Learning Neural Representations and Local Embedding for Nonlinear Dimensionality Reduction Mapping

This work explores neural approximation for nonlinear dimensionality reduction mapping based on internal representations of graph-organized regular data supports. Given training observations are assumed as a sample from a high-dimensional space with an embedding low-dimensional manifold. An approxim...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 9; no. 9; p. 1017
Main Authors Wu, Sheng-Shiung, Jong, Sing-Jie, Hu, Kai, Wu, Jiann-Ming
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2021
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math9091017

Cover

Abstract This work explores neural approximation for nonlinear dimensionality reduction mapping based on internal representations of graph-organized regular data supports. Given training observations are assumed as a sample from a high-dimensional space with an embedding low-dimensional manifold. An approximating function consisting of adaptable built-in parameters is optimized subject to given training observations by the proposed learning process, and verified for transformation of novel testing observations to images in the low-dimensional output space. Optimized internal representations sketch graph-organized supports of distributed data clusters and their representative images in the output space. On the basis, the approximating function is able to operate for testing without reserving original massive training observations. The neural approximating model contains multiple modules. Each activates a non-zero output for mapping in response to an input inside its correspondent local support. Graph-organized data supports have lateral interconnections for representing neighboring relations, inferring the minimal path between centroids of any two data supports, and proposing distance constraints for mapping all centroids to images in the output space. Following the distance-preserving principle, this work proposes Levenberg-Marquardt learning for optimizing images of centroids in the output space subject to given distance constraints, and further develops local embedding constraints for mapping during execution phase. Numerical simulations show the proposed neural approximation effective and reliable for nonlinear dimensionality reduction mapping.
AbstractList This work explores neural approximation for nonlinear dimensionality reduction mapping based on internal representations of graph-organized regular data supports. Given training observations are assumed as a sample from a high-dimensional space with an embedding low-dimensional manifold. An approximating function consisting of adaptable built-in parameters is optimized subject to given training observations by the proposed learning process, and verified for transformation of novel testing observations to images in the low-dimensional output space. Optimized internal representations sketch graph-organized supports of distributed data clusters and their representative images in the output space. On the basis, the approximating function is able to operate for testing without reserving original massive training observations. The neural approximating model contains multiple modules. Each activates a non-zero output for mapping in response to an input inside its correspondent local support. Graph-organized data supports have lateral interconnections for representing neighboring relations, inferring the minimal path between centroids of any two data supports, and proposing distance constraints for mapping all centroids to images in the output space. Following the distance-preserving principle, this work proposes Levenberg-Marquardt learning for optimizing images of centroids in the output space subject to given distance constraints, and further develops local embedding constraints for mapping during execution phase. Numerical simulations show the proposed neural approximation effective and reliable for nonlinear dimensionality reduction mapping.
Author Hu, Kai
Jong, Sing-Jie
Wu, Sheng-Shiung
Wu, Jiann-Ming
Author_xml – sequence: 1
  givenname: Sheng-Shiung
  surname: Wu
  fullname: Wu, Sheng-Shiung
– sequence: 2
  givenname: Sing-Jie
  surname: Jong
  fullname: Jong, Sing-Jie
– sequence: 3
  givenname: Kai
  surname: Hu
  fullname: Hu, Kai
– sequence: 4
  givenname: Jiann-Ming
  orcidid: 0000-0003-4520-9206
  surname: Wu
  fullname: Wu, Jiann-Ming
BookMark eNpNkU1LxDAQhoMouK6e_AMFj7I6SZq2Ocq6fsCqIHoO02aqXbpJTbqH_fdmXRFzSXjzzDMMc8IOnXfE2DmHKyk1XK9x_NSgOfDygE2EEOWsTPnhv_cxO4txBeloLqtcT1i9JAyucx_ZM20C9tkrDYEiuRHHzruYobPZ0jfpZ7Guydod2vqQPXvXdy4VZ7fdmlxMMPbduE0Cu2l2tdkTDkPCT9lRi32ks997yt7vFm_zh9ny5f5xfrOcNVKIcVYKUbWaLKmy1VxxggqUqBXnqKWtsBU5aFUASaGhkWWOJFXOQYsaKgW1nLLHvdd6XJkhdGsMW-OxMz-BDx8Gw9g1PZla6hqS3Ra6ySnnuijKqsaq0ArIIibXxd41BP-1oTiald-ENGE0QkngqhR5kajLPdUEH2Og9q8rB7Pbifm3E_kNDyl_nw
Cites_doi 10.1007/BF00337288
10.1109/TIP.2019.2915162
10.1038/nature14539
10.1073/pnas.79.8.2554
10.1142/S0129065789000414
10.1016/j.neucom.2011.03.002
10.1007/BF02287916
10.1073/pnas.1031596100
10.1049/iet-ipr.2019.1119
10.1126/science.290.5500.2319
10.1016/j.neucom.2019.06.093
10.1007/978-3-642-97610-0
10.1038/343644a0
10.1016/S0925-2312(00)00303-9
10.1126/science.1127647
10.1109/TNN.2006.873284
10.1109/TNN.2008.2003271
10.1126/science.290.5500.2323
10.1016/j.patcog.2020.107508
10.1080/14786440109462720
10.1109/5.58323
10.1007/978-3-642-97171-6_8
10.1038/326689a0
10.1016/S0893-6080(02)00018-7
10.1016/j.knosys.2020.106370
10.1007/978-1-4471-0453-7
10.1109/T-C.1969.222678
10.1016/j.gmod.2020.101060
10.1109/72.329697
10.1007/BF00339943
10.1038/s41467-018-04368-5
10.1037/h0071325
10.1007/BF01386390
10.1016/j.eswa.2020.113281
10.1007/BF02288916
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math9091017
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_b39b0052d69c4e4196678ba86950edaa
10_3390_math9091017
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c322t-7228f9ede57f9151e08052b511a93d8af2409560e3290c374ae3541092b0850b3
IEDL.DBID 8FG
ISSN 2227-7390
IngestDate Wed Aug 27 01:25:37 EDT 2025
Fri Jul 25 11:54:21 EDT 2025
Tue Jul 01 02:58:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-7228f9ede57f9151e08052b511a93d8af2409560e3290c374ae3541092b0850b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4520-9206
OpenAccessLink https://www.proquest.com/docview/2530157246?pq-origsite=%requestingapplication%
PQID 2530157246
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_b39b0052d69c4e4196678ba86950edaa
proquest_journals_2530157246
crossref_primary_10_3390_math9091017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Pearson (ref_9) 1901; 2
Ding (ref_37) 2018; 9
Hagan (ref_24) 1994; 5
Wu (ref_35) 2000; 34
ref_11
Wu (ref_28) 2011; 74
Dijkstra (ref_31) 1959; 1
Wu (ref_27) 2008; 19
Durbin (ref_20) 1987; 326
Torgerson (ref_13) 1952; 17
Tasoulis (ref_30) 2020; 107
Martin (ref_36) 2020; 108
LeCun (ref_38) 2015; 521
ref_18
ref_17
ref_39
Li (ref_8) 2020; 14
Tenenbaum (ref_2) 2000; 290
Sammon (ref_15) 1969; 100
Hopfield (ref_32) 1982; 79
Donoho (ref_12) 2003; 100
Kohonen (ref_16) 1982; 43
Roweis (ref_1) 2000; 290
Durbin (ref_21) 1990; 343
Wu (ref_23) 2006; 17
ref_25
Hopfield (ref_33) 1985; 52
Widrow (ref_22) 1990; 78
Young (ref_14) 1938; 3
Hu (ref_19) 2019; 365
Taskin (ref_7) 2019; 28
ref_26
Wu (ref_29) 2002; 15
Peterson (ref_34) 1989; 1
Afshar (ref_5) 2020; 206
Hotelling (ref_10) 1933; 24
ref_4
Hinton (ref_3) 2006; 313
Rabin (ref_6) 2020; 149
References_xml – volume: 43
  start-page: 59
  year: 1982
  ident: ref_16
  article-title: Self-organized formation of topologically correct feature maps
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00337288
– volume: 28
  start-page: 5227
  year: 2019
  ident: ref_7
  article-title: An Out-of-Sample Extension to Manifold Learning via Meta-Modelling
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2915162
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_38
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 79
  start-page: 2554
  year: 1982
  ident: ref_32
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– volume: 1
  start-page: 3
  year: 1989
  ident: ref_34
  article-title: A New Method for Mapping Optimization Problems onto Neural Networks
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065789000414
– volume: 74
  start-page: 2228
  year: 2011
  ident: ref_28
  article-title: Annealed Kullback—Leibler divergence minimization for generalized TSP, spot identification and gene sorting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.002
– volume: 3
  start-page: 19
  year: 1938
  ident: ref_14
  article-title: Discussion of a set of points in terms of their mutual distances
  publication-title: Psychometrika
  doi: 10.1007/BF02287916
– ident: ref_11
– volume: 100
  start-page: 5591
  year: 2003
  ident: ref_12
  article-title: Hessian eigenmaps: Locally linear em-bedding techniques for high-dimensional data
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1031596100
– volume: 14
  start-page: 2156
  year: 2020
  ident: ref_8
  article-title: 1D representation of Laplacian eigenmaps and dual k-nearest neighbours for unified video coding
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2019.1119
– volume: 290
  start-page: 2319
  year: 2000
  ident: ref_2
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 365
  start-page: 147
  year: 2019
  ident: ref_19
  article-title: ELM-SOM plus: A continuous mapping for visualization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.093
– ident: ref_18
  doi: 10.1007/978-3-642-97610-0
– ident: ref_39
– volume: 343
  start-page: 644
  year: 1990
  ident: ref_21
  article-title: A dimension reduction framework for cortical maps
  publication-title: Nature
  doi: 10.1038/343644a0
– volume: 34
  start-page: 55
  year: 2000
  ident: ref_35
  article-title: Potts models with two sets of interactive dynamics
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(00)00303-9
– volume: 313
  start-page: 504
  year: 2006
  ident: ref_3
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 17
  start-page: 541
  year: 2006
  ident: ref_23
  article-title: Function approximation using generalized adalines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.873284
– volume: 19
  start-page: 2032
  year: 2008
  ident: ref_27
  article-title: Multilayer Potts Perceptrons with Levenberg–Marquardt Learning
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2003271
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref_1
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: ref_25
– volume: 107
  start-page: 107508
  year: 2020
  ident: ref_30
  article-title: Nonlinear Dimensionality Reduction for Clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107508
– ident: ref_4
– volume: 2
  start-page: 559
  year: 1901
  ident: ref_9
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440109462720
– volume: 78
  start-page: 1415
  year: 1990
  ident: ref_22
  article-title: 30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation
  publication-title: Proc. IEEE
  doi: 10.1109/5.58323
– ident: ref_17
  doi: 10.1007/978-3-642-97171-6_8
– volume: 326
  start-page: 689
  year: 1987
  ident: ref_20
  article-title: An analogue approach to the traveling salesman problem using an elastic net method
  publication-title: Nature
  doi: 10.1038/326689a0
– volume: 15
  start-page: 337
  year: 2002
  ident: ref_29
  article-title: Learning generative models of natural images
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(02)00018-7
– volume: 206
  start-page: 106370
  year: 2020
  ident: ref_5
  article-title: High-dimensional feature selection for genomic datasets
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106370
– ident: ref_26
  doi: 10.1007/978-1-4471-0453-7
– volume: 100
  start-page: 401
  year: 1969
  ident: ref_15
  article-title: A nonlinear mapping algorithm for data structure analysis
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1969.222678
– volume: 108
  start-page: 101060
  year: 2020
  ident: ref_36
  article-title: Robust dimensionality reduction for data visualization with deep neural networks
  publication-title: Graph. Models
  doi: 10.1016/j.gmod.2020.101060
– volume: 5
  start-page: 989
  year: 1994
  ident: ref_24
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.329697
– volume: 52
  start-page: 141
  year: 1985
  ident: ref_33
  article-title: “Neural” computation of decisions in optimization problems
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00339943
– volume: 9
  start-page: 1
  year: 2018
  ident: ref_37
  article-title: Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04368-5
– volume: 24
  start-page: 417
  year: 1933
  ident: ref_10
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J. Edu. Psychol.
  doi: 10.1037/h0071325
– volume: 1
  start-page: 269
  year: 1959
  ident: ref_31
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– volume: 149
  start-page: 113281
  year: 2020
  ident: ref_6
  article-title: Classification of human hand movements based on EMG signals using nonlinear dimen-sionality reduction and data fusion techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113281
– volume: 17
  start-page: 401
  year: 1952
  ident: ref_13
  article-title: Multidimensional scaling: I. Theory and method
  publication-title: Psychometrika
  doi: 10.1007/BF02288916
SSID ssj0000913849
Score 2.1432137
Snippet This work explores neural approximation for nonlinear dimensionality reduction mapping based on internal representations of graph-organized regular data...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1017
SubjectTerms Approximation
Centroids
data support approximation
data visualization
distance preserving mapping
Embedding
Graphical representations
Learning
Mapping
Mathematical models
Mathematics
Neighborhoods
nonlinear dimensionality reduction mapping
Principal components analysis
Reduction
topology preservation
Training
unsupervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQkIeuURPbceORj6IK0Q6ISt0iX3wpCwG15f9zttNSiYGFNbKS6M6-9150ecdYvwZiyRpJqVZOJwo1JFBbkQiTW2LAFjPw3yEnUz2eqad5Pt8Z9eV7wqI9cAzcAGRw7RNOm0qhog1D5RVsoU2eorOBGqUm3RFToQabTBbKxB_yJOn6AfG_N-PBMYwm-4Gg4NT_qxAHdHk8YoctLeS38XWO2R42J-xgsvVUXZ0yaK1QF9wbatDil9DE2v471Ky4bRx_9tDER--AzoMSJ0rKp9ENwy75g7fyjzYcRL7pBi56x_KJ9TYNizM2exy93o-TdkJCUtFBXCdDIYraoMN8WBvCbkz9hAIgEmWNdIWtCa-9AEIpTFrJobIoc5WlRoC3qgN5zjrNR4MXjKNTtbFaIFZGAYKpsyol_Ur6KwMoqi7rb4JWfkYjjJIEhI9tuRPbLrvzAd0u8e7V4QLltGxzWv6V0y7rbdJRtkdqVYqcalE-FEpf_sczrti-8O0poXexxzrr5RdeE79Yw03YSt8KdM6H
  priority: 102
  providerName: Directory of Open Access Journals
Title Learning Neural Representations and Local Embedding for Nonlinear Dimensionality Reduction Mapping
URI https://www.proquest.com/docview/2530157246
https://doaj.org/article/b39b0052d69c4e4196678ba86950edaa
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrBmHLYtaJN00dOiMfGhNiEEEjcqqRxx4UO1vH_sdNsICFxbatWchx_n13nM2ODyiBLTgEz1dKmgYTUBKbSIhAq0ciANUSG6pCTaTp-kfevyasvuDW-rXIVE12gtvOSauQXIkFXTDIh08uPz4CmRtHfVT9CY5NtRfhJ8vN8dLeusZDmZS5Veywvxuz-AlngmyKIdAPKfoDI6fX_CccOY0Z7bNeTQ37VruY-24D6gO1M1sqqzSEzXhB1xklWAx9-cq2s_gRR3XBdW_5AAMWH7wYsQRNHYsqnrSaGXvBbEvRvxTiQguMLbKsgyyeaxBpmR-xlNHy-GQd-TkJQ4nZcBpkQeaXAQpJVChEcQppTYJBKaRXbXFeI2pQGQSxUWMaZ1BAnMgqVMCRYZ-Jj1qnnNZwwDlZWSqcCoFTSgFFVVIaYxWIWFhmTl102WBmt-GjlMApMI8i2xS_bdtk1GXT9CGlYuwvzxazwW6IwsdNjFDZVpQSJoQCB0-g8VUkIVusu662Wo_Abqyl-3OD0_9tnbFtQ-4nrTeyxznLxBefIH5am75ykz7auh9PHp77Lwr8BhCbIvg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1BcoAeUPlSA2nxgR5XbLzezfpQIdIEBUiiCoHEbbHXs-mlm5Ckqvqn-I3M7EdAqtQb17Xlw3js98Y78wbgNLPEkiOkSDV1kacwsp7NjPSkDg0xYIMdy--Q40k0vFfXD-HDBjzXtTCcVlnficVF7WYpv5GfyZBcMexKFZ3PnzzuGsV_V-sWGqVb3ODfPxSyLb9d9Wl_v0p5Obj7PvSqrgJeSs678rpSxplGh2E304R36LOqvyXiYXTgYpMRxnHQgIHUfhp0lcEgVB1fS8vybjagdTehqbiitQHN3mDy43b9qsMqm7HSZSFgEGj_jHjnT82gXLREe4W-okPAPwBQoNrlR9ip6Ki4KP1nFzYw34MP47WW63IfbCXBOhUs5EGTb4vk2apmKV8KkzsxYkgUg18WHYOhICosJqUKh1mIPrcQKOU_iPTTAq7UrBVjw_IQ0wO4fxcbHkIjn-X4CQQ6lWkTScRUK4tWZ53Up7iZ4r6OtXHagtPaaMm8FOBIKHBh2yZvbNuCHht0PYVVs4sPs8U0qQ5hYoNCAVK6SKcKFV0-BNXWxJEOfXTGtKBdb0dSHeVl8up4R_8fPoGt4d14lIyuJjfHsC05-aXIjGxDY7X4jZ-Jvazsl8plBDy-t5e-AH2IAZs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RKlXtAdEvsUCpD_QYbdZ2PnxAFXTZQmFXVVUkbqkdT7aXZunuIsRf49d1xkkWpErcuCaRD-NnvzfO-A3AfuVIJadImWrp00hj6iJXWRlJk1hSwBYHjs8hx5P05EJ_u0wu1-CuuwvDZZXdnhg2aj8r-Yy8LxOCYpJJnfartizi-3D0-epvxB2k-E9r106jgcgZ3t5Q-rY4OB3SXH-ScnT888tJ1HYYiEoC8jLKpMwrgx6TrDLEfRizw78jEWKN8rmtiO84gUAlTVyqTFtUiR7ERjq2enOKxn0GzzOVGU788tHX1fkO-23m2jRXApUycZ8U6G_D9Byao92TYOgV8B8VBH4bbcJGK0zFYYOk17CG9Rt4NV65ui7egmvNWKeCLT3o4x-hjLa9vVQvhK29OGdyFMd_HHqmRUGiWEwaPw47F0NuJtAYgZD8pwF8414rxpaNIqbv4OJJIvge1utZjVsg0OvK2FQilkY7dKYalDFl0JQBDpzLyx7sd0ErrhorjoJSGI5t8SC2PTjigK4-Yf_s8GA2nxbtciycCl6Q0qem1KhpGyLSdjZPTRKjt7YHu910FO2iXhT3ENx-_PVHeEHYLM5PJ2c78FJyFUwokdyF9eX8Gj-QjFm6vYAXAb-eGqD_AMvGBGs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Neural+Representations+and+Local+Embedding+for+Nonlinear+Dimensionality+Reduction+Mapping&rft.jtitle=Mathematics+%28Basel%29&rft.au=Wu%2C+Sheng-Shiung&rft.au=Sing-Jie+Jong&rft.au=Hu%2C+Kai&rft.date=2021-05-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=9&rft.issue=9&rft.spage=1017&rft_id=info:doi/10.3390%2Fmath9091017&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon