 start-page: 4917 year: 2017 ident: R36 publication-title: MNRAS doi: 10.1093/mnras/stx1946 – volume: 393 start-page: 49 year: 2009 ident: R3 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.14184.x – volume: 541 start-page: A97 year: 2012 ident: R53 publication-title: A&A doi: 10.1051/0004-6361/201117350 – volume: 637 start-page: A11 year: 2020 ident: R6 publication-title: A&A doi: 10.1051/0004-6361/202037579 – volume: 606 start-page: A146 year: 2017 ident: R43 publication-title: A&A doi: 10.1051/0004-6361/201731014 – volume: 86 start-page: 713 year: 1993 ident: R33 publication-title: ApJS doi: 10.1086/191796 – volume: 390 start-page: 225 year: 2002 ident: R21 publication-title: A&A doi: 10.1051/0004-6361:20020735 – volume: 279 start-page: 577 year: 1993 ident: R63 publication-title: A&A – volume: 896 start-page: 135 year: 2020 ident: R22 publication-title: ApJ doi: 10.3847/1538-4357/ab9604 – volume: 640 start-page: A63 year: 2020 ident: R66 publication-title: A&A doi: 10.1051/0004-6361/201936576 – volume: 632 start-page: A118 year: 2019 ident: R67 publication-title: A&A doi: 10.1051/0004-6361/201935473 – volume: 478 start-page: 4513 year: 2018 ident: R19 publication-title: MNRAS doi: 10.1093/mnras/sty1281 – volume: 836 start-page: 221 year: 2017 ident: R50 publication-title: ApJ doi: 10.3847/1538-4357/836/2/221 – volume: 124 start-page: 62 year: 1996 ident: R62 publication-title: Icarus doi: 10.1006/icar.1996.0190 – volume: 67 start-page: 164 year: 1986 ident: R69 publication-title: Icarus doi: 10.1016/0019-1035(86)90182-X – volume: 630 start-page: A51 year: 2019 ident: R10 publication-title: A&A doi: 10.1051/0004-6361/201935877 – ident: R27 – volume: 537 start-page: 1013 year: 2000 ident: R34 publication-title: ApJ doi: 10.1086/309050 – volume: 797 start-page: 95 year: 2014 ident: R46 publication-title: ApJ doi: 10.1088/0004-637X/797/2/95 – volume: 811 start-page: 41 year: 2015 ident: R45 publication-title: ApJ doi: 10.1088/0004-637X/811/1/41 – volume: 615 start-page: A110 year: 2018 ident: R2 publication-title: A&A doi: 10.1051/0004-6361/201732026 – volume: 672 start-page: 1054 year: 2008 ident: R4 publication-title: ApJ doi: 10.1086/523667 – volume: 643 start-page: A133 year: 2020 ident: R7 publication-title: A&A doi: 10.1051/0004-6361/202038304 – volume: 479 start-page: 3690 year: 2018 ident: R16 publication-title: MNRAS doi: 10.1093/mnras/sty1710 |
SSID | ssj0002183 |
Score | 2.4739184 |
Snippet | A crucial phase during planetary growth is the migration, when the planetary core has been assembled but has not yet opened a deep gap. During this phase, the... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | A96 |
SubjectTerms | Chemical composition Contraction Deposition Gas giant planets Grain size Grain size distribution Opacity Planet formation Planetary cores Planetary evolution Planetary mass Star formation |
Title | Influence of grain size and composition on the contraction rates of planetary envelopes and on planetary migration |
URI | https://www.proquest.com/docview/2520185003 |
Volume | 647 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCImXiQ3QxgbyA-IFsiWx46aPBTE2JBAPm7S3yLGdqRJtpzbbwx72t-_O5zgpoIkhRVHi2Ncqv8v5fL4Pxt4p40ShnUlsbtNEGsACtCKRNGhLlrkdjX0c9_cf6vhMfjsvznurko8uaesDc_PXuJL_QRXaAFeMkn0AspEoNMA14AtnQBjO_4TxSVdhBFW-Cyz28GE1vXFdrFrnkBU2BMgtPdQGxwwR3ovjEr1dWx-TO_f-Q46yNkOf_tFserHsIeyS1q7QjL6YUQYnjXdkJ_GGXMqjNTA0fJq2K6o7BY_gf8yicUdfX0_t4sobYuF96KElIh-4YkXpKhMlKLn6gSOBKgV6twYzY5C4ipJsBpk5oZK2f8hyEBfk_EhEMXQFt03HOdX6Wc-d_ducFj0N_R57keEeu6yQTBWJPGZPclhbYNmLrye3cfpGnZHWTPS7XaqqIjuMbYeRyLo6sz6bexXl9DnbDGsLPiFG2WKP3Hyb7USY-Hs-GYC0zZ7-pKsXbBk5iS8a7jmJIydxQJYPOInDAZzEB5zEPSfhsMguPHKSHw99-keRk16ys6Mvp5-Pk1CNIzEg9NukdFkmQPnXYgxL0tQaV0qZipFQTo20thIUSSFg9duUptGlLZpCSOinTONGcIhXbGO-mLsdxnM11rUxUtTWyMaJ0jpVm6xJUwPrBVXvsrx7qZUJqeqxYsqv6h44d9nHOOiSMrXc332_Q6sKn_SqygvQh8sCZrrXD6O2x571X8Q-22iXV-4NaKtt_dZz1x3hdpCe |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+grain+size+and+composition+on+the+contraction+rates+of+planetary+envelopes+and+on+planetary+migration&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Bitsch%2C+Bertram&rft.au=Savvidou%2C+Sofia&rft.date=2021-03-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=647&rft.spage=A96&rft_id=info:doi/10.1051%2F0004-6361%2F202039272&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202039272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |