Lie-Trotter Formula for the Hadamard Product
Suppose that A and B are two positive-definite matrices, then, the limit of ( A p /2 B p A p /2 ) 1/ p as p tends to 0 can be obtained by the well known Lie-Trotter formula. In this article, we generalize the usual product of matrices to the Hadamard product denoted as * which is commutative, and ob...
Saved in:
Published in | Acta mathematica scientia Vol. 40; no. 3; pp. 659 - 669 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.05.2020
School of Information, Beijing Wuzi University, Beijing 101149, China%College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China%School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Suppose that
A
and
B
are two positive-definite matrices, then, the limit of (
A
p
/2
B
p
A
p
/2
)
1/
p
as
p
tends to 0 can be obtained by the well known Lie-Trotter formula. In this article, we generalize the usual product of matrices to the Hadamard product denoted as * which is commutative, and obtain the explicit formula of the limit (
A
p
*
B
p
)
1/
p
as
p
tends to 0. Furthermore, the existence of the limit of (
A
p
*
B
p
)
1/
p
as
p
tends to +∞ is proved. |
---|---|
AbstractList | Suppose that
A
and
B
are two positive-definite matrices, then, the limit of (
A
p
/2
B
p
A
p
/2
)
1/
p
as
p
tends to 0 can be obtained by the well known Lie-Trotter formula. In this article, we generalize the usual product of matrices to the Hadamard product denoted as * which is commutative, and obtain the explicit formula of the limit (
A
p
*
B
p
)
1/
p
as
p
tends to 0. Furthermore, the existence of the limit of (
A
p
*
B
p
)
1/
p
as
p
tends to +∞ is proved. Suppose that A and B are two positive-definite matrices,then,the limit of (Ap/2BpAp/2)1/p as p tends to 0 can be obtained by the well known Lie-Trotter formula.In this article,we generalize the usual product of matrices to the Hadamard product denoted as * which is commutative,and obtain the explicit formula of the limit (Ap * Bp)1/p as p tends to 0.Furthermore,the existence of the limit of (Ap * Bp)1/p as p tends to +∞ is proved. |
Author | Wang, Jing Sun, Huafei Li, Yonggang |
AuthorAffiliation | School of Information, Beijing Wuzi University, Beijing 101149, China%College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China%School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China |
AuthorAffiliation_xml | – name: School of Information, Beijing Wuzi University, Beijing 101149, China%College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China%School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China |
Author_xml | – sequence: 1 givenname: Jing surname: Wang fullname: Wang, Jing email: wangjingzzumath@163.com organization: School of Information, Beijing Wuzi University – sequence: 2 givenname: Yonggang surname: Li fullname: Li, Yonggang organization: College of Science, Zhengzhou University of Aeronautics – sequence: 3 givenname: Huafei surname: Sun fullname: Sun, Huafei organization: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing Key Laboratory on MCAACI |
BookMark | eNp9kE9LAzEQxYNUsK1-AG97FYxOsn-ye5RirVDQQz2HbDKpW9qNJCmt396UFQRBTzOH93sz703IqHc9EnLN4I4BiPvAoBA5BQ4UcihpcUbGrBScNlCLERkDL9NeAb8gkxA2AKziVTEmt8sO6cq7GNFnc-d3-63KrPNZfMdsoYzaKW-yV-_MXsdLcm7VNuDV95ySt_njaragy5en59nDkuqc80gFhxo5om04cCyxyYsCtdatLWuDbY2irphRrTLGtk1lLKts0aBmWtjEVvmU3Ay-B9Vb1a_lxu19ny7KcDxsj63EZAwpJ5RJKwat9i4Ej1bqLqrYuT561W0lA3kqSA4FycTJU0GySCT7RX74LsX9_JfhAxOStl-j_3ntb-gLZiV5hA |
CitedBy_id | crossref_primary_10_1016_j_actamat_2023_118855 |
Cites_doi | 10.1063/1.4906367 10.1007/BF01371042 10.4153/CMB-1959-012-2 10.1007/s002080050335 10.1080/03081087408817030 10.1016/S0024-3795(99)00187-1 10.1016/S0252-9602(12)60183-0 10.1090/S0002-9939-1959-0108732-6 10.1016/0024-3795(94)90484-7 10.1007/978-1-4612-0653-8 10.1016/0024-3795(94)00014-5 10.1016/0024-3795(79)90179-4 10.1080/03081087.2015.1082957 10.1007/978-0-387-21554-9 10.1007/978-3-642-65755-9 10.1007/978-1-4757-5797-2 10.1515/crll.1911.140.1 10.1016/S0024-3795(97)00068-2 |
ContentType | Journal Article |
Copyright | Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2020 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2020 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s10473-020-0305-4 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Physics |
EISSN | 1572-9087 |
EndPage | 669 |
ExternalDocumentID | sxwlxb_e202003005 10_1007_s10473_020_0305_4 |
GrantInformation_xml | – fundername: H.Sun is supported by NSFC; J.Wang is supported by General Project of Science and Technology Plan of Beijing Municipal Education Commission funderid: (61179031); (KM202010037003) |
GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 23M 2B. 2C. 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 7-5 71M 8P~ 92E 92I 92M 92Q 93N 9D9 9DA AACDK AACTN AAEDT AAEDW AAHNG AAIKJ AAJBT AAKOC AALRI AAOAW AASML AATNV AAUYE AAXDM AAXKI AAXUO ABAKF ABAOU ABECU ABFNM ABFTV ABJNI ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABWVN ABXDB ABXPI ACAOD ACDAQ ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACRLP ACRPL ACZOJ ADBBV ADEZE ADKNI ADMUD ADNMO ADTPH ADURQ ADYFF AEBSH AEFQL AEIPS AEJRE AEKER AEMSY AENEX AESKC AFBBN AFKWA AFQWF AFUIB AGDGC AGHFR AGJBK AGMZJ AGQEE AGUBO AGYEJ AIAKS AIEXJ AIGIU AIGVJ AIKHN AILAN AITGF AITUG AJOXV AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF ANKPU ARUGR AXJTR AXYYD BGNMA BKOJK BLXMC CAJEA CCEZO CCVFK CHBEP CS3 CSCUP CW9 DPUIP EBLON EBS EFJIC EJD EO9 EP2 EP3 FA0 FDB FEDTE FIGPU FIRID FNLPD FNPLU FYGXN GBLVA GJIRD HG6 HVGLF HZ~ IKXTQ IWAJR J1W JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MHUIS MO0 N9A NPVJJ NQJWS NU0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. PT4 Q-- Q-0 Q38 R-A REI RIG ROL RSV RT1 S.. SDC SDF SDG SDH SES SJYHP SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SSW SSZ T5K T8Q TCJ TGP TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW ZMTXR ~G- ~L9 AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION SSH 4A8 PSX |
ID | FETCH-LOGICAL-c322t-7208e2eef9202e5e9344ecccbf58deb8e7861dabaddfb96df16f49ec1c7f72063 |
ISSN | 0252-9602 |
IngestDate | Thu May 29 04:00:08 EDT 2025 Tue Jul 01 02:27:40 EDT 2025 Thu Apr 24 22:51:18 EDT 2025 Fri Feb 21 02:36:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 15A42 Lie-Trotter formula reciprocal Lie-Trotter formula 15A16 47A56 positive-definite matrix Hadamard product |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c322t-7208e2eef9202e5e9344ecccbf58deb8e7861dabaddfb96df16f49ec1c7f72063 |
PageCount | 11 |
ParticipantIDs | wanfang_journals_sxwlxb_e202003005 crossref_citationtrail_10_1007_s10473_020_0305_4 crossref_primary_10_1007_s10473_020_0305_4 springer_journals_10_1007_s10473_020_0305_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Acta mathematica scientia |
PublicationTitleAbbrev | Acta Math Sci |
PublicationTitle_FL | Acta Mathematica Scientia |
PublicationYear | 2020 |
Publisher | Springer Singapore School of Information, Beijing Wuzi University, Beijing 101149, China%College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China%School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China |
Publisher_xml | – name: Springer Singapore – name: School of Information, Beijing Wuzi University, Beijing 101149, China%College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China%School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China |
References | Trotter (CR2) 1959; 10 Moalla (CR14) 2012; 32B Bhatia (CR12) 2007 Ando (CR9) 1995; 223/224 Vargas (CR17) 1983; 12 Hiai, Janas, Szafraniec, Zemánek (CR3) 1997 Johnson (CR16) 1974; 1 Ando, Zhan (CR21) 1999; 315 Zhang (CR15) 1999 Ando, Hiai (CR7) 1994; 197 Kato, Gohberg, Kac (CR1) 1978 Visick (CR10) 1998; 269 Donogue (CR22) 1974 Hall (CR13) 2003 Visick (CR20) 2000; 304 Bhatia (CR11) 1997 Marcus, Khan (CR19) 1959; 2 Marcus, Minc (CR18) 1963 Ando (CR23) 1979; 26 Audenaert, Hiai (CR6) 2016; 64 Audenaert, Datta (CR5) 2015; 56 Schur (CR8) 1911; 140 Kubo, Ando (CR4) 1980; 246 R Bhatia (305_CR12) 2007 L G Vargas (305_CR17) 1983; 12 T Ando (305_CR23) 1979; 26 G Visick (305_CR20) 2000; 304 C R Johnson (305_CR16) 1974; 1 W Donogue (305_CR22) 1974 F Kubo (305_CR4) 1980; 246 M Marcus (305_CR18) 1963 K M R Audenaert (305_CR6) 2016; 64 T Ando (305_CR9) 1995; 223/224 T Ando (305_CR21) 1999; 315 T Kato (305_CR1) 1978 R Bhatia (305_CR11) 1997 N Moalla (305_CR14) 2012; 32B M Marcus (305_CR19) 1959; 2 G Visick (305_CR10) 1998; 269 I Schur (305_CR8) 1911; 140 F Zhang (305_CR15) 1999 H Trotter (305_CR2) 1959; 10 B Hall (305_CR13) 2003 K M R Audenaert (305_CR5) 2015; 56 T Ando (305_CR7) 1994; 197 F Hiai (305_CR3) 1997 |
References_xml | – start-page: 185 year: 1978 end-page: 195 ident: CR1 article-title: Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups publication-title: Topics in Functional Analysis – volume: 56 start-page: 59 year: 2015 end-page: 85 ident: CR5 article-title: α-z-relative Rényi entropies publication-title: J Math Phys doi: 10.1063/1.4906367 – start-page: 119 year: 1997 end-page: 181 ident: CR3 article-title: Log-majorizations and norm inequalities for exponential operators publication-title: Linear Operators. Banach Center Publications – volume: 246 start-page: 205 year: 1980 end-page: 224 ident: CR4 article-title: Means of positive linear operators publication-title: Math Ann doi: 10.1007/BF01371042 – volume: 2 start-page: 81 year: 1959 end-page: 83 ident: CR19 article-title: A note on the Hadamard product publication-title: Canad Math Bull doi: 10.4153/CMB-1959-012-2 – volume: 315 start-page: 771 year: 1999 end-page: 780 ident: CR21 article-title: Norm inequalities related to operator monotone functions publication-title: Math Ann doi: 10.1007/s002080050335 – year: 2007 ident: CR12 publication-title: Positive Definite Matrices – volume: 1 start-page: 295 year: 1974 end-page: 307 ident: CR16 article-title: Hadamard products of matrices publication-title: Linear Multilinear A doi: 10.1080/03081087408817030 – volume: 304 start-page: 45 year: 2000 end-page: 68 ident: CR20 article-title: A quantitative version of the observation that the Hadamard product is a principal submatrix of the Kronecker product publication-title: Linear Algebra Appl doi: 10.1016/S0024-3795(99)00187-1 – volume: 32B start-page: 2329 issue: 6 year: 2012 end-page: 2340 ident: CR14 article-title: A characterization of schechter’s, essential spectrum by mean of measure of non-strictsingularity and application to matrix operator publication-title: Acta Mathematica Scientia doi: 10.1016/S0252-9602(12)60183-0 – volume: 10 start-page: 545 year: 1959 end-page: 551 ident: CR2 article-title: On the product of semigroups of operators publication-title: P Am Math Soc doi: 10.1090/S0002-9939-1959-0108732-6 – volume: 197 start-page: 113 year: 1994 end-page: 131 ident: CR7 article-title: Log majorization and complementary Golden-Thompson type inequalities publication-title: Linear Algebra Appl doi: 10.1016/0024-3795(94)90484-7 – year: 1997 ident: CR11 publication-title: Matrix Analysis doi: 10.1007/978-1-4612-0653-8 – year: 1963 ident: CR18 publication-title: A Survey of Matrix Theory and Matrix Inequalities – volume: 223/224 start-page: 57 year: 1995 end-page: 64 ident: CR9 article-title: Majorization relations for Hadamard products publication-title: Linear Algebra Appl doi: 10.1016/0024-3795(94)00014-5 – volume: 26 start-page: 203 year: 1979 end-page: 241 ident: CR23 article-title: Concavity of certain maps on positive definite matrices and applications to Hadamard products publication-title: Linear Algebra Appl doi: 10.1016/0024-3795(79)90179-4 – volume: 64 start-page: 1220 year: 2016 end-page: 1235 ident: CR6 article-title: Reciprocal Lie-Trotter formula publication-title: Linear Multilinear A doi: 10.1080/03081087.2015.1082957 – year: 2003 ident: CR13 publication-title: Lie groups, Lie algebras, and Representations: An elementary introduction doi: 10.1007/978-0-387-21554-9 – year: 1974 ident: CR22 publication-title: Monotone Matrix Functions and Analytic Continuation doi: 10.1007/978-3-642-65755-9 – year: 1999 ident: CR15 publication-title: Matrix Theory: Basic results and techniques doi: 10.1007/978-1-4757-5797-2 – volume: 140 start-page: 1 year: 1911 end-page: 28 ident: CR8 article-title: Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen publication-title: J Reine Angew Math doi: 10.1515/crll.1911.140.1 – volume: 269 start-page: 233 year: 1998 end-page: 240 ident: CR10 article-title: Majorizations of Hadamard products of matrix powers publication-title: Linear Algebra Appl doi: 10.1016/S0024-3795(97)00068-2 – volume: 12 start-page: 301 year: 1983 end-page: 320 ident: CR17 article-title: Analysis of sensitivity of reciprocal matrices publication-title: Appl Math Comput – volume-title: Positive Definite Matrices year: 2007 ident: 305_CR12 – volume: 304 start-page: 45 year: 2000 ident: 305_CR20 publication-title: Linear Algebra Appl doi: 10.1016/S0024-3795(99)00187-1 – volume: 2 start-page: 81 year: 1959 ident: 305_CR19 publication-title: Canad Math Bull doi: 10.4153/CMB-1959-012-2 – volume: 1 start-page: 295 year: 1974 ident: 305_CR16 publication-title: Linear Multilinear A doi: 10.1080/03081087408817030 – volume: 10 start-page: 545 year: 1959 ident: 305_CR2 publication-title: P Am Math Soc doi: 10.1090/S0002-9939-1959-0108732-6 – volume: 197 start-page: 113 year: 1994 ident: 305_CR7 publication-title: Linear Algebra Appl doi: 10.1016/0024-3795(94)90484-7 – volume: 32B start-page: 2329 issue: 6 year: 2012 ident: 305_CR14 publication-title: Acta Mathematica Scientia doi: 10.1016/S0252-9602(12)60183-0 – volume: 56 start-page: 59 year: 2015 ident: 305_CR5 publication-title: J Math Phys doi: 10.1063/1.4906367 – volume: 64 start-page: 1220 year: 2016 ident: 305_CR6 publication-title: Linear Multilinear A doi: 10.1080/03081087.2015.1082957 – volume-title: Monotone Matrix Functions and Analytic Continuation year: 1974 ident: 305_CR22 doi: 10.1007/978-3-642-65755-9 – volume: 140 start-page: 1 year: 1911 ident: 305_CR8 publication-title: J Reine Angew Math doi: 10.1515/crll.1911.140.1 – volume: 269 start-page: 233 year: 1998 ident: 305_CR10 publication-title: Linear Algebra Appl doi: 10.1016/S0024-3795(97)00068-2 – volume: 223/224 start-page: 57 year: 1995 ident: 305_CR9 publication-title: Linear Algebra Appl doi: 10.1016/0024-3795(94)00014-5 – volume-title: Matrix Analysis year: 1997 ident: 305_CR11 doi: 10.1007/978-1-4612-0653-8 – start-page: 119 volume-title: Linear Operators. Banach Center Publications year: 1997 ident: 305_CR3 – volume-title: Matrix Theory: Basic results and techniques year: 1999 ident: 305_CR15 doi: 10.1007/978-1-4757-5797-2 – volume-title: A Survey of Matrix Theory and Matrix Inequalities year: 1963 ident: 305_CR18 – volume: 315 start-page: 771 year: 1999 ident: 305_CR21 publication-title: Math Ann doi: 10.1007/s002080050335 – volume: 12 start-page: 301 year: 1983 ident: 305_CR17 publication-title: Appl Math Comput – volume: 246 start-page: 205 year: 1980 ident: 305_CR4 publication-title: Math Ann doi: 10.1007/BF01371042 – start-page: 185 volume-title: Topics in Functional Analysis year: 1978 ident: 305_CR1 – volume: 26 start-page: 203 year: 1979 ident: 305_CR23 publication-title: Linear Algebra Appl doi: 10.1016/0024-3795(79)90179-4 – volume-title: Lie groups, Lie algebras, and Representations: An elementary introduction year: 2003 ident: 305_CR13 doi: 10.1007/978-0-387-21554-9 |
SSID | ssj0016264 |
Score | 2.1771696 |
Snippet | Suppose that
A
and
B
are two positive-definite matrices, then, the limit of (
A
p
/2
B
p
A
p
/2
)
1/
p
as
p
tends to 0 can be obtained by the well known... Suppose that A and B are two positive-definite matrices,then,the limit of (Ap/2BpAp/2)1/p as p tends to 0 can be obtained by the well known Lie-Trotter... |
SourceID | wanfang crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 659 |
SubjectTerms | Analysis Mathematics Mathematics and Statistics |
Title | Lie-Trotter Formula for the Hadamard Product |
URI | https://link.springer.com/article/10.1007/s10473-020-0305-4 https://d.wanfangdata.com.cn/periodical/sxwlxb-e202003005 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbbhEJ7aJO0oekjmNBTtwqyLcv2qYTSsISmBLqB9GQkWQoLG2_J2jTkkN_ekT1-bNOGpBdjC1nr1Tf6ZiTNjAh5L32bWhUzmgvFKBea0UQKS5mJcitEpLTvopGPv4nJKT86i85Go08Dr6WqVPv6-q9xJf-DKpQBri5K9gHIdo1CAdwDvnAFhOF6L4y_zgydXi5cQM74EIzPai47t0GgFHnh1ghOmpyuQyv0QJdyfNElbJUYFjnrKRpXkY9axeZcdup9_x-L4vxc9qXfq5q2JpW0ZjZcQghY77CHTBNEAYWpTEOLBpkwhjKG2hCpssmshCIRDnhPYFrvRoWK5vSVW-zM2mhlHrvNY_gOYBsM8lnJhP2Hhur8Bvscy66JDJrIXBMZf0TWA5gnOKLbv-l8fHyYrdX5w9r_125rN7GTq1-xapi0u-J1LFdhoV8HZsd0gzzD-YJ30IC_SUam2CLPce7gITMvt8jT4w5OeHpcO_bq5QvycSAjHsqIBzLiQW2vlREPZeQlOT38Mv08oXhCBtVAxCWNA5aYwBibAqwmMmnIOYxJrWyU5EYlJk6En0sFSsyqVOTWF5anRvs6tvCuCLfJWrEozCviaQuDk4eBTpXgOk1VwsM89rUIA6ZYHu4Q1nZPpjF9vDvFZJ79E5Qd8qF75WeTO-WuyuO2zzMcYsu7au8hLH3l5dWv-ZXKjJNw5k5heP2Q339DnvRD4y1ZKy8r8w7szVLt1jL1Gxmbdrc |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lie-Trotter+Formula+for+the+Hadamard+Product&rft.jtitle=Acta+mathematica+scientia&rft.au=Wang%2C+Jing&rft.au=Li%2C+Yonggang&rft.au=Sun%2C+Huafei&rft.date=2020-05-01&rft.issn=0252-9602&rft.eissn=1572-9087&rft.volume=40&rft.issue=3&rft.spage=659&rft.epage=669&rft_id=info:doi/10.1007%2Fs10473-020-0305-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10473_020_0305_4 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg |