Very weak solutions of the stationary Navier–Stokes equations for an incompressible fluid past obstacles
We consider the stationary motion of an incompressible Navier–Stokes fluid past obstacles in R3, subject to the given boundary velocity vb, external force f=divF and nonzero constant vector ke1 at infinity. Our main result is the existence of at least one very weak solution v in ke1+L3(Ω) for arbitr...
Saved in:
Published in | Nonlinear analysis Vol. 147; pp. 145 - 168 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elmsford
Elsevier Ltd
01.12.2016
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0362-546X 1873-5215 |
DOI | 10.1016/j.na.2016.08.017 |
Cover
Loading…
Abstract | We consider the stationary motion of an incompressible Navier–Stokes fluid past obstacles in R3, subject to the given boundary velocity vb, external force f=divF and nonzero constant vector ke1 at infinity. Our main result is the existence of at least one very weak solution v in ke1+L3(Ω) for arbitrary large F∈L3/2(Ω)+L12/7(Ω) provided that the flux of vb−ke1 on the boundary of each body is sufficiently small with respect to the viscosity ν. The uniqueness of very weak solutions is proved by assuming that F and vb−ke1 are suitably small. Moreover, we establish weak and strong regularity results for very weak solutions. In particular, our existence and regularity results enable us to prove the existence of a weak solution v satisfying ∇v∈L3/2(Ω). |
---|---|
AbstractList | We consider the stationary motion of an incompressible Navier-Stokes fluid past obstacles in R3, subject to the given boundary velocity vb, external force f=divF and nonzero constant vector ke1 at infinity. Our main result is the existence of at least one very weak solution v in ke1+L3(Ω) for arbitrary large F∈L3/2(Ω)+L12/7(Ω) provided that the flux of vb-ke1 on the boundary of each body is sufficiently small with respect to the viscosity ν. The uniqueness of very weak solutions is proved by assuming that F and vb-ke1 are suitably small. Moreover, we establish weak and strong regularity results for very weak solutions. In particular, our existence and regularity results enable us to prove the existence of a weak solution v satisfying ∇v∈L3/2(Ω). We consider the stationary motion of an incompressible Navier–Stokes fluid past obstacles in R3, subject to the given boundary velocity vb, external force f=divF and nonzero constant vector ke1 at infinity. Our main result is the existence of at least one very weak solution v in ke1+L3(Ω) for arbitrary large F∈L3/2(Ω)+L12/7(Ω) provided that the flux of vb−ke1 on the boundary of each body is sufficiently small with respect to the viscosity ν. The uniqueness of very weak solutions is proved by assuming that F and vb−ke1 are suitably small. Moreover, we establish weak and strong regularity results for very weak solutions. In particular, our existence and regularity results enable us to prove the existence of a weak solution v satisfying ∇v∈L3/2(Ω). |
Author | Kim, Hyunseok Kim, Dugyu |
Author_xml | – sequence: 1 givenname: Dugyu surname: Kim fullname: Kim, Dugyu email: dugyu@sogang.ac.kr – sequence: 2 givenname: Hyunseok surname: Kim fullname: Kim, Hyunseok email: kimh@sogang.ac.kr |
BookMark | eNp9kMtq3TAQhkVJoSen3XcpyNruSLLl4-5CSC8QmkUvdCdkeUTlONKJJDdk13foG_ZJKuOuAulKI_j-f5jvlJz44JGQ1wxqBky-mWqva16mGg41sO4Z2bFDJ6qWs_aE7EBIXrWN_P6CnKY0ARREyB2ZvmF8oPeob2gK85Jd8IkGS_MPpCnr9a8L8En_dBj__Pr9OYcbTBTvFr2xNkSqPXXehNtjxJTcMCO18-JGetQp0zCUHjNjekmeWz0nfPXv3ZOv7y6_XHyorq7ff7w4v6qM4DxXnR0OZhBt3w_agBilRY5NL6XlVvAeoJGcMwTd2VHIobUSAXBEsAyt6BuxJ2db7zGGuwVTVlNYoi8rFesb1pUGJgoFG2ViSCmiVcfobsutioFajapJea1WowoOatW1J_JRxLhNUY7azf8Lvt2CWM5eRapkHHqDo4toshqDezr8F6j-lGI |
CitedBy_id | crossref_primary_10_1007_s00021_025_00921_7 crossref_primary_10_1016_j_nonrwa_2019_103020 crossref_primary_10_1002_mma_4911 crossref_primary_10_1007_s00033_023_02083_w |
Cites_doi | 10.14492/hokmj/1381517172 10.1016/j.jde.2014.02.021 10.1007/s002459911018 10.1007/s00208-004-0573-7 10.1142/S0219530506000735 10.1007/s00021-005-0182-6 10.1016/j.jmaa.2012.05.039 10.1512/iumj.1991.40.40001 10.1007/s00205-010-0340-8 10.1016/j.na.2011.12.032 10.2969/jmsj/04420307 10.1007/BF00253485 10.1007/s002080050149 10.1007/BF02384076 10.1007/s00205-008-0168-7 10.1007/s00208-012-0861-6 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Dec 2016 |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2016 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.na.2016.08.017 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1873-5215 |
EndPage | 168 |
ExternalDocumentID | 10_1016_j_na_2016_08_017 S0362546X16301894 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HMJ HVGLF HZ~ IHE J1W JJJVA KOM M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SME SPC SPCBC SST SSW SSZ T5K TN5 WUQ XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c322t-7fb8cb3599bac03d6fe2e4966f2f3290046221e0a7fd36b5f6e00ede0f1ef3943 |
IEDL.DBID | .~1 |
ISSN | 0362-546X |
IngestDate | Fri Jul 25 04:31:27 EDT 2025 Thu Apr 24 23:10:50 EDT 2025 Tue Jul 01 01:42:17 EDT 2025 Fri Feb 23 02:33:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Navier–Stokes equations 35Q10 Weak solutions Very weak solutions Exterior domains |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-7fb8cb3599bac03d6fe2e4966f2f3290046221e0a7fd36b5f6e00ede0f1ef3943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1941700413 |
PQPubID | 2045425 |
PageCount | 24 |
ParticipantIDs | proquest_journals_1941700413 crossref_primary_10_1016_j_na_2016_08_017 crossref_citationtrail_10_1016_j_na_2016_08_017 elsevier_sciencedirect_doi_10_1016_j_na_2016_08_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2016 2016-12-00 20161201 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationPlace | Elmsford |
PublicationPlace_xml | – name: Elmsford |
PublicationTitle | Nonlinear analysis |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Kozono, Sohr (br000085) 1992; 4 Kozono, Yamazaki (br000090) 1998; 310 Heck, Kim, Kozono (br000055) 2013; 356 Nakatsuka (br000110) 2012; 75 Galdi, Simader (br000045) 1990; 112 Ladyzhenckaya (br000100) 1969 Serre (br000115) 1983; 4 Babenko (br000015) 1973; 91 Borchers, Shor (br000020) 1990; 19 Kozono, Sohr (br000075) 1991; 40 Amrouche, Razafison (br000005) 2006; 4 Kim, Kim (br000065) 2014; 257 Marušić-Paloka (br000105) 2000; 41 Kim, Kozono (br000070) 2012; 395 Leray (br000095) 1933; 12 Finn (br000035) 1965; 19 Farwig (br000025) 1998; vol. 16 Farwig, Galdi, Sohr (br000030) 2006; 8 Galdi (br000040) 2011 Galdi, Simader, Sohr (br000050) 2005; 331 Kim (br000060) 2009; 193 Amrouche, Rodríguez-Bellido (br000010) 2011; 199 Kozono, Sohr (br000080) 1992; 44 Sohr (br000120) 2001 Heck (10.1016/j.na.2016.08.017_br000055) 2013; 356 Borchers (10.1016/j.na.2016.08.017_br000020) 1990; 19 Galdi (10.1016/j.na.2016.08.017_br000050) 2005; 331 Kim (10.1016/j.na.2016.08.017_br000060) 2009; 193 Amrouche (10.1016/j.na.2016.08.017_br000005) 2006; 4 Galdi (10.1016/j.na.2016.08.017_br000045) 1990; 112 Kozono (10.1016/j.na.2016.08.017_br000075) 1991; 40 Marušić-Paloka (10.1016/j.na.2016.08.017_br000105) 2000; 41 Kim (10.1016/j.na.2016.08.017_br000065) 2014; 257 Babenko (10.1016/j.na.2016.08.017_br000015) 1973; 91 Kim (10.1016/j.na.2016.08.017_br000070) 2012; 395 Nakatsuka (10.1016/j.na.2016.08.017_br000110) 2012; 75 Sohr (10.1016/j.na.2016.08.017_br000120) 2001 Finn (10.1016/j.na.2016.08.017_br000035) 1965; 19 Kozono (10.1016/j.na.2016.08.017_br000080) 1992; 44 Kozono (10.1016/j.na.2016.08.017_br000085) 1992; 4 Amrouche (10.1016/j.na.2016.08.017_br000010) 2011; 199 Farwig (10.1016/j.na.2016.08.017_br000030) 2006; 8 Farwig (10.1016/j.na.2016.08.017_br000025) 1998; vol. 16 Kozono (10.1016/j.na.2016.08.017_br000090) 1998; 310 Galdi (10.1016/j.na.2016.08.017_br000040) 2011 Leray (10.1016/j.na.2016.08.017_br000095) 1933; 12 Serre (10.1016/j.na.2016.08.017_br000115) 1983; 4 Ladyzhenckaya (10.1016/j.na.2016.08.017_br000100) 1969 |
References_xml | – volume: 44 start-page: 307 year: 1992 end-page: 330 ident: br000080 article-title: Density properties for solenoidal vector fields, with applications to the Navier–Stokes equations in exterior domains publication-title: J. Math. Soc. Japan – volume: 4 start-page: 543 year: 1983 end-page: 559 ident: br000115 article-title: Equations de Navier–Stokes stationnaires avec données peu régulières publication-title: Ann. Sc. Norm. Super. Pisa – volume: 75 start-page: 3457 year: 2012 end-page: 3464 ident: br000110 article-title: On uniqueness of stationary solutions to the Navier–Stokes equations in exterior domains publication-title: Nonlinear Anal. – volume: 257 start-page: 3669 year: 2014 end-page: 3699 ident: br000065 article-title: -estimates for the stationary Oseen equations on exterior domains publication-title: J. Differential Equations – year: 1969 ident: br000100 article-title: The Mathematical Theory of Viscous Incompressible Flow – volume: 193 start-page: 117 year: 2009 end-page: 152 ident: br000060 article-title: Existence and regularity of very weak solutions of the stationary Navier–Stokes equations publication-title: Arch. Ration. Mech. Anal. – volume: 19 start-page: 67 year: 1990 end-page: 87 ident: br000020 article-title: On the equation publication-title: Hokkaido Math. J. – volume: 12 start-page: 1 year: 1933 end-page: 82 ident: br000095 article-title: Étude de diverses équations intégrales non linéaires et de quelques problémes que pose l’Hydrodynamique publication-title: J. Math. Pures Appl. – volume: 91 start-page: 3 year: 1973 end-page: 27 ident: br000015 article-title: On stationary solutions of the problem of flow past a body of a viscous incompressible fluid publication-title: Mat. Sb. – volume: 395 start-page: 486 year: 2012 end-page: 495 ident: br000070 article-title: On the stationary Navier–Stokes equations in exterior domains publication-title: J. Math. Anal. Appl. – year: 2011 ident: br000040 article-title: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems – volume: 310 start-page: 279 year: 1998 end-page: 305 ident: br000090 article-title: Exterior problem for the stationary Navier–Stokes equations in the Lorentz space publication-title: Math. Ann. – volume: 356 start-page: 653 year: 2013 end-page: 681 ident: br000055 article-title: Weak solutions of the stationary Navier–Stokes equations for a viscous incompressible fluid past an obstacle publication-title: Math. Ann. – volume: 40 start-page: 1 year: 1991 end-page: 27 ident: br000075 article-title: New a priori estimates for the Stokes equations in exterior domains publication-title: Indiana Univ. Math. J. – year: 2001 ident: br000120 article-title: The Navier–Stokes Equations, An Elementary Functional Analytic Approach – volume: 4 start-page: 133 year: 2006 end-page: 162 ident: br000005 article-title: On the Oseen problem in three-dimensional exterior domains publication-title: Anal. Appl. (Singap.) – volume: 19 start-page: 363 year: 1965 end-page: 406 ident: br000035 article-title: On exterior stationary problem for the Navier–Stokes equations and associated perturbation problems publication-title: Arch. Ration. Mech. Anal. – volume: 41 start-page: 365 year: 2000 end-page: 375 ident: br000105 article-title: Solvability of the Navier–Stokes system with publication-title: Appl. Math. Optim. – volume: vol. 16 start-page: 53 year: 1998 end-page: 115 ident: br000025 article-title: The stationary Navier–Stokes equations in a 3D-exterior domain publication-title: Recent Topics on Mathematical Theory of Viscous Incompressible Fluid – volume: 112 start-page: 291 year: 1990 end-page: 318 ident: br000045 article-title: Existence, uniqueness and publication-title: Arch. Ration. Mech. Anal. – volume: 4 start-page: 155 year: 1992 end-page: 181 ident: br000085 article-title: On a new class of generalized solutions for the Stokes equations in exterior domains publication-title: Ann. Sc. Norm. Super Pisa Cl. Sci. – volume: 8 start-page: 423 year: 2006 end-page: 444 ident: br000030 article-title: A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous boundary data publication-title: J. Math. Fluid Mech. – volume: 331 start-page: 41 year: 2005 end-page: 74 ident: br000050 article-title: A class of solutions to stationary Stokes and Navier–Stokes equations with boundary data in publication-title: Math. Ann. – volume: 199 start-page: 597 year: 2011 end-page: 651 ident: br000010 article-title: Stationary Stokes, Oseen and Navier–Stokes equations with singular data publication-title: Arch. Ration. Mech. Anal. – volume: 91 start-page: 3 year: 1973 ident: 10.1016/j.na.2016.08.017_br000015 article-title: On stationary solutions of the problem of flow past a body of a viscous incompressible fluid publication-title: Mat. Sb. – volume: 19 start-page: 67 year: 1990 ident: 10.1016/j.na.2016.08.017_br000020 article-title: On the equation rotv=g and divu=f with zero boundary conditions publication-title: Hokkaido Math. J. doi: 10.14492/hokmj/1381517172 – year: 1969 ident: 10.1016/j.na.2016.08.017_br000100 – volume: 257 start-page: 3669 year: 2014 ident: 10.1016/j.na.2016.08.017_br000065 article-title: Lq-estimates for the stationary Oseen equations on exterior domains publication-title: J. Differential Equations doi: 10.1016/j.jde.2014.02.021 – volume: 12 start-page: 1 year: 1933 ident: 10.1016/j.na.2016.08.017_br000095 article-title: Étude de diverses équations intégrales non linéaires et de quelques problémes que pose l’Hydrodynamique publication-title: J. Math. Pures Appl. – volume: vol. 16 start-page: 53 year: 1998 ident: 10.1016/j.na.2016.08.017_br000025 article-title: The stationary Navier–Stokes equations in a 3D-exterior domain – volume: 41 start-page: 365 year: 2000 ident: 10.1016/j.na.2016.08.017_br000105 article-title: Solvability of the Navier–Stokes system with L2-boundary data publication-title: Appl. Math. Optim. doi: 10.1007/s002459911018 – volume: 331 start-page: 41 year: 2005 ident: 10.1016/j.na.2016.08.017_br000050 article-title: A class of solutions to stationary Stokes and Navier–Stokes equations with boundary data in W−1/q,q publication-title: Math. Ann. doi: 10.1007/s00208-004-0573-7 – volume: 4 start-page: 133 year: 2006 ident: 10.1016/j.na.2016.08.017_br000005 article-title: On the Oseen problem in three-dimensional exterior domains publication-title: Anal. Appl. (Singap.) doi: 10.1142/S0219530506000735 – volume: 8 start-page: 423 year: 2006 ident: 10.1016/j.na.2016.08.017_br000030 article-title: A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous boundary data publication-title: J. Math. Fluid Mech. doi: 10.1007/s00021-005-0182-6 – year: 2011 ident: 10.1016/j.na.2016.08.017_br000040 – volume: 395 start-page: 486 year: 2012 ident: 10.1016/j.na.2016.08.017_br000070 article-title: On the stationary Navier–Stokes equations in exterior domains publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2012.05.039 – volume: 4 start-page: 543 issue: 10 year: 1983 ident: 10.1016/j.na.2016.08.017_br000115 article-title: Equations de Navier–Stokes stationnaires avec données peu régulières publication-title: Ann. Sc. Norm. Super. Pisa – volume: 40 start-page: 1 year: 1991 ident: 10.1016/j.na.2016.08.017_br000075 article-title: New a priori estimates for the Stokes equations in exterior domains publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1991.40.40001 – volume: 199 start-page: 597 year: 2011 ident: 10.1016/j.na.2016.08.017_br000010 article-title: Stationary Stokes, Oseen and Navier–Stokes equations with singular data publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-010-0340-8 – volume: 75 start-page: 3457 year: 2012 ident: 10.1016/j.na.2016.08.017_br000110 article-title: On uniqueness of stationary solutions to the Navier–Stokes equations in exterior domains publication-title: Nonlinear Anal. doi: 10.1016/j.na.2011.12.032 – volume: 44 start-page: 307 year: 1992 ident: 10.1016/j.na.2016.08.017_br000080 article-title: Density properties for solenoidal vector fields, with applications to the Navier–Stokes equations in exterior domains publication-title: J. Math. Soc. Japan doi: 10.2969/jmsj/04420307 – volume: 19 start-page: 363 year: 1965 ident: 10.1016/j.na.2016.08.017_br000035 article-title: On exterior stationary problem for the Navier–Stokes equations and associated perturbation problems publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00253485 – volume: 310 start-page: 279 year: 1998 ident: 10.1016/j.na.2016.08.017_br000090 article-title: Exterior problem for the stationary Navier–Stokes equations in the Lorentz space publication-title: Math. Ann. doi: 10.1007/s002080050149 – year: 2001 ident: 10.1016/j.na.2016.08.017_br000120 – volume: 112 start-page: 291 year: 1990 ident: 10.1016/j.na.2016.08.017_br000045 article-title: Existence, uniqueness and Lq-estimates for the Stokes problem in exterior domains publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF02384076 – volume: 193 start-page: 117 year: 2009 ident: 10.1016/j.na.2016.08.017_br000060 article-title: Existence and regularity of very weak solutions of the stationary Navier–Stokes equations publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-008-0168-7 – volume: 356 start-page: 653 year: 2013 ident: 10.1016/j.na.2016.08.017_br000055 article-title: Weak solutions of the stationary Navier–Stokes equations for a viscous incompressible fluid past an obstacle publication-title: Math. Ann. doi: 10.1007/s00208-012-0861-6 – volume: 4 start-page: 155 issue: 19 year: 1992 ident: 10.1016/j.na.2016.08.017_br000085 article-title: On a new class of generalized solutions for the Stokes equations in exterior domains publication-title: Ann. Sc. Norm. Super Pisa Cl. Sci. |
SSID | ssj0001736 |
Score | 2.1920197 |
Snippet | We consider the stationary motion of an incompressible Navier–Stokes fluid past obstacles in R3, subject to the given boundary velocity vb, external force... We consider the stationary motion of an incompressible Navier-Stokes fluid past obstacles in R3, subject to the given boundary velocity vb, external force... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 145 |
SubjectTerms | Barriers Exterior domains Fluid dynamics Fluid flow Incompressible flow Infinity Navier-Stokes equations Nonlinear equations Regularity Uniqueness Very weak solutions Weak solutions |
Title | Very weak solutions of the stationary Navier–Stokes equations for an incompressible fluid past obstacles |
URI | https://dx.doi.org/10.1016/j.na.2016.08.017 https://www.proquest.com/docview/1941700413 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-wgFCZGN7q4Pq7m-gwLNy7qlEJpuzRGM2qcjY_MjkA5JKNjZ5zWGDfG_-A_9JcILR31xrhwCTkQAufV8vEdhHYTV4km5xDIxP26USoJpMlVoG3s0jzSKaia7bPHu1fstB_3Z9Bh-xbGwSq97298eu2tfU_H72ZnPBh0LpzvjRnv24wiJGnmOEEZSxx__v7zB8yDJJS3FFJO2l9VNhivwjEPEV6TeNYly74NTf856TryHC-hPz5lxAfNqpbRDBQraNGnj9gbZ7mCFj5xC9rW-ZSQtfyLbq5h8oQfQd7iqbLhkcFWBJfNbby0Aj3p1vL28npRjW6hxHDfMIGX2Oa2WBbYcTncNdhZNQRshg8DjceyrPBI2XkcxG4VXR0fXR52A19mIcitNVdBYlSaKxpnmZJ5SDU3EAGzn0EmMjTK6uerEYFQJkZTrmLDIQxBQ2gIGJoxuoZmi1EB_xBOQxWBzm0KqihTJE01MxBTGXEpCYFkHXXaHRa55yB3pTCGogWb3YhCCncmwlXHJHbE3nTEuOHf-EGWtocmvuiQsOHhh1Fb7fkKb7-lIBlzxIU2wm_8atJNNO9aDe5lC81WkwfYttlLpXZq9dxBcwcnZ93eO-qG8Oo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUWONAeWrotoi1tfeiFQ5o4dpzkWKGipWX3soD2ZtnxWFpYki0Jqnqp-g_9Q74EO3G2gBAHjknGluUZz0zs5zcIfU5dJZqCQyBTt3WjVBpIU6hA29ileawzUC3b54SPTtj3WTIboP3-LoyDVXrf3_n01lv7N6GfzXA5n4dT53sTxmc2o4hIlrM1tMESmjrT_vLnP86DpJT3HFJO3J9VdiCv0lEPEd6yeLY1yx6MTfe8dBt6DrbQC58z4q_dsF6hAZRD9NLnj9ivznqInt8iF7RP4xUja_0anZ3C5W_8C-Q5Xlkbrgy2IrjujuOlFZhIN5brv_-mTXUONYafHRV4jW1yi2WJHZnDRQeeVQvAZnE113gp6wZXyvbjMHZv0MnBt-P9UeDrLASFXc5NkBqVFYomea5kEVHNDcTA7H-QiQ2N8_b-akwgkqnRlKvEcIgi0BAZAobmjG6j9bIqYQfhLFIx6MLmoIoyRbJMMwMJlTGXkhBI36Kwn2FReBJyVwtjIXq02ZkopXA6Ea48JrEt9lYtlh0BxyOytFeauGNEwsaHR1rt9voVfgHXguTMMRfaEP_uSZ1-Qpuj4_GRODqc_HiPnrkvHQhmF603l1fwwaYyjfrYmuoNhNHygA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Very+weak+solutions+of+the+stationary+Navier%E2%80%93Stokes+equations+for+an+incompressible+fluid+past+obstacles&rft.jtitle=Nonlinear+analysis&rft.au=Kim%2C+Dugyu&rft.au=Kim%2C+Hyunseok&rft.date=2016-12-01&rft.pub=Elsevier+BV&rft.issn=0362-546X&rft.eissn=1873-5215&rft.volume=147&rft.spage=145&rft_id=info:doi/10.1016%2Fj.na.2016.08.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon |