Very weak solutions of the stationary Navier–Stokes equations for an incompressible fluid past obstacles

We consider the stationary motion of an incompressible Navier–Stokes fluid past obstacles in R3, subject to the given boundary velocity vb, external force f=divF and nonzero constant vector ke1 at infinity. Our main result is the existence of at least one very weak solution v in ke1+L3(Ω) for arbitr...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis Vol. 147; pp. 145 - 168
Main Authors Kim, Dugyu, Kim, Hyunseok
Format Journal Article
LanguageEnglish
Published Elmsford Elsevier Ltd 01.12.2016
Elsevier BV
Subjects
Online AccessGet full text
ISSN0362-546X
1873-5215
DOI10.1016/j.na.2016.08.017

Cover

Loading…
Abstract We consider the stationary motion of an incompressible Navier–Stokes fluid past obstacles in R3, subject to the given boundary velocity vb, external force f=divF and nonzero constant vector ke1 at infinity. Our main result is the existence of at least one very weak solution v in ke1+L3(Ω) for arbitrary large F∈L3/2(Ω)+L12/7(Ω) provided that the flux of vb−ke1 on the boundary of each body is sufficiently small with respect to the viscosity ν. The uniqueness of very weak solutions is proved by assuming that F and vb−ke1 are suitably small. Moreover, we establish weak and strong regularity results for very weak solutions. In particular, our existence and regularity results enable us to prove the existence of a weak solution v satisfying ∇v∈L3/2(Ω).
AbstractList We consider the stationary motion of an incompressible Navier-Stokes fluid past obstacles in R3, subject to the given boundary velocity vb, external force f=divF and nonzero constant vector ke1 at infinity. Our main result is the existence of at least one very weak solution v in ke1+L3(Ω) for arbitrary large F∈L3/2(Ω)+L12/7(Ω) provided that the flux of vb-ke1 on the boundary of each body is sufficiently small with respect to the viscosity ν. The uniqueness of very weak solutions is proved by assuming that F and vb-ke1 are suitably small. Moreover, we establish weak and strong regularity results for very weak solutions. In particular, our existence and regularity results enable us to prove the existence of a weak solution v satisfying ∇v∈L3/2(Ω).
We consider the stationary motion of an incompressible Navier–Stokes fluid past obstacles in R3, subject to the given boundary velocity vb, external force f=divF and nonzero constant vector ke1 at infinity. Our main result is the existence of at least one very weak solution v in ke1+L3(Ω) for arbitrary large F∈L3/2(Ω)+L12/7(Ω) provided that the flux of vb−ke1 on the boundary of each body is sufficiently small with respect to the viscosity ν. The uniqueness of very weak solutions is proved by assuming that F and vb−ke1 are suitably small. Moreover, we establish weak and strong regularity results for very weak solutions. In particular, our existence and regularity results enable us to prove the existence of a weak solution v satisfying ∇v∈L3/2(Ω).
Author Kim, Hyunseok
Kim, Dugyu
Author_xml – sequence: 1
  givenname: Dugyu
  surname: Kim
  fullname: Kim, Dugyu
  email: dugyu@sogang.ac.kr
– sequence: 2
  givenname: Hyunseok
  surname: Kim
  fullname: Kim, Hyunseok
  email: kimh@sogang.ac.kr
BookMark eNp9kMtq3TAQhkVJoSen3XcpyNruSLLl4-5CSC8QmkUvdCdkeUTlONKJJDdk13foG_ZJKuOuAulKI_j-f5jvlJz44JGQ1wxqBky-mWqva16mGg41sO4Z2bFDJ6qWs_aE7EBIXrWN_P6CnKY0ARREyB2ZvmF8oPeob2gK85Jd8IkGS_MPpCnr9a8L8En_dBj__Pr9OYcbTBTvFr2xNkSqPXXehNtjxJTcMCO18-JGetQp0zCUHjNjekmeWz0nfPXv3ZOv7y6_XHyorq7ff7w4v6qM4DxXnR0OZhBt3w_agBilRY5NL6XlVvAeoJGcMwTd2VHIobUSAXBEsAyt6BuxJ2db7zGGuwVTVlNYoi8rFesb1pUGJgoFG2ViSCmiVcfobsutioFajapJea1WowoOatW1J_JRxLhNUY7azf8Lvt2CWM5eRapkHHqDo4toshqDezr8F6j-lGI
CitedBy_id crossref_primary_10_1007_s00021_025_00921_7
crossref_primary_10_1016_j_nonrwa_2019_103020
crossref_primary_10_1002_mma_4911
crossref_primary_10_1007_s00033_023_02083_w
Cites_doi 10.14492/hokmj/1381517172
10.1016/j.jde.2014.02.021
10.1007/s002459911018
10.1007/s00208-004-0573-7
10.1142/S0219530506000735
10.1007/s00021-005-0182-6
10.1016/j.jmaa.2012.05.039
10.1512/iumj.1991.40.40001
10.1007/s00205-010-0340-8
10.1016/j.na.2011.12.032
10.2969/jmsj/04420307
10.1007/BF00253485
10.1007/s002080050149
10.1007/BF02384076
10.1007/s00205-008-0168-7
10.1007/s00208-012-0861-6
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier BV Dec 2016
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2016
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.na.2016.08.017
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1873-5215
EndPage 168
ExternalDocumentID 10_1016_j_na_2016_08_017
S0362546X16301894
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c322t-7fb8cb3599bac03d6fe2e4966f2f3290046221e0a7fd36b5f6e00ede0f1ef3943
IEDL.DBID .~1
ISSN 0362-546X
IngestDate Fri Jul 25 04:31:27 EDT 2025
Thu Apr 24 23:10:50 EDT 2025
Tue Jul 01 01:42:17 EDT 2025
Fri Feb 23 02:33:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Navier–Stokes equations
35Q10
Weak solutions
Very weak solutions
Exterior domains
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-7fb8cb3599bac03d6fe2e4966f2f3290046221e0a7fd36b5f6e00ede0f1ef3943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1941700413
PQPubID 2045425
PageCount 24
ParticipantIDs proquest_journals_1941700413
crossref_primary_10_1016_j_na_2016_08_017
crossref_citationtrail_10_1016_j_na_2016_08_017
elsevier_sciencedirect_doi_10_1016_j_na_2016_08_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Nonlinear analysis
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Kozono, Sohr (br000085) 1992; 4
Kozono, Yamazaki (br000090) 1998; 310
Heck, Kim, Kozono (br000055) 2013; 356
Nakatsuka (br000110) 2012; 75
Galdi, Simader (br000045) 1990; 112
Ladyzhenckaya (br000100) 1969
Serre (br000115) 1983; 4
Babenko (br000015) 1973; 91
Borchers, Shor (br000020) 1990; 19
Kozono, Sohr (br000075) 1991; 40
Amrouche, Razafison (br000005) 2006; 4
Kim, Kim (br000065) 2014; 257
Marušić-Paloka (br000105) 2000; 41
Kim, Kozono (br000070) 2012; 395
Leray (br000095) 1933; 12
Finn (br000035) 1965; 19
Farwig (br000025) 1998; vol. 16
Farwig, Galdi, Sohr (br000030) 2006; 8
Galdi (br000040) 2011
Galdi, Simader, Sohr (br000050) 2005; 331
Kim (br000060) 2009; 193
Amrouche, Rodríguez-Bellido (br000010) 2011; 199
Kozono, Sohr (br000080) 1992; 44
Sohr (br000120) 2001
Heck (10.1016/j.na.2016.08.017_br000055) 2013; 356
Borchers (10.1016/j.na.2016.08.017_br000020) 1990; 19
Galdi (10.1016/j.na.2016.08.017_br000050) 2005; 331
Kim (10.1016/j.na.2016.08.017_br000060) 2009; 193
Amrouche (10.1016/j.na.2016.08.017_br000005) 2006; 4
Galdi (10.1016/j.na.2016.08.017_br000045) 1990; 112
Kozono (10.1016/j.na.2016.08.017_br000075) 1991; 40
Marušić-Paloka (10.1016/j.na.2016.08.017_br000105) 2000; 41
Kim (10.1016/j.na.2016.08.017_br000065) 2014; 257
Babenko (10.1016/j.na.2016.08.017_br000015) 1973; 91
Kim (10.1016/j.na.2016.08.017_br000070) 2012; 395
Nakatsuka (10.1016/j.na.2016.08.017_br000110) 2012; 75
Sohr (10.1016/j.na.2016.08.017_br000120) 2001
Finn (10.1016/j.na.2016.08.017_br000035) 1965; 19
Kozono (10.1016/j.na.2016.08.017_br000080) 1992; 44
Kozono (10.1016/j.na.2016.08.017_br000085) 1992; 4
Amrouche (10.1016/j.na.2016.08.017_br000010) 2011; 199
Farwig (10.1016/j.na.2016.08.017_br000030) 2006; 8
Farwig (10.1016/j.na.2016.08.017_br000025) 1998; vol. 16
Kozono (10.1016/j.na.2016.08.017_br000090) 1998; 310
Galdi (10.1016/j.na.2016.08.017_br000040) 2011
Leray (10.1016/j.na.2016.08.017_br000095) 1933; 12
Serre (10.1016/j.na.2016.08.017_br000115) 1983; 4
Ladyzhenckaya (10.1016/j.na.2016.08.017_br000100) 1969
References_xml – volume: 44
  start-page: 307
  year: 1992
  end-page: 330
  ident: br000080
  article-title: Density properties for solenoidal vector fields, with applications to the Navier–Stokes equations in exterior domains
  publication-title: J. Math. Soc. Japan
– volume: 4
  start-page: 543
  year: 1983
  end-page: 559
  ident: br000115
  article-title: Equations de Navier–Stokes stationnaires avec données peu régulières
  publication-title: Ann. Sc. Norm. Super. Pisa
– volume: 75
  start-page: 3457
  year: 2012
  end-page: 3464
  ident: br000110
  article-title: On uniqueness of stationary solutions to the Navier–Stokes equations in exterior domains
  publication-title: Nonlinear Anal.
– volume: 257
  start-page: 3669
  year: 2014
  end-page: 3699
  ident: br000065
  article-title: -estimates for the stationary Oseen equations on exterior domains
  publication-title: J. Differential Equations
– year: 1969
  ident: br000100
  article-title: The Mathematical Theory of Viscous Incompressible Flow
– volume: 193
  start-page: 117
  year: 2009
  end-page: 152
  ident: br000060
  article-title: Existence and regularity of very weak solutions of the stationary Navier–Stokes equations
  publication-title: Arch. Ration. Mech. Anal.
– volume: 19
  start-page: 67
  year: 1990
  end-page: 87
  ident: br000020
  article-title: On the equation
  publication-title: Hokkaido Math. J.
– volume: 12
  start-page: 1
  year: 1933
  end-page: 82
  ident: br000095
  article-title: Étude de diverses équations intégrales non linéaires et de quelques problémes que pose l’Hydrodynamique
  publication-title: J. Math. Pures Appl.
– volume: 91
  start-page: 3
  year: 1973
  end-page: 27
  ident: br000015
  article-title: On stationary solutions of the problem of flow past a body of a viscous incompressible fluid
  publication-title: Mat. Sb.
– volume: 395
  start-page: 486
  year: 2012
  end-page: 495
  ident: br000070
  article-title: On the stationary Navier–Stokes equations in exterior domains
  publication-title: J. Math. Anal. Appl.
– year: 2011
  ident: br000040
  article-title: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems
– volume: 310
  start-page: 279
  year: 1998
  end-page: 305
  ident: br000090
  article-title: Exterior problem for the stationary Navier–Stokes equations in the Lorentz space
  publication-title: Math. Ann.
– volume: 356
  start-page: 653
  year: 2013
  end-page: 681
  ident: br000055
  article-title: Weak solutions of the stationary Navier–Stokes equations for a viscous incompressible fluid past an obstacle
  publication-title: Math. Ann.
– volume: 40
  start-page: 1
  year: 1991
  end-page: 27
  ident: br000075
  article-title: New a priori estimates for the Stokes equations in exterior domains
  publication-title: Indiana Univ. Math. J.
– year: 2001
  ident: br000120
  article-title: The Navier–Stokes Equations, An Elementary Functional Analytic Approach
– volume: 4
  start-page: 133
  year: 2006
  end-page: 162
  ident: br000005
  article-title: On the Oseen problem in three-dimensional exterior domains
  publication-title: Anal. Appl. (Singap.)
– volume: 19
  start-page: 363
  year: 1965
  end-page: 406
  ident: br000035
  article-title: On exterior stationary problem for the Navier–Stokes equations and associated perturbation problems
  publication-title: Arch. Ration. Mech. Anal.
– volume: 41
  start-page: 365
  year: 2000
  end-page: 375
  ident: br000105
  article-title: Solvability of the Navier–Stokes system with
  publication-title: Appl. Math. Optim.
– volume: vol. 16
  start-page: 53
  year: 1998
  end-page: 115
  ident: br000025
  article-title: The stationary Navier–Stokes equations in a 3D-exterior domain
  publication-title: Recent Topics on Mathematical Theory of Viscous Incompressible Fluid
– volume: 112
  start-page: 291
  year: 1990
  end-page: 318
  ident: br000045
  article-title: Existence, uniqueness and
  publication-title: Arch. Ration. Mech. Anal.
– volume: 4
  start-page: 155
  year: 1992
  end-page: 181
  ident: br000085
  article-title: On a new class of generalized solutions for the Stokes equations in exterior domains
  publication-title: Ann. Sc. Norm. Super Pisa Cl. Sci.
– volume: 8
  start-page: 423
  year: 2006
  end-page: 444
  ident: br000030
  article-title: A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous boundary data
  publication-title: J. Math. Fluid Mech.
– volume: 331
  start-page: 41
  year: 2005
  end-page: 74
  ident: br000050
  article-title: A class of solutions to stationary Stokes and Navier–Stokes equations with boundary data in
  publication-title: Math. Ann.
– volume: 199
  start-page: 597
  year: 2011
  end-page: 651
  ident: br000010
  article-title: Stationary Stokes, Oseen and Navier–Stokes equations with singular data
  publication-title: Arch. Ration. Mech. Anal.
– volume: 91
  start-page: 3
  year: 1973
  ident: 10.1016/j.na.2016.08.017_br000015
  article-title: On stationary solutions of the problem of flow past a body of a viscous incompressible fluid
  publication-title: Mat. Sb.
– volume: 19
  start-page: 67
  year: 1990
  ident: 10.1016/j.na.2016.08.017_br000020
  article-title: On the equation rotv=g and divu=f with zero boundary conditions
  publication-title: Hokkaido Math. J.
  doi: 10.14492/hokmj/1381517172
– year: 1969
  ident: 10.1016/j.na.2016.08.017_br000100
– volume: 257
  start-page: 3669
  year: 2014
  ident: 10.1016/j.na.2016.08.017_br000065
  article-title: Lq-estimates for the stationary Oseen equations on exterior domains
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2014.02.021
– volume: 12
  start-page: 1
  year: 1933
  ident: 10.1016/j.na.2016.08.017_br000095
  article-title: Étude de diverses équations intégrales non linéaires et de quelques problémes que pose l’Hydrodynamique
  publication-title: J. Math. Pures Appl.
– volume: vol. 16
  start-page: 53
  year: 1998
  ident: 10.1016/j.na.2016.08.017_br000025
  article-title: The stationary Navier–Stokes equations in a 3D-exterior domain
– volume: 41
  start-page: 365
  year: 2000
  ident: 10.1016/j.na.2016.08.017_br000105
  article-title: Solvability of the Navier–Stokes system with L2-boundary data
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s002459911018
– volume: 331
  start-page: 41
  year: 2005
  ident: 10.1016/j.na.2016.08.017_br000050
  article-title: A class of solutions to stationary Stokes and Navier–Stokes equations with boundary data in W−1/q,q
  publication-title: Math. Ann.
  doi: 10.1007/s00208-004-0573-7
– volume: 4
  start-page: 133
  year: 2006
  ident: 10.1016/j.na.2016.08.017_br000005
  article-title: On the Oseen problem in three-dimensional exterior domains
  publication-title: Anal. Appl. (Singap.)
  doi: 10.1142/S0219530506000735
– volume: 8
  start-page: 423
  year: 2006
  ident: 10.1016/j.na.2016.08.017_br000030
  article-title: A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous boundary data
  publication-title: J. Math. Fluid Mech.
  doi: 10.1007/s00021-005-0182-6
– year: 2011
  ident: 10.1016/j.na.2016.08.017_br000040
– volume: 395
  start-page: 486
  year: 2012
  ident: 10.1016/j.na.2016.08.017_br000070
  article-title: On the stationary Navier–Stokes equations in exterior domains
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2012.05.039
– volume: 4
  start-page: 543
  issue: 10
  year: 1983
  ident: 10.1016/j.na.2016.08.017_br000115
  article-title: Equations de Navier–Stokes stationnaires avec données peu régulières
  publication-title: Ann. Sc. Norm. Super. Pisa
– volume: 40
  start-page: 1
  year: 1991
  ident: 10.1016/j.na.2016.08.017_br000075
  article-title: New a priori estimates for the Stokes equations in exterior domains
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1991.40.40001
– volume: 199
  start-page: 597
  year: 2011
  ident: 10.1016/j.na.2016.08.017_br000010
  article-title: Stationary Stokes, Oseen and Navier–Stokes equations with singular data
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-010-0340-8
– volume: 75
  start-page: 3457
  year: 2012
  ident: 10.1016/j.na.2016.08.017_br000110
  article-title: On uniqueness of stationary solutions to the Navier–Stokes equations in exterior domains
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.12.032
– volume: 44
  start-page: 307
  year: 1992
  ident: 10.1016/j.na.2016.08.017_br000080
  article-title: Density properties for solenoidal vector fields, with applications to the Navier–Stokes equations in exterior domains
  publication-title: J. Math. Soc. Japan
  doi: 10.2969/jmsj/04420307
– volume: 19
  start-page: 363
  year: 1965
  ident: 10.1016/j.na.2016.08.017_br000035
  article-title: On exterior stationary problem for the Navier–Stokes equations and associated perturbation problems
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00253485
– volume: 310
  start-page: 279
  year: 1998
  ident: 10.1016/j.na.2016.08.017_br000090
  article-title: Exterior problem for the stationary Navier–Stokes equations in the Lorentz space
  publication-title: Math. Ann.
  doi: 10.1007/s002080050149
– year: 2001
  ident: 10.1016/j.na.2016.08.017_br000120
– volume: 112
  start-page: 291
  year: 1990
  ident: 10.1016/j.na.2016.08.017_br000045
  article-title: Existence, uniqueness and Lq-estimates for the Stokes problem in exterior domains
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF02384076
– volume: 193
  start-page: 117
  year: 2009
  ident: 10.1016/j.na.2016.08.017_br000060
  article-title: Existence and regularity of very weak solutions of the stationary Navier–Stokes equations
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-008-0168-7
– volume: 356
  start-page: 653
  year: 2013
  ident: 10.1016/j.na.2016.08.017_br000055
  article-title: Weak solutions of the stationary Navier–Stokes equations for a viscous incompressible fluid past an obstacle
  publication-title: Math. Ann.
  doi: 10.1007/s00208-012-0861-6
– volume: 4
  start-page: 155
  issue: 19
  year: 1992
  ident: 10.1016/j.na.2016.08.017_br000085
  article-title: On a new class of generalized solutions for the Stokes equations in exterior domains
  publication-title: Ann. Sc. Norm. Super Pisa Cl. Sci.
SSID ssj0001736
Score 2.1920197
Snippet We consider the stationary motion of an incompressible Navier–Stokes fluid past obstacles in R3, subject to the given boundary velocity vb, external force...
We consider the stationary motion of an incompressible Navier-Stokes fluid past obstacles in R3, subject to the given boundary velocity vb, external force...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 145
SubjectTerms Barriers
Exterior domains
Fluid dynamics
Fluid flow
Incompressible flow
Infinity
Navier-Stokes equations
Nonlinear equations
Regularity
Uniqueness
Very weak solutions
Weak solutions
Title Very weak solutions of the stationary Navier–Stokes equations for an incompressible fluid past obstacles
URI https://dx.doi.org/10.1016/j.na.2016.08.017
https://www.proquest.com/docview/1941700413
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-wgFCZGN7q4Pq7m-gwLNy7qlEJpuzRGM2qcjY_MjkA5JKNjZ5zWGDfG_-A_9JcILR31xrhwCTkQAufV8vEdhHYTV4km5xDIxP26USoJpMlVoG3s0jzSKaia7bPHu1fstB_3Z9Bh-xbGwSq97298eu2tfU_H72ZnPBh0LpzvjRnv24wiJGnmOEEZSxx__v7zB8yDJJS3FFJO2l9VNhivwjEPEV6TeNYly74NTf856TryHC-hPz5lxAfNqpbRDBQraNGnj9gbZ7mCFj5xC9rW-ZSQtfyLbq5h8oQfQd7iqbLhkcFWBJfNbby0Aj3p1vL28npRjW6hxHDfMIGX2Oa2WBbYcTncNdhZNQRshg8DjceyrPBI2XkcxG4VXR0fXR52A19mIcitNVdBYlSaKxpnmZJ5SDU3EAGzn0EmMjTK6uerEYFQJkZTrmLDIQxBQ2gIGJoxuoZmi1EB_xBOQxWBzm0KqihTJE01MxBTGXEpCYFkHXXaHRa55yB3pTCGogWb3YhCCncmwlXHJHbE3nTEuOHf-EGWtocmvuiQsOHhh1Fb7fkKb7-lIBlzxIU2wm_8atJNNO9aDe5lC81WkwfYttlLpXZq9dxBcwcnZ93eO-qG8Oo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUWONAeWrotoi1tfeiFQ5o4dpzkWKGipWX3soD2ZtnxWFpYki0Jqnqp-g_9Q74EO3G2gBAHjknGluUZz0zs5zcIfU5dJZqCQyBTt3WjVBpIU6hA29ileawzUC3b54SPTtj3WTIboP3-LoyDVXrf3_n01lv7N6GfzXA5n4dT53sTxmc2o4hIlrM1tMESmjrT_vLnP86DpJT3HFJO3J9VdiCv0lEPEd6yeLY1yx6MTfe8dBt6DrbQC58z4q_dsF6hAZRD9NLnj9ivznqInt8iF7RP4xUja_0anZ3C5W_8C-Q5Xlkbrgy2IrjujuOlFZhIN5brv_-mTXUONYafHRV4jW1yi2WJHZnDRQeeVQvAZnE113gp6wZXyvbjMHZv0MnBt-P9UeDrLASFXc5NkBqVFYomea5kEVHNDcTA7H-QiQ2N8_b-akwgkqnRlKvEcIgi0BAZAobmjG6j9bIqYQfhLFIx6MLmoIoyRbJMMwMJlTGXkhBI36Kwn2FReBJyVwtjIXq02ZkopXA6Ea48JrEt9lYtlh0BxyOytFeauGNEwsaHR1rt9voVfgHXguTMMRfaEP_uSZ1-Qpuj4_GRODqc_HiPnrkvHQhmF603l1fwwaYyjfrYmuoNhNHygA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Very+weak+solutions+of+the+stationary+Navier%E2%80%93Stokes+equations+for+an+incompressible+fluid+past+obstacles&rft.jtitle=Nonlinear+analysis&rft.au=Kim%2C+Dugyu&rft.au=Kim%2C+Hyunseok&rft.date=2016-12-01&rft.pub=Elsevier+BV&rft.issn=0362-546X&rft.eissn=1873-5215&rft.volume=147&rft.spage=145&rft_id=info:doi/10.1016%2Fj.na.2016.08.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon