Lie-Trotter Formula for the Hadamard Product

Suppose that A and B are two positive-definite matrices, then, the limit of ( A p /2 B p A p /2 ) 1/ p as p tends to 0 can be obtained by the well known Lie-Trotter formula. In this article, we generalize the usual product of matrices to the Hadamard product denoted as * which is commutative, and ob...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 40; no. 3; pp. 659 - 669
Main Authors Wang, Jing, Li, Yonggang, Sun, Huafei
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.05.2020
School of Information, Beijing Wuzi University, Beijing 101149, China%College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China%School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Suppose that A and B are two positive-definite matrices, then, the limit of ( A p /2 B p A p /2 ) 1/ p as p tends to 0 can be obtained by the well known Lie-Trotter formula. In this article, we generalize the usual product of matrices to the Hadamard product denoted as * which is commutative, and obtain the explicit formula of the limit ( A p * B p ) 1/ p as p tends to 0. Furthermore, the existence of the limit of ( A p * B p ) 1/ p as p tends to +∞ is proved.
AbstractList Suppose that A and B are two positive-definite matrices, then, the limit of ( A p /2 B p A p /2 ) 1/ p as p tends to 0 can be obtained by the well known Lie-Trotter formula. In this article, we generalize the usual product of matrices to the Hadamard product denoted as * which is commutative, and obtain the explicit formula of the limit ( A p * B p ) 1/ p as p tends to 0. Furthermore, the existence of the limit of ( A p * B p ) 1/ p as p tends to +∞ is proved.
Suppose that A and B are two positive-definite matrices,then,the limit of (Ap/2BpAp/2)1/p as p tends to 0 can be obtained by the well known Lie-Trotter formula.In this article,we generalize the usual product of matrices to the Hadamard product denoted as * which is commutative,and obtain the explicit formula of the limit (Ap * Bp)1/p as p tends to 0.Furthermore,the existence of the limit of (Ap * Bp)1/p as p tends to +∞ is proved.
Author Wang, Jing
Sun, Huafei
Li, Yonggang
AuthorAffiliation School of Information, Beijing Wuzi University, Beijing 101149, China%College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China%School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China
AuthorAffiliation_xml – name: School of Information, Beijing Wuzi University, Beijing 101149, China%College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China%School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China
Author_xml – sequence: 1
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  email: wangjingzzumath@163.com
  organization: School of Information, Beijing Wuzi University
– sequence: 2
  givenname: Yonggang
  surname: Li
  fullname: Li, Yonggang
  organization: College of Science, Zhengzhou University of Aeronautics
– sequence: 3
  givenname: Huafei
  surname: Sun
  fullname: Sun, Huafei
  organization: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing Key Laboratory on MCAACI
BookMark eNp9kE9LAzEQxYNUsK1-AG97FYxOsn-ye5RirVDQQz2HbDKpW9qNJCmt396UFQRBTzOH93sz703IqHc9EnLN4I4BiPvAoBA5BQ4UcihpcUbGrBScNlCLERkDL9NeAb8gkxA2AKziVTEmt8sO6cq7GNFnc-d3-63KrPNZfMdsoYzaKW-yV-_MXsdLcm7VNuDV95ySt_njaragy5en59nDkuqc80gFhxo5om04cCyxyYsCtdatLWuDbY2irphRrTLGtk1lLKts0aBmWtjEVvmU3Ay-B9Vb1a_lxu19ny7KcDxsj63EZAwpJ5RJKwat9i4Ej1bqLqrYuT561W0lA3kqSA4FycTJU0GySCT7RX74LsX9_JfhAxOStl-j_3ntb-gLZiV5hA
CitedBy_id crossref_primary_10_1016_j_actamat_2023_118855
Cites_doi 10.1063/1.4906367
10.1007/BF01371042
10.4153/CMB-1959-012-2
10.1007/s002080050335
10.1080/03081087408817030
10.1016/S0024-3795(99)00187-1
10.1016/S0252-9602(12)60183-0
10.1090/S0002-9939-1959-0108732-6
10.1016/0024-3795(94)90484-7
10.1007/978-1-4612-0653-8
10.1016/0024-3795(94)00014-5
10.1016/0024-3795(79)90179-4
10.1080/03081087.2015.1082957
10.1007/978-0-387-21554-9
10.1007/978-3-642-65755-9
10.1007/978-1-4757-5797-2
10.1515/crll.1911.140.1
10.1016/S0024-3795(97)00068-2
ContentType Journal Article
Copyright Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2020
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2020
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s10473-020-0305-4
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1572-9087
EndPage 669
ExternalDocumentID sxwlxb_e202003005
10_1007_s10473_020_0305_4
GrantInformation_xml – fundername: H.Sun is supported by NSFC; J.Wang is supported by General Project of Science and Technology Plan of Beijing Municipal Education Commission
  funderid: (61179031); (KM202010037003)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
7-5
71M
8P~
92E
92I
92M
92Q
93N
9D9
9DA
AACDK
AACTN
AAEDT
AAEDW
AAHNG
AAIKJ
AAJBT
AAKOC
AALRI
AAOAW
AASML
AATNV
AAUYE
AAXDM
AAXKI
AAXUO
ABAKF
ABAOU
ABECU
ABFNM
ABFTV
ABJNI
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABWVN
ABXDB
ABXPI
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACRLP
ACRPL
ACZOJ
ADBBV
ADEZE
ADKNI
ADMUD
ADNMO
ADTPH
ADURQ
ADYFF
AEBSH
AEFQL
AEIPS
AEJRE
AEKER
AEMSY
AENEX
AESKC
AFBBN
AFKWA
AFQWF
AFUIB
AGDGC
AGHFR
AGJBK
AGMZJ
AGQEE
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGIU
AIGVJ
AIKHN
AILAN
AITGF
AITUG
AJOXV
AJZVZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ANKPU
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CCEZO
CCVFK
CHBEP
CS3
CSCUP
CW9
DPUIP
EBLON
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIGPU
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HG6
HVGLF
HZ~
IKXTQ
IWAJR
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
~G-
~L9
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
4A8
PSX
ID FETCH-LOGICAL-c322t-7208e2eef9202e5e9344ecccbf58deb8e7861dabaddfb96df16f49ec1c7f72063
ISSN 0252-9602
IngestDate Thu May 29 04:00:08 EDT 2025
Tue Jul 01 02:27:40 EDT 2025
Thu Apr 24 22:51:18 EDT 2025
Fri Feb 21 02:36:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 15A42
Lie-Trotter formula
reciprocal Lie-Trotter formula
15A16
47A56
positive-definite matrix
Hadamard product
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-7208e2eef9202e5e9344ecccbf58deb8e7861dabaddfb96df16f49ec1c7f72063
PageCount 11
ParticipantIDs wanfang_journals_sxwlxb_e202003005
crossref_citationtrail_10_1007_s10473_020_0305_4
crossref_primary_10_1007_s10473_020_0305_4
springer_journals_10_1007_s10473_020_0305_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Acta mathematica scientia
PublicationTitleAbbrev Acta Math Sci
PublicationTitle_FL Acta Mathematica Scientia
PublicationYear 2020
Publisher Springer Singapore
School of Information, Beijing Wuzi University, Beijing 101149, China%College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China%School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China
Publisher_xml – name: Springer Singapore
– name: School of Information, Beijing Wuzi University, Beijing 101149, China%College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China%School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China
References Trotter (CR2) 1959; 10
Moalla (CR14) 2012; 32B
Bhatia (CR12) 2007
Ando (CR9) 1995; 223/224
Vargas (CR17) 1983; 12
Hiai, Janas, Szafraniec, Zemánek (CR3) 1997
Johnson (CR16) 1974; 1
Ando, Zhan (CR21) 1999; 315
Zhang (CR15) 1999
Ando, Hiai (CR7) 1994; 197
Kato, Gohberg, Kac (CR1) 1978
Visick (CR10) 1998; 269
Donogue (CR22) 1974
Hall (CR13) 2003
Visick (CR20) 2000; 304
Bhatia (CR11) 1997
Marcus, Khan (CR19) 1959; 2
Marcus, Minc (CR18) 1963
Ando (CR23) 1979; 26
Audenaert, Hiai (CR6) 2016; 64
Audenaert, Datta (CR5) 2015; 56
Schur (CR8) 1911; 140
Kubo, Ando (CR4) 1980; 246
R Bhatia (305_CR12) 2007
L G Vargas (305_CR17) 1983; 12
T Ando (305_CR23) 1979; 26
G Visick (305_CR20) 2000; 304
C R Johnson (305_CR16) 1974; 1
W Donogue (305_CR22) 1974
F Kubo (305_CR4) 1980; 246
M Marcus (305_CR18) 1963
K M R Audenaert (305_CR6) 2016; 64
T Ando (305_CR9) 1995; 223/224
T Ando (305_CR21) 1999; 315
T Kato (305_CR1) 1978
R Bhatia (305_CR11) 1997
N Moalla (305_CR14) 2012; 32B
M Marcus (305_CR19) 1959; 2
G Visick (305_CR10) 1998; 269
I Schur (305_CR8) 1911; 140
F Zhang (305_CR15) 1999
H Trotter (305_CR2) 1959; 10
B Hall (305_CR13) 2003
K M R Audenaert (305_CR5) 2015; 56
T Ando (305_CR7) 1994; 197
F Hiai (305_CR3) 1997
References_xml – start-page: 185
  year: 1978
  end-page: 195
  ident: CR1
  article-title: Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups
  publication-title: Topics in Functional Analysis
– volume: 56
  start-page: 59
  year: 2015
  end-page: 85
  ident: CR5
  article-title: α-z-relative Rényi entropies
  publication-title: J Math Phys
  doi: 10.1063/1.4906367
– start-page: 119
  year: 1997
  end-page: 181
  ident: CR3
  article-title: Log-majorizations and norm inequalities for exponential operators
  publication-title: Linear Operators. Banach Center Publications
– volume: 246
  start-page: 205
  year: 1980
  end-page: 224
  ident: CR4
  article-title: Means of positive linear operators
  publication-title: Math Ann
  doi: 10.1007/BF01371042
– volume: 2
  start-page: 81
  year: 1959
  end-page: 83
  ident: CR19
  article-title: A note on the Hadamard product
  publication-title: Canad Math Bull
  doi: 10.4153/CMB-1959-012-2
– volume: 315
  start-page: 771
  year: 1999
  end-page: 780
  ident: CR21
  article-title: Norm inequalities related to operator monotone functions
  publication-title: Math Ann
  doi: 10.1007/s002080050335
– year: 2007
  ident: CR12
  publication-title: Positive Definite Matrices
– volume: 1
  start-page: 295
  year: 1974
  end-page: 307
  ident: CR16
  article-title: Hadamard products of matrices
  publication-title: Linear Multilinear A
  doi: 10.1080/03081087408817030
– volume: 304
  start-page: 45
  year: 2000
  end-page: 68
  ident: CR20
  article-title: A quantitative version of the observation that the Hadamard product is a principal submatrix of the Kronecker product
  publication-title: Linear Algebra Appl
  doi: 10.1016/S0024-3795(99)00187-1
– volume: 32B
  start-page: 2329
  issue: 6
  year: 2012
  end-page: 2340
  ident: CR14
  article-title: A characterization of schechter’s, essential spectrum by mean of measure of non-strictsingularity and application to matrix operator
  publication-title: Acta Mathematica Scientia
  doi: 10.1016/S0252-9602(12)60183-0
– volume: 10
  start-page: 545
  year: 1959
  end-page: 551
  ident: CR2
  article-title: On the product of semigroups of operators
  publication-title: P Am Math Soc
  doi: 10.1090/S0002-9939-1959-0108732-6
– volume: 197
  start-page: 113
  year: 1994
  end-page: 131
  ident: CR7
  article-title: Log majorization and complementary Golden-Thompson type inequalities
  publication-title: Linear Algebra Appl
  doi: 10.1016/0024-3795(94)90484-7
– year: 1997
  ident: CR11
  publication-title: Matrix Analysis
  doi: 10.1007/978-1-4612-0653-8
– year: 1963
  ident: CR18
  publication-title: A Survey of Matrix Theory and Matrix Inequalities
– volume: 223/224
  start-page: 57
  year: 1995
  end-page: 64
  ident: CR9
  article-title: Majorization relations for Hadamard products
  publication-title: Linear Algebra Appl
  doi: 10.1016/0024-3795(94)00014-5
– volume: 26
  start-page: 203
  year: 1979
  end-page: 241
  ident: CR23
  article-title: Concavity of certain maps on positive definite matrices and applications to Hadamard products
  publication-title: Linear Algebra Appl
  doi: 10.1016/0024-3795(79)90179-4
– volume: 64
  start-page: 1220
  year: 2016
  end-page: 1235
  ident: CR6
  article-title: Reciprocal Lie-Trotter formula
  publication-title: Linear Multilinear A
  doi: 10.1080/03081087.2015.1082957
– year: 2003
  ident: CR13
  publication-title: Lie groups, Lie algebras, and Representations: An elementary introduction
  doi: 10.1007/978-0-387-21554-9
– year: 1974
  ident: CR22
  publication-title: Monotone Matrix Functions and Analytic Continuation
  doi: 10.1007/978-3-642-65755-9
– year: 1999
  ident: CR15
  publication-title: Matrix Theory: Basic results and techniques
  doi: 10.1007/978-1-4757-5797-2
– volume: 140
  start-page: 1
  year: 1911
  end-page: 28
  ident: CR8
  article-title: Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen
  publication-title: J Reine Angew Math
  doi: 10.1515/crll.1911.140.1
– volume: 269
  start-page: 233
  year: 1998
  end-page: 240
  ident: CR10
  article-title: Majorizations of Hadamard products of matrix powers
  publication-title: Linear Algebra Appl
  doi: 10.1016/S0024-3795(97)00068-2
– volume: 12
  start-page: 301
  year: 1983
  end-page: 320
  ident: CR17
  article-title: Analysis of sensitivity of reciprocal matrices
  publication-title: Appl Math Comput
– volume-title: Positive Definite Matrices
  year: 2007
  ident: 305_CR12
– volume: 304
  start-page: 45
  year: 2000
  ident: 305_CR20
  publication-title: Linear Algebra Appl
  doi: 10.1016/S0024-3795(99)00187-1
– volume: 2
  start-page: 81
  year: 1959
  ident: 305_CR19
  publication-title: Canad Math Bull
  doi: 10.4153/CMB-1959-012-2
– volume: 1
  start-page: 295
  year: 1974
  ident: 305_CR16
  publication-title: Linear Multilinear A
  doi: 10.1080/03081087408817030
– volume: 10
  start-page: 545
  year: 1959
  ident: 305_CR2
  publication-title: P Am Math Soc
  doi: 10.1090/S0002-9939-1959-0108732-6
– volume: 197
  start-page: 113
  year: 1994
  ident: 305_CR7
  publication-title: Linear Algebra Appl
  doi: 10.1016/0024-3795(94)90484-7
– volume: 32B
  start-page: 2329
  issue: 6
  year: 2012
  ident: 305_CR14
  publication-title: Acta Mathematica Scientia
  doi: 10.1016/S0252-9602(12)60183-0
– volume: 56
  start-page: 59
  year: 2015
  ident: 305_CR5
  publication-title: J Math Phys
  doi: 10.1063/1.4906367
– volume: 64
  start-page: 1220
  year: 2016
  ident: 305_CR6
  publication-title: Linear Multilinear A
  doi: 10.1080/03081087.2015.1082957
– volume-title: Monotone Matrix Functions and Analytic Continuation
  year: 1974
  ident: 305_CR22
  doi: 10.1007/978-3-642-65755-9
– volume: 140
  start-page: 1
  year: 1911
  ident: 305_CR8
  publication-title: J Reine Angew Math
  doi: 10.1515/crll.1911.140.1
– volume: 269
  start-page: 233
  year: 1998
  ident: 305_CR10
  publication-title: Linear Algebra Appl
  doi: 10.1016/S0024-3795(97)00068-2
– volume: 223/224
  start-page: 57
  year: 1995
  ident: 305_CR9
  publication-title: Linear Algebra Appl
  doi: 10.1016/0024-3795(94)00014-5
– volume-title: Matrix Analysis
  year: 1997
  ident: 305_CR11
  doi: 10.1007/978-1-4612-0653-8
– start-page: 119
  volume-title: Linear Operators. Banach Center Publications
  year: 1997
  ident: 305_CR3
– volume-title: Matrix Theory: Basic results and techniques
  year: 1999
  ident: 305_CR15
  doi: 10.1007/978-1-4757-5797-2
– volume-title: A Survey of Matrix Theory and Matrix Inequalities
  year: 1963
  ident: 305_CR18
– volume: 315
  start-page: 771
  year: 1999
  ident: 305_CR21
  publication-title: Math Ann
  doi: 10.1007/s002080050335
– volume: 12
  start-page: 301
  year: 1983
  ident: 305_CR17
  publication-title: Appl Math Comput
– volume: 246
  start-page: 205
  year: 1980
  ident: 305_CR4
  publication-title: Math Ann
  doi: 10.1007/BF01371042
– start-page: 185
  volume-title: Topics in Functional Analysis
  year: 1978
  ident: 305_CR1
– volume: 26
  start-page: 203
  year: 1979
  ident: 305_CR23
  publication-title: Linear Algebra Appl
  doi: 10.1016/0024-3795(79)90179-4
– volume-title: Lie groups, Lie algebras, and Representations: An elementary introduction
  year: 2003
  ident: 305_CR13
  doi: 10.1007/978-0-387-21554-9
SSID ssj0016264
Score 2.1771696
Snippet Suppose that A and B are two positive-definite matrices, then, the limit of ( A p /2 B p A p /2 ) 1/ p as p tends to 0 can be obtained by the well known...
Suppose that A and B are two positive-definite matrices,then,the limit of (Ap/2BpAp/2)1/p as p tends to 0 can be obtained by the well known Lie-Trotter...
SourceID wanfang
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 659
SubjectTerms Analysis
Mathematics
Mathematics and Statistics
Title Lie-Trotter Formula for the Hadamard Product
URI https://link.springer.com/article/10.1007/s10473-020-0305-4
https://d.wanfangdata.com.cn/periodical/sxwlxb-e202003005
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbbhEJ7aJO0oekjmNBTtwqyLcv2qYTSsISmBLqB9GQkWQoLG2_J2jTkkN_ekT1-bNOGpBdjC1nr1Tf6ZiTNjAh5L32bWhUzmgvFKBea0UQKS5mJcitEpLTvopGPv4nJKT86i85Go08Dr6WqVPv6-q9xJf-DKpQBri5K9gHIdo1CAdwDvnAFhOF6L4y_zgydXi5cQM74EIzPai47t0GgFHnh1ghOmpyuQyv0QJdyfNElbJUYFjnrKRpXkY9axeZcdup9_x-L4vxc9qXfq5q2JpW0ZjZcQghY77CHTBNEAYWpTEOLBpkwhjKG2hCpssmshCIRDnhPYFrvRoWK5vSVW-zM2mhlHrvNY_gOYBsM8lnJhP2Hhur8Bvscy66JDJrIXBMZf0TWA5gnOKLbv-l8fHyYrdX5w9r_125rN7GTq1-xapi0u-J1LFdhoV8HZsd0gzzD-YJ30IC_SUam2CLPce7gITMvt8jT4w5OeHpcO_bq5QvycSAjHsqIBzLiQW2vlREPZeQlOT38Mv08oXhCBtVAxCWNA5aYwBibAqwmMmnIOYxJrWyU5EYlJk6En0sFSsyqVOTWF5anRvs6tvCuCLfJWrEozCviaQuDk4eBTpXgOk1VwsM89rUIA6ZYHu4Q1nZPpjF9vDvFZJ79E5Qd8qF75WeTO-WuyuO2zzMcYsu7au8hLH3l5dWv-ZXKjJNw5k5heP2Q339DnvRD4y1ZKy8r8w7szVLt1jL1Gxmbdrc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lie-Trotter+Formula+for+the+Hadamard+Product&rft.jtitle=Acta+mathematica+scientia&rft.au=Wang%2C+Jing&rft.au=Li%2C+Yonggang&rft.au=Sun%2C+Huafei&rft.date=2020-05-01&rft.issn=0252-9602&rft.eissn=1572-9087&rft.volume=40&rft.issue=3&rft.spage=659&rft.epage=669&rft_id=info:doi/10.1007%2Fs10473-020-0305-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10473_020_0305_4
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg