Learning Neural Representations and Local Embedding for Nonlinear Dimensionality Reduction Mapping
This work explores neural approximation for nonlinear dimensionality reduction mapping based on internal representations of graph-organized regular data supports. Given training observations are assumed as a sample from a high-dimensional space with an embedding low-dimensional manifold. An approxim...
Saved in:
Published in | Mathematics (Basel) Vol. 9; no. 9; p. 1017 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math9091017 |
Cover
Abstract | This work explores neural approximation for nonlinear dimensionality reduction mapping based on internal representations of graph-organized regular data supports. Given training observations are assumed as a sample from a high-dimensional space with an embedding low-dimensional manifold. An approximating function consisting of adaptable built-in parameters is optimized subject to given training observations by the proposed learning process, and verified for transformation of novel testing observations to images in the low-dimensional output space. Optimized internal representations sketch graph-organized supports of distributed data clusters and their representative images in the output space. On the basis, the approximating function is able to operate for testing without reserving original massive training observations. The neural approximating model contains multiple modules. Each activates a non-zero output for mapping in response to an input inside its correspondent local support. Graph-organized data supports have lateral interconnections for representing neighboring relations, inferring the minimal path between centroids of any two data supports, and proposing distance constraints for mapping all centroids to images in the output space. Following the distance-preserving principle, this work proposes Levenberg-Marquardt learning for optimizing images of centroids in the output space subject to given distance constraints, and further develops local embedding constraints for mapping during execution phase. Numerical simulations show the proposed neural approximation effective and reliable for nonlinear dimensionality reduction mapping. |
---|---|
AbstractList | This work explores neural approximation for nonlinear dimensionality reduction mapping based on internal representations of graph-organized regular data supports. Given training observations are assumed as a sample from a high-dimensional space with an embedding low-dimensional manifold. An approximating function consisting of adaptable built-in parameters is optimized subject to given training observations by the proposed learning process, and verified for transformation of novel testing observations to images in the low-dimensional output space. Optimized internal representations sketch graph-organized supports of distributed data clusters and their representative images in the output space. On the basis, the approximating function is able to operate for testing without reserving original massive training observations. The neural approximating model contains multiple modules. Each activates a non-zero output for mapping in response to an input inside its correspondent local support. Graph-organized data supports have lateral interconnections for representing neighboring relations, inferring the minimal path between centroids of any two data supports, and proposing distance constraints for mapping all centroids to images in the output space. Following the distance-preserving principle, this work proposes Levenberg-Marquardt learning for optimizing images of centroids in the output space subject to given distance constraints, and further develops local embedding constraints for mapping during execution phase. Numerical simulations show the proposed neural approximation effective and reliable for nonlinear dimensionality reduction mapping. |
Author | Hu, Kai Jong, Sing-Jie Wu, Sheng-Shiung Wu, Jiann-Ming |
Author_xml | – sequence: 1 givenname: Sheng-Shiung surname: Wu fullname: Wu, Sheng-Shiung – sequence: 2 givenname: Sing-Jie surname: Jong fullname: Jong, Sing-Jie – sequence: 3 givenname: Kai surname: Hu fullname: Hu, Kai – sequence: 4 givenname: Jiann-Ming orcidid: 0000-0003-4520-9206 surname: Wu fullname: Wu, Jiann-Ming |
BookMark | eNpNkU1LxDAQhoMouK6e_AMFj7I6SZq2Ocq6fsCqIHoO02aqXbpJTbqH_fdmXRFzSXjzzDMMc8IOnXfE2DmHKyk1XK9x_NSgOfDygE2EEOWsTPnhv_cxO4txBeloLqtcT1i9JAyucx_ZM20C9tkrDYEiuRHHzruYobPZ0jfpZ7Guydod2vqQPXvXdy4VZ7fdmlxMMPbduE0Cu2l2tdkTDkPCT9lRi32ks997yt7vFm_zh9ny5f5xfrOcNVKIcVYKUbWaLKmy1VxxggqUqBXnqKWtsBU5aFUASaGhkWWOJFXOQYsaKgW1nLLHvdd6XJkhdGsMW-OxMz-BDx8Gw9g1PZla6hqS3Ra6ySnnuijKqsaq0ArIIibXxd41BP-1oTiald-ENGE0QkngqhR5kajLPdUEH2Og9q8rB7Pbifm3E_kNDyl_nw |
Cites_doi | 10.1007/BF00337288 10.1109/TIP.2019.2915162 10.1038/nature14539 10.1073/pnas.79.8.2554 10.1142/S0129065789000414 10.1016/j.neucom.2011.03.002 10.1007/BF02287916 10.1073/pnas.1031596100 10.1049/iet-ipr.2019.1119 10.1126/science.290.5500.2319 10.1016/j.neucom.2019.06.093 10.1007/978-3-642-97610-0 10.1038/343644a0 10.1016/S0925-2312(00)00303-9 10.1126/science.1127647 10.1109/TNN.2006.873284 10.1109/TNN.2008.2003271 10.1126/science.290.5500.2323 10.1016/j.patcog.2020.107508 10.1080/14786440109462720 10.1109/5.58323 10.1007/978-3-642-97171-6_8 10.1038/326689a0 10.1016/S0893-6080(02)00018-7 10.1016/j.knosys.2020.106370 10.1007/978-1-4471-0453-7 10.1109/T-C.1969.222678 10.1016/j.gmod.2020.101060 10.1109/72.329697 10.1007/BF00339943 10.1038/s41467-018-04368-5 10.1037/h0071325 10.1007/BF01386390 10.1016/j.eswa.2020.113281 10.1007/BF02288916 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math9091017 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_b39b0052d69c4e4196678ba86950edaa 10_3390_math9091017 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c322t-7228f9ede57f9151e08052b511a93d8af2409560e3290c374ae3541092b0850b3 |
IEDL.DBID | 8FG |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:25:37 EDT 2025 Fri Jul 25 11:54:21 EDT 2025 Tue Jul 01 02:58:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-7228f9ede57f9151e08052b511a93d8af2409560e3290c374ae3541092b0850b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4520-9206 |
OpenAccessLink | https://www.proquest.com/docview/2530157246?pq-origsite=%requestingapplication% |
PQID | 2530157246 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b39b0052d69c4e4196678ba86950edaa proquest_journals_2530157246 crossref_primary_10_3390_math9091017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Pearson (ref_9) 1901; 2 Ding (ref_37) 2018; 9 Hagan (ref_24) 1994; 5 Wu (ref_35) 2000; 34 ref_11 Wu (ref_28) 2011; 74 Dijkstra (ref_31) 1959; 1 Wu (ref_27) 2008; 19 Durbin (ref_20) 1987; 326 Torgerson (ref_13) 1952; 17 Tasoulis (ref_30) 2020; 107 Martin (ref_36) 2020; 108 LeCun (ref_38) 2015; 521 ref_18 ref_17 ref_39 Li (ref_8) 2020; 14 Tenenbaum (ref_2) 2000; 290 Sammon (ref_15) 1969; 100 Hopfield (ref_32) 1982; 79 Donoho (ref_12) 2003; 100 Kohonen (ref_16) 1982; 43 Roweis (ref_1) 2000; 290 Durbin (ref_21) 1990; 343 Wu (ref_23) 2006; 17 ref_25 Hopfield (ref_33) 1985; 52 Widrow (ref_22) 1990; 78 Young (ref_14) 1938; 3 Hu (ref_19) 2019; 365 Taskin (ref_7) 2019; 28 ref_26 Wu (ref_29) 2002; 15 Peterson (ref_34) 1989; 1 Afshar (ref_5) 2020; 206 Hotelling (ref_10) 1933; 24 ref_4 Hinton (ref_3) 2006; 313 Rabin (ref_6) 2020; 149 |
References_xml | – volume: 43 start-page: 59 year: 1982 ident: ref_16 article-title: Self-organized formation of topologically correct feature maps publication-title: Biol. Cybern. doi: 10.1007/BF00337288 – volume: 28 start-page: 5227 year: 2019 ident: ref_7 article-title: An Out-of-Sample Extension to Manifold Learning via Meta-Modelling publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2915162 – volume: 521 start-page: 436 year: 2015 ident: ref_38 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 79 start-page: 2554 year: 1982 ident: ref_32 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.79.8.2554 – volume: 1 start-page: 3 year: 1989 ident: ref_34 article-title: A New Method for Mapping Optimization Problems onto Neural Networks publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065789000414 – volume: 74 start-page: 2228 year: 2011 ident: ref_28 article-title: Annealed Kullback—Leibler divergence minimization for generalized TSP, spot identification and gene sorting publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.03.002 – volume: 3 start-page: 19 year: 1938 ident: ref_14 article-title: Discussion of a set of points in terms of their mutual distances publication-title: Psychometrika doi: 10.1007/BF02287916 – ident: ref_11 – volume: 100 start-page: 5591 year: 2003 ident: ref_12 article-title: Hessian eigenmaps: Locally linear em-bedding techniques for high-dimensional data publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1031596100 – volume: 14 start-page: 2156 year: 2020 ident: ref_8 article-title: 1D representation of Laplacian eigenmaps and dual k-nearest neighbours for unified video coding publication-title: IET Image Process. doi: 10.1049/iet-ipr.2019.1119 – volume: 290 start-page: 2319 year: 2000 ident: ref_2 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 365 start-page: 147 year: 2019 ident: ref_19 article-title: ELM-SOM plus: A continuous mapping for visualization publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.06.093 – ident: ref_18 doi: 10.1007/978-3-642-97610-0 – ident: ref_39 – volume: 343 start-page: 644 year: 1990 ident: ref_21 article-title: A dimension reduction framework for cortical maps publication-title: Nature doi: 10.1038/343644a0 – volume: 34 start-page: 55 year: 2000 ident: ref_35 article-title: Potts models with two sets of interactive dynamics publication-title: Neurocomputing doi: 10.1016/S0925-2312(00)00303-9 – volume: 313 start-page: 504 year: 2006 ident: ref_3 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 17 start-page: 541 year: 2006 ident: ref_23 article-title: Function approximation using generalized adalines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.873284 – volume: 19 start-page: 2032 year: 2008 ident: ref_27 article-title: Multilayer Potts Perceptrons with Levenberg–Marquardt Learning publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2003271 – volume: 290 start-page: 2323 year: 2000 ident: ref_1 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – ident: ref_25 – volume: 107 start-page: 107508 year: 2020 ident: ref_30 article-title: Nonlinear Dimensionality Reduction for Clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107508 – ident: ref_4 – volume: 2 start-page: 559 year: 1901 ident: ref_9 article-title: LIII. On lines and planes of closest fit to systems of points in space publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci. doi: 10.1080/14786440109462720 – volume: 78 start-page: 1415 year: 1990 ident: ref_22 article-title: 30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation publication-title: Proc. IEEE doi: 10.1109/5.58323 – ident: ref_17 doi: 10.1007/978-3-642-97171-6_8 – volume: 326 start-page: 689 year: 1987 ident: ref_20 article-title: An analogue approach to the traveling salesman problem using an elastic net method publication-title: Nature doi: 10.1038/326689a0 – volume: 15 start-page: 337 year: 2002 ident: ref_29 article-title: Learning generative models of natural images publication-title: Neural Netw. doi: 10.1016/S0893-6080(02)00018-7 – volume: 206 start-page: 106370 year: 2020 ident: ref_5 article-title: High-dimensional feature selection for genomic datasets publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106370 – ident: ref_26 doi: 10.1007/978-1-4471-0453-7 – volume: 100 start-page: 401 year: 1969 ident: ref_15 article-title: A nonlinear mapping algorithm for data structure analysis publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1969.222678 – volume: 108 start-page: 101060 year: 2020 ident: ref_36 article-title: Robust dimensionality reduction for data visualization with deep neural networks publication-title: Graph. Models doi: 10.1016/j.gmod.2020.101060 – volume: 5 start-page: 989 year: 1994 ident: ref_24 article-title: Training feedforward networks with the Marquardt algorithm publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.329697 – volume: 52 start-page: 141 year: 1985 ident: ref_33 article-title: “Neural” computation of decisions in optimization problems publication-title: Biol. Cybern. doi: 10.1007/BF00339943 – volume: 9 start-page: 1 year: 2018 ident: ref_37 article-title: Interpretable dimensionality reduction of single cell transcriptome data with deep generative models publication-title: Nat. Commun. doi: 10.1038/s41467-018-04368-5 – volume: 24 start-page: 417 year: 1933 ident: ref_10 article-title: Analysis of a complex of statistical variables into principal components publication-title: J. Edu. Psychol. doi: 10.1037/h0071325 – volume: 1 start-page: 269 year: 1959 ident: ref_31 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. doi: 10.1007/BF01386390 – volume: 149 start-page: 113281 year: 2020 ident: ref_6 article-title: Classification of human hand movements based on EMG signals using nonlinear dimen-sionality reduction and data fusion techniques publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113281 – volume: 17 start-page: 401 year: 1952 ident: ref_13 article-title: Multidimensional scaling: I. Theory and method publication-title: Psychometrika doi: 10.1007/BF02288916 |
SSID | ssj0000913849 |
Score | 2.1432137 |
Snippet | This work explores neural approximation for nonlinear dimensionality reduction mapping based on internal representations of graph-organized regular data... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 1017 |
SubjectTerms | Approximation Centroids data support approximation data visualization distance preserving mapping Embedding Graphical representations Learning Mapping Mathematical models Mathematics Neighborhoods nonlinear dimensionality reduction mapping Principal components analysis Reduction topology preservation Training unsupervised learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQkIeuURPbceORj6IK0Q6ISt0iX3wpCwG15f9zttNSiYGFNbKS6M6-9150ecdYvwZiyRpJqVZOJwo1JFBbkQiTW2LAFjPw3yEnUz2eqad5Pt8Z9eV7wqI9cAzcAGRw7RNOm0qhog1D5RVsoU2eorOBGqUm3RFToQabTBbKxB_yJOn6AfG_N-PBMYwm-4Gg4NT_qxAHdHk8YoctLeS38XWO2R42J-xgsvVUXZ0yaK1QF9wbatDil9DE2v471Ky4bRx_9tDER--AzoMSJ0rKp9ENwy75g7fyjzYcRL7pBi56x_KJ9TYNizM2exy93o-TdkJCUtFBXCdDIYraoMN8WBvCbkz9hAIgEmWNdIWtCa-9AEIpTFrJobIoc5WlRoC3qgN5zjrNR4MXjKNTtbFaIFZGAYKpsyol_Ur6KwMoqi7rb4JWfkYjjJIEhI9tuRPbLrvzAd0u8e7V4QLltGxzWv6V0y7rbdJRtkdqVYqcalE-FEpf_sczrti-8O0poXexxzrr5RdeE79Yw03YSt8KdM6H priority: 102 providerName: Directory of Open Access Journals |
Title | Learning Neural Representations and Local Embedding for Nonlinear Dimensionality Reduction Mapping |
URI | https://www.proquest.com/docview/2530157246 https://doaj.org/article/b39b0052d69c4e4196678ba86950edaa |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrBmHLYtaJN00dOiMfGhNiEEEjcqqRxx4UO1vH_sdNsICFxbatWchx_n13nM2ODyiBLTgEz1dKmgYTUBKbSIhAq0ciANUSG6pCTaTp-kfevyasvuDW-rXIVE12gtvOSauQXIkFXTDIh08uPz4CmRtHfVT9CY5NtRfhJ8vN8dLeusZDmZS5Veywvxuz-AlngmyKIdAPKfoDI6fX_CccOY0Z7bNeTQ37VruY-24D6gO1M1sqqzSEzXhB1xklWAx9-cq2s_gRR3XBdW_5AAMWH7wYsQRNHYsqnrSaGXvBbEvRvxTiQguMLbKsgyyeaxBpmR-xlNHy-GQd-TkJQ4nZcBpkQeaXAQpJVChEcQppTYJBKaRXbXFeI2pQGQSxUWMaZ1BAnMgqVMCRYZ-Jj1qnnNZwwDlZWSqcCoFTSgFFVVIaYxWIWFhmTl102WBmt-GjlMApMI8i2xS_bdtk1GXT9CGlYuwvzxazwW6IwsdNjFDZVpQSJoQCB0-g8VUkIVusu662Wo_Abqyl-3OD0_9tnbFtQ-4nrTeyxznLxBefIH5am75ykz7auh9PHp77Lwr8BhCbIvg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1BcoAeUPlSA2nxgR5XbLzezfpQIdIEBUiiCoHEbbHXs-mlm5Ckqvqn-I3M7EdAqtQb17Xlw3js98Y78wbgNLPEkiOkSDV1kacwsp7NjPSkDg0xYIMdy--Q40k0vFfXD-HDBjzXtTCcVlnficVF7WYpv5GfyZBcMexKFZ3PnzzuGsV_V-sWGqVb3ODfPxSyLb9d9Wl_v0p5Obj7PvSqrgJeSs678rpSxplGh2E304R36LOqvyXiYXTgYpMRxnHQgIHUfhp0lcEgVB1fS8vybjagdTehqbiitQHN3mDy43b9qsMqm7HSZSFgEGj_jHjnT82gXLREe4W-okPAPwBQoNrlR9ip6Ki4KP1nFzYw34MP47WW63IfbCXBOhUs5EGTb4vk2apmKV8KkzsxYkgUg18WHYOhICosJqUKh1mIPrcQKOU_iPTTAq7UrBVjw_IQ0wO4fxcbHkIjn-X4CQQ6lWkTScRUK4tWZ53Up7iZ4r6OtXHagtPaaMm8FOBIKHBh2yZvbNuCHht0PYVVs4sPs8U0qQ5hYoNCAVK6SKcKFV0-BNXWxJEOfXTGtKBdb0dSHeVl8up4R_8fPoGt4d14lIyuJjfHsC05-aXIjGxDY7X4jZ-Jvazsl8plBDy-t5e-AH2IAZs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RKlXtAdEvsUCpD_QYbdZ2PnxAFXTZQmFXVVUkbqkdT7aXZunuIsRf49d1xkkWpErcuCaRD-NnvzfO-A3AfuVIJadImWrp00hj6iJXWRlJk1hSwBYHjs8hx5P05EJ_u0wu1-CuuwvDZZXdnhg2aj8r-Yy8LxOCYpJJnfartizi-3D0-epvxB2k-E9r106jgcgZ3t5Q-rY4OB3SXH-ScnT888tJ1HYYiEoC8jLKpMwrgx6TrDLEfRizw78jEWKN8rmtiO84gUAlTVyqTFtUiR7ERjq2enOKxn0GzzOVGU788tHX1fkO-23m2jRXApUycZ8U6G_D9Byao92TYOgV8B8VBH4bbcJGK0zFYYOk17CG9Rt4NV65ui7egmvNWKeCLT3o4x-hjLa9vVQvhK29OGdyFMd_HHqmRUGiWEwaPw47F0NuJtAYgZD8pwF8414rxpaNIqbv4OJJIvge1utZjVsg0OvK2FQilkY7dKYalDFl0JQBDpzLyx7sd0ErrhorjoJSGI5t8SC2PTjigK4-Yf_s8GA2nxbtciycCl6Q0qem1KhpGyLSdjZPTRKjt7YHu910FO2iXhT3ENx-_PVHeEHYLM5PJ2c78FJyFUwokdyF9eX8Gj-QjFm6vYAXAb-eGqD_AMvGBGs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Neural+Representations+and+Local+Embedding+for+Nonlinear+Dimensionality+Reduction+Mapping&rft.jtitle=Mathematics+%28Basel%29&rft.au=Wu%2C+Sheng-Shiung&rft.au=Sing-Jie+Jong&rft.au=Hu%2C+Kai&rft.date=2021-05-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=9&rft.issue=9&rft.spage=1017&rft_id=info:doi/10.3390%2Fmath9091017&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |