The kinetic exclusion process: a tale of two fields

We introduce a general class of stochastic lattice gas models, and derive their fluctuating hydrodynamics description in the large size limit under a local equilibrium hypothesis. The model consists of energetic particles on a lattice subject to exclusion interactions, which move and collide stochas...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical mechanics Vol. 2019; no. 10; pp. 103203 - 103236
Main Authors Gutiérrez-Ariza, Carlos, Hurtado, Pablo I
Format Journal Article
LanguageEnglish
Published IOP Publishing and SISSA 18.10.2019
Online AccessGet full text
ISSN1742-5468
1742-5468
DOI10.1088/1742-5468/ab4587

Cover

Loading…
Abstract We introduce a general class of stochastic lattice gas models, and derive their fluctuating hydrodynamics description in the large size limit under a local equilibrium hypothesis. The model consists of energetic particles on a lattice subject to exclusion interactions, which move and collide stochastically with energy-dependent rates. The resulting fluctuating hydrodynamics equations exhibit nonlinear coupled particle and energy transport, including particle currents due to temperature gradients (Soret effect) and energy flow due to concentration gradients (Dufour effect). The microscopic dynamical complexity is condensed in just two matrices of transport coefficients: the diffusivity matrix (or equivalently the Onsager matrix) generalizing Fick-Fourier's law, and the mobility matrix controlling current fluctuations. Both transport coefficients are coupled via a fluctuation-dissipation theorem, suggesting that the noise terms affecting the local currents have Gaussian properties. We further prove the positivity of entropy production in terms of the microscopic dynamics. The so-called kinetic exclusion process has as limiting cases two of the most paradigmatic models of nonequilibrium physics, namely the symmetric simple exclusion process of particle diffusion and the Kipnis-Marchioro-Presutti model of heat flow, making it the ideal testbed where to further develop modern theories of nonequilibrium behavior.
AbstractList We introduce a general class of stochastic lattice gas models, and derive their fluctuating hydrodynamics description in the large size limit under a local equilibrium hypothesis. The model consists of energetic particles on a lattice subject to exclusion interactions, which move and collide stochastically with energy-dependent rates. The resulting fluctuating hydrodynamics equations exhibit nonlinear coupled particle and energy transport, including particle currents due to temperature gradients (Soret effect) and energy flow due to concentration gradients (Dufour effect). The microscopic dynamical complexity is condensed in just two matrices of transport coefficients: the diffusivity matrix (or equivalently the Onsager matrix) generalizing Fick-Fourier's law, and the mobility matrix controlling current fluctuations. Both transport coefficients are coupled via a fluctuation-dissipation theorem, suggesting that the noise terms affecting the local currents have Gaussian properties. We further prove the positivity of entropy production in terms of the microscopic dynamics. The so-called kinetic exclusion process has as limiting cases two of the most paradigmatic models of nonequilibrium physics, namely the symmetric simple exclusion process of particle diffusion and the Kipnis-Marchioro-Presutti model of heat flow, making it the ideal testbed where to further develop modern theories of nonequilibrium behavior.
Author Gutiérrez-Ariza, Carlos
Hurtado, Pablo I
Author_xml – sequence: 1
  givenname: Carlos
  surname: Gutiérrez-Ariza
  fullname: Gutiérrez-Ariza, Carlos
  email: carlos.gutierrez@csic.es
  organization: Universidad de Granada Instituto Carlos I de Física Teórica y Computacional, Granada 18071, Spain
– sequence: 2
  givenname: Pablo I
  surname: Hurtado
  fullname: Hurtado, Pablo I
  email: phurtado@onsager.ugr.es
  organization: Universidad de Granada Departamento de Electromagnetismo y Física de la Materia, Granada 18071, Spain
BookMark eNp9j01LAzEQhoNUsK3ePeYHuDZfm6TepPgFBS_1HGaTLKaumyVJUf-9LSsigp5mGOZ5eZ8ZmvSx9widU3JJidYLqgSraiH1AhpRa3WEpt-nyY_9BM1y3hLCGRF6ivjm2eOX0PsSLPbvttvlEHs8pGh9zlcYcIHO49ji8hZxG3zn8ik6bqHL_uxrztHT7c1mdV-tH-8eVtfrynLGSiVdrUizdExbBq0TDsBKramGhtXaKqmcE5KA5MAEUYRJ0dC2qbnnQtGl43Mkx1ybYs7Jt8aGAmXfryQInaHEHNTNwc0c3MyovgfJL3BI4RXSx3_IxYiEOJht3KV-b_b3-ydLn2oN
CODEN JSMTC6
CitedBy_id crossref_primary_10_1103_PhysRevE_107_014137
crossref_primary_10_1007_s10955_019_02469_z
crossref_primary_10_1103_PhysRevE_109_024122
crossref_primary_10_1088_1742_5468_ad8b39
crossref_primary_10_1103_PhysRevE_110_064153
crossref_primary_10_1088_1751_8121_ac7c47
crossref_primary_10_1103_PhysRevLett_128_130602
crossref_primary_10_1088_1742_5468_ac8a4d
crossref_primary_10_1103_PhysRevE_107_044129
crossref_primary_10_1103_PhysRevLett_125_160601
crossref_primary_10_1103_PhysRevE_108_014107
Cites_doi 10.1016/S0370-1573(98)00006-4
10.1103/PhysRevLett.107.140601
10.1103/PhysRevE.90.012107
10.1088/1751-8121/aa7175
10.1103/PhysRevLett.114.060601
10.1007/s10955-016-1575-z
10.1103/PhysRevLett.110.150401
10.1103/PhysRevLett.74.2694
10.1103/PhysRevE.86.031106
10.1088/1751-8113/42/7/075007
10.1103/PhysRevE.84.021115
10.1103/PhysRevLett.110.020601
10.1103/PhysRevLett.94.030601
10.1023/A:1014525911391
10.1088/1742-5468/2015/11/P11023
10.1007/BF02179860
10.1103/PhysRevE.89.010101
10.1103/PhysRevLett.108.060602
10.1063/1.5006924
10.1007/s10955-015-1214-0
10.1088/0305-4470/38/19/R01
10.1103/PhysRevE.87.032115
10.1103/PhysRevLett.113.240602
10.1103/PhysRevE.61.2361
10.1088/1751-8113/48/35/35FT01
10.1103/PhysRevE.85.051122
10.1088/1742-5468/2015/11/P11018
10.1016/j.physrep.2009.05.002
10.1007/978-3-540-87706-6_2
10.1103/PhysRevE.98.060102
10.1103/PhysRevLett.118.030604
10.1103/PhysRevLett.87.150601
10.1088/1742-5468/2009/02/P02032
10.1103/PhysRevE.81.041102
10.1103/PhysRevLett.119.090602
10.1103/PhysRevLett.111.230601
10.3390/e15115065
10.1103/PhysRevLett.118.180601
10.1103/PhysRevA.85.043620
10.1103/PhysRevLett.80.209
10.1103/PhysRevLett.102.250601
10.1007/s10955-011-0315-7
10.1088/1742-5468/2007/07/P07023
10.1103/PhysRevLett.104.160601
10.1088/0305-4470/37/25/L02
10.1103/PhysRevLett.107.180601
10.1088/1751-8113/40/46/R01
10.1103/PhysRevLett.119.028004
10.1007/s10955-009-9716-2
10.1126/science.1166665
10.1038/srep31161
10.1080/0001873031000093582
10.1103/PhysRevB.98.184303
10.1088/1751-8121/aadc6e
10.1103/PhysRevE.96.062108
10.1140/epje/i2016-16035-4
10.1103/PhysRevLett.109.195703
10.1103/PhysRevE.97.062109
10.1103/PhysRevLett.92.180601
10.1023/A:1022111919402
10.1103/PhysRevLett.121.130601
10.1080/00018732.2018.1519981
10.1103/PhysRevB.90.125138
10.1103/RevModPhys.87.593
10.1023/A:1004589714161
10.1038/nphys3215
10.1103/PhysRevLett.120.268003
10.1214/11-AAP826
10.1209/0295-5075/103/20001
10.1103/PhysRevE.50.1645
10.1103/PhysRevLett.98.195702
10.1073/pnas.1013209108
10.1103/PhysRevLett.114.158101
10.1088/1367-2630/17/8/083039
10.1103/PhysRevE.96.052118
10.1103/PhysRevLett.119.140604
10.1209/0295-5075/96/56002
10.1103/PhysRevLett.87.040601
10.1088/0305-4470/39/18/006
10.1088/1751-8121/aaa8f9
10.1103/PhysRevLett.118.030601
10.1088/0034-4885/74/11/116601
10.1103/PhysRevLett.86.3463
10.1023/A:1023208217925
10.1016/0001-8708(70)90034-4
10.1007/BF01011740
10.1088/0305-4470/31/16/003
10.1103/PhysRevE.72.066110
10.1088/1742-5468/2013/12/P12011
10.1007/s10955-010-9934-7
10.1007/s10955-008-9518-y
10.3934/krm.2018026
10.1007/BF02180143
10.1103/PhysRevLett.99.150602
10.1103/PhysRevE.91.030102
10.1103/PhysRevE.90.012124
10.1016/j.crhy.2007.04.014
10.1023/A:1014555927320
10.1103/PhysRevLett.71.2401
10.1103/PhysRevE.89.062108
10.1103/PhysRevE.85.060103
10.1007/s10955-005-5527-2
10.1103/PhysRevLett.117.207201
10.1146/annurev.physchem.040808.090405
10.1103/PhysRevLett.116.240603
10.1103/PhysRevE.86.031134
10.1007/s10955-006-9254-0
10.1088/1751-8113/40/7/003
10.1209/0295-5075/105/30009
10.1103/PhysRevE.88.022110
10.1007/s10955-006-9056-4
10.1103/PhysRevE.56.5018
10.1103/PhysRevE.90.022120
10.1088/0305-4470/39/41/S03
10.1088/1742-5468/2005/08/P08003
10.1103/PhysRevE.99.022134
10.1103/PhysRevLett.116.120601
10.1007/s10955-014-0933-y
10.1103/PhysRevLett.78.2690
10.1103/PhysRevX.6.041065
10.1103/PhysRevE.98.052116
10.1007/s10955-013-0908-4
10.1007/s10955-013-0894-6
10.1103/PhysRevE.97.032123
10.1063/1.2711373
10.1088/1742-5468/2016/09/093203
10.1103/PhysRevA.98.021804
10.1209/0295-5075/116/50009
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd and SISSA Medialab srl
Copyright_xml – notice: 2019 IOP Publishing Ltd and SISSA Medialab srl
DBID AAYXX
CITATION
DOI 10.1088/1742-5468/ab4587
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate The kinetic exclusion process: a tale of two fields
EISSN 1742-5468
ExternalDocumentID 10_1088_1742_5468_ab4587
jstatab4587
GroupedDBID 1JI
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADWVK
AEFHF
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
J9A
KOT
LAP
M45
MV1
N5L
N9A
P2P
PJBAE
RIN
RNS
ROL
RPA
S3P
SY9
VSI
W28
XPP
ZMT
AAYXX
ADACN
ADEQX
CITATION
ID FETCH-LOGICAL-c322t-6d570b9d28c2afd4daac68818ab258c767dd460a63a24070264b1fb53e34719d3
IEDL.DBID IOP
ISSN 1742-5468
IngestDate Tue Jul 01 03:22:30 EDT 2025
Thu Apr 24 23:03:06 EDT 2025
Wed Aug 21 03:41:09 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-6d570b9d28c2afd4daac68818ab258c767dd460a63a24070264b1fb53e34719d3
Notes JSTAT_001P_0819
OpenAccessLink http://hdl.handle.net/10481/70603
PageCount 34
ParticipantIDs crossref_primary_10_1088_1742_5468_ab4587
iop_journals_10_1088_1742_5468_ab4587
crossref_citationtrail_10_1088_1742_5468_ab4587
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-18
PublicationDateYYYYMMDD 2019-10-18
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-18
  day: 18
PublicationDecade 2010
PublicationTitle Journal of statistical mechanics
PublicationTitleAbbrev JSTAT
PublicationTitleAlternate J. Stat. Mech
PublicationYear 2019
Publisher IOP Publishing and SISSA
Publisher_xml – name: IOP Publishing and SISSA
References 88
Plata C A (35) 2016; 2016
Ellis R S (17) 2007
110
111
112
Landau L D (122) 2013; 6
113
114
115
116
118
92
119
93
Evans M R (137) 2006; 39
95
96
97
10
98
11
99
12
13
14
15
18
19
De Groot S R (117) 2013
120
Pitard E (54) 2011; 96
121
2
123
3
124
4
125
5
126
6
127
128
8
9
20
21
Akkermans E (105) 2013; 103
22
23
Ortiz de Zarate J M (133) 2006
24
25
26
Kurchan J (7) 1998; 31
131
Hirschberg O (65) 2015; 2015
132
Chou T (30) 2011; 74
Balescu R (37) 1975
Blythe R A (28) 2007; 40
Baek Y (80) 2018; 51
Garrahan J P (48) 2009; 42
138
139
Landau L D (39) 2013; 5
Castro-Alvaredo O A (130) 2016; 6
31
Golinelli O (27) 2006; 39
32
34
36
Olla S (129) 2019
Marro J (29) 2005
Pérez-Espigares C (91) 2015; 48
140
Tsobgni Nyawo O (68) 2016; 116
141
142
Derrida B (16) 2007; 2007
Gutiérrez-Ariza C (134) 2019
Buča B (89) 2019
Zarfaty L (67) 2016
40
Lecomte V (44) 2007; 40
Spohn H (1) 2012
42
43
45
46
Lazarescu A (70) 2017; 50
47
49
Lasanta A (33) 2015; 17
Pathria R K (38) 2009
Lacoste D (94) 2015; 2015
50
51
52
53
55
56
57
58
59
Villavicencio-Sanchez R (90) 2014; 105
60
61
62
63
64
Vroylandt H (87) 2018
66
69
Evans M R (136) 2005; 38
Chleboun P (84) 2018; 51
71
72
73
74
Meerson B (104) 2013; 2013
75
76
77
78
79
Hurtado P I (101) 2009; 2009
100
102
103
Harris R J (41) 2005; 2005
106
107
81
108
Evans M R (135) 2004; 37
82
109
83
85
86
References_xml – ident: 24
  doi: 10.1016/S0370-1573(98)00006-4
– ident: 111
  doi: 10.1103/PhysRevLett.107.140601
– ident: 116
  doi: 10.1103/PhysRevE.90.012107
– volume: 50
  issn: 1751-8113
  year: 2017
  ident: 70
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8121/aa7175
– ident: 64
  doi: 10.1103/PhysRevLett.114.060601
– ident: 34
  doi: 10.1007/s10955-016-1575-z
– ident: 60
  doi: 10.1103/PhysRevLett.110.150401
– ident: 2
  doi: 10.1103/PhysRevLett.74.2694
– ident: 103
  doi: 10.1103/PhysRevE.86.031106
– volume: 42
  issn: 1751-8113
  year: 2009
  ident: 48
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/42/7/075007
– ident: 53
  doi: 10.1103/PhysRevE.84.021115
– ident: 22
  doi: 10.1103/PhysRevLett.110.020601
– ident: 20
  doi: 10.1103/PhysRevLett.94.030601
– ident: 19
  doi: 10.1023/A:1014525911391
– volume: 2015
  issn: 1742-5468
  year: 2015
  ident: 65
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2015/11/P11023
– ident: 3
  doi: 10.1007/BF02179860
– ident: 106
  doi: 10.1103/PhysRevE.89.010101
– year: 1975
  ident: 37
  publication-title: Equilibrium and Nonequilibrium Statistical Mechanics
– ident: 112
  doi: 10.1103/PhysRevLett.108.060602
– ident: 78
  doi: 10.1063/1.5006924
– ident: 127
  doi: 10.1007/s10955-015-1214-0
– volume: 38
  start-page: R195
  issn: 0305-4470
  year: 2005
  ident: 136
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/38/19/R01
– ident: 58
  doi: 10.1103/PhysRevE.87.032115
– ident: 93
  doi: 10.1103/PhysRevLett.113.240602
– ident: 13
  doi: 10.1103/PhysRevE.61.2361
– volume: 48
  issn: 1751-8113
  year: 2015
  ident: 91
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/48/35/35FT01
– year: 2007
  ident: 17
  publication-title: Entropy, Large Deviations, and Statistical Mechanics
– ident: 55
  doi: 10.1103/PhysRevE.85.051122
– year: 2019
  ident: 89
– volume: 2015
  issn: 1742-5468
  year: 2015
  ident: 94
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2015/11/P11018
– ident: 15
  doi: 10.1016/j.physrep.2009.05.002
– ident: 36
  doi: 10.1007/978-3-540-87706-6_2
– ident: 82
  doi: 10.1103/PhysRevE.98.060102
– ident: 74
  doi: 10.1103/PhysRevLett.118.030604
– ident: 26
  doi: 10.1103/PhysRevLett.87.150601
– volume: 2009
  issn: 1742-5468
  year: 2009
  ident: 101
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2009/02/P02032
– ident: 102
  doi: 10.1103/PhysRevE.81.041102
– ident: 75
  doi: 10.1103/PhysRevLett.119.090602
– ident: 123
  doi: 10.1103/PhysRevLett.111.230601
– start-page: 32
  year: 2009
  ident: 38
  publication-title: Statistical Mechanics
– ident: 59
  doi: 10.3390/e15115065
– ident: 71
  doi: 10.1103/PhysRevLett.118.180601
– ident: 56
  doi: 10.1103/PhysRevA.85.043620
– ident: 25
  doi: 10.1103/PhysRevLett.80.209
– ident: 140
  doi: 10.1103/PhysRevLett.102.250601
– ident: 110
  doi: 10.1007/s10955-011-0315-7
– volume: 2007
  issn: 1742-5468
  year: 2007
  ident: 16
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2007/07/P07023
– ident: 51
  doi: 10.1103/PhysRevLett.104.160601
– volume: 37
  start-page: L275
  issn: 0305-4470
  year: 2004
  ident: 135
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/37/25/L02
– ident: 52
  doi: 10.1103/PhysRevLett.107.180601
– volume: 40
  start-page: R333
  issn: 1751-8113
  year: 2007
  ident: 28
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/40/46/R01
– ident: 77
  doi: 10.1103/PhysRevLett.119.028004
– ident: 121
  doi: 10.1007/s10955-009-9716-2
– ident: 49
  doi: 10.1126/science.1166665
– ident: 69
  doi: 10.1038/srep31161
– issn: 1742-5468
  year: 2016
  ident: 67
  publication-title: J. Stat. Mech.
– volume: 6
  year: 2013
  ident: 122
  publication-title: Fluid Mechanics
– ident: 32
  doi: 10.1080/0001873031000093582
– ident: 88
  doi: 10.1103/PhysRevB.98.184303
– volume: 51
  issn: 1751-8113
  year: 2018
  ident: 84
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8121/aadc6e
– ident: 76
  doi: 10.1103/PhysRevE.96.062108
– ident: 139
  doi: 10.1140/epje/i2016-16035-4
– year: 2012
  ident: 1
  publication-title: Large Scale Dynamics of Interacting Particles Theoretical and Mathematical Physics
– year: 2005
  ident: 29
  publication-title: Nonequilibrium Phase Transitions in Lattice Models
– ident: 57
  doi: 10.1103/PhysRevLett.109.195703
– ident: 86
  doi: 10.1103/PhysRevE.97.062109
– ident: 99
  doi: 10.1103/PhysRevLett.92.180601
– ident: 142
  doi: 10.1023/A:1022111919402
– ident: 98
  doi: 10.1103/PhysRevLett.121.130601
– ident: 79
  doi: 10.1080/00018732.2018.1519981
– ident: 63
  doi: 10.1103/PhysRevB.90.125138
– ident: 23
  doi: 10.1103/RevModPhys.87.593
– ident: 8
  doi: 10.1023/A:1004589714161
– year: 2019
  ident: 134
– ident: 132
  doi: 10.1038/nphys3215
– ident: 31
  doi: 10.1103/PhysRevLett.120.268003
– ident: 113
  doi: 10.1214/11-AAP826
– volume: 103
  start-page: 20001
  issn: 0295-5075
  year: 2013
  ident: 105
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/103/20001
– ident: 6
  doi: 10.1103/PhysRevE.50.1645
– ident: 46
  doi: 10.1103/PhysRevLett.98.195702
– ident: 14
  doi: 10.1073/pnas.1013209108
– ident: 95
  doi: 10.1103/PhysRevLett.114.158101
– volume: 17
  issn: 1367-2630
  year: 2015
  ident: 33
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/8/083039
– ident: 73
  doi: 10.1103/PhysRevE.96.052118
– ident: 97
  doi: 10.1103/PhysRevLett.119.140604
– volume: 96
  start-page: 56002
  issn: 0295-5075
  year: 2011
  ident: 54
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/96/56002
– ident: 18
  doi: 10.1103/PhysRevLett.87.040601
– volume: 39
  start-page: 4859
  issn: 0305-4470
  year: 2006
  ident: 137
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/18/006
– volume: 51
  issn: 1751-8113
  year: 2018
  ident: 80
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8121/aaa8f9
– ident: 72
  doi: 10.1103/PhysRevLett.118.030601
– volume: 74
  issn: 0034-4885
  year: 2011
  ident: 30
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/74/11/116601
– ident: 11
  doi: 10.1103/PhysRevLett.86.3463
– ident: 12
  doi: 10.1023/A:1023208217925
– ident: 118
  doi: 10.1016/0001-8708(70)90034-4
– ident: 119
  doi: 10.1007/BF01011740
– volume: 31
  start-page: 3719
  issn: 0305-4470
  year: 1998
  ident: 7
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/31/16/003
– ident: 40
  doi: 10.1103/PhysRevE.72.066110
– volume: 2013
  issn: 1742-5468
  year: 2013
  ident: 104
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2013/12/P12011
– ident: 109
  doi: 10.1007/s10955-010-9934-7
– ident: 47
  doi: 10.1007/s10955-008-9518-y
– ident: 128
  doi: 10.3934/krm.2018026
– volume: 5
  year: 2013
  ident: 39
  publication-title: Statistical Physics
– ident: 4
  doi: 10.1007/BF02180143
– ident: 100
  doi: 10.1103/PhysRevLett.99.150602
– ident: 92
  doi: 10.1103/PhysRevE.91.030102
– ident: 125
  doi: 10.1103/PhysRevE.90.012124
– ident: 43
  doi: 10.1016/j.crhy.2007.04.014
– year: 2018
  ident: 87
– ident: 141
  doi: 10.1023/A:1014555927320
– ident: 5
  doi: 10.1103/PhysRevLett.71.2401
– ident: 62
  doi: 10.1103/PhysRevE.89.062108
– ident: 138
  doi: 10.1103/PhysRevE.85.060103
– ident: 21
  doi: 10.1007/s10955-005-5527-2
– ident: 131
  doi: 10.1103/PhysRevLett.117.207201
– ident: 50
  doi: 10.1146/annurev.physchem.040808.090405
– ident: 66
  doi: 10.1103/PhysRevLett.116.240603
– ident: 114
  doi: 10.1103/PhysRevE.86.031134
– ident: 45
  doi: 10.1007/s10955-006-9254-0
– volume: 40
  start-page: 1447
  issn: 1751-8113
  year: 2007
  ident: 44
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/40/7/003
– volume: 105
  start-page: 30009
  issn: 0295-5075
  year: 2014
  ident: 90
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/105/30009
– ident: 115
  doi: 10.1103/PhysRevE.88.022110
– ident: 42
  doi: 10.1007/s10955-006-9056-4
– ident: 9
  doi: 10.1103/PhysRevE.56.5018
– ident: 107
  doi: 10.1103/PhysRevE.90.022120
– volume: 39
  start-page: 12679
  issn: 0305-4470
  year: 2006
  ident: 27
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/41/S03
– volume: 2005
  issn: 1742-5468
  year: 2005
  ident: 41
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2005/08/P08003
– ident: 108
  doi: 10.1103/PhysRevE.99.022134
– year: 2006
  ident: 133
  publication-title: Hydrodynamic Fluctuations in Fluids and Fluid Mixtures
– ident: 96
  doi: 10.1103/PhysRevLett.116.120601
– ident: 124
  doi: 10.1007/s10955-014-0933-y
– ident: 10
  doi: 10.1103/PhysRevLett.78.2690
– year: 2013
  ident: 117
  publication-title: Non-Equilibrium Thermodynamics
– year: 2019
  ident: 129
– volume: 6
  year: 2016
  ident: 130
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevX.6.041065
– ident: 81
  doi: 10.1103/PhysRevE.98.052116
– ident: 126
  doi: 10.1007/s10955-013-0908-4
– ident: 61
  doi: 10.1007/s10955-013-0894-6
– ident: 85
  doi: 10.1103/PhysRevE.97.032123
– ident: 120
  doi: 10.1063/1.2711373
– volume: 2016
  issn: 1742-5468
  year: 2016
  ident: 35
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2016/09/093203
– ident: 83
  doi: 10.1103/PhysRevA.98.021804
– volume: 116
  start-page: 50009
  issn: 0295-5075
  year: 2016
  ident: 68
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/116/50009
SSID ssj0032048
Score 2.2992952
Snippet We introduce a general class of stochastic lattice gas models, and derive their fluctuating hydrodynamics description in the large size limit under a local...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 103203
Title The kinetic exclusion process: a tale of two fields
URI https://iopscience.iop.org/article/10.1088/1742-5468/ab4587
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7aiuDFt1hf5KAHD9vHJpvN6klEKYKPg4UehCXPS0u32C2Kv97J7raoqIi3hZ1kw0cy32Qz8wXgmOrQdJljhfJjwKgzAfo8FjjtxbR45DT3tcO3d7zXZzeDaFCD80UtTDapXH8LH0uh4BLCKiFOtDGG9vL9XLSlYpGI67BEBdKMr967f5i7YeoVaatzye9afeKhOn7rA61cr8HTfEBlNsmwNctVS7990Wr854jXYbUKN8lFaboBNTvehOUi7VNPt4DiLCFDDDTxNbGvejTzP8_IpKweOCOSYGxuSeZI_pKRItttug3966vHy15QXaMQaFytecBNFHdUYkKhQ-kMM1JqLpCopQojoWMeG8N4R3Iq_fYON2VMdZ2KqKXIXImhO9AYZ2O7C8QKo62KFDPCMGqwu8RFoVG2IylurJImtOegprrSGPdXXYzS4qxbiNRDkXoo0hKKJpwuWkxKfY1fbE8Q4bRaZNMf7fb-aLcPKxj-JJ6JuuIAGvnzzB5iiJGro2IqvQP7s8e6
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVoEYgLO6KsPsCBQ7rESx1uCKjKVnqgUm_B66VVG9FUIL6ecZIiQICQuEXK2LFG9sybeOYNQkdEh6ZBHc2YHwNKnAnA5tHAaU-mxZnT3NcO33V4u0ev-6xf9DnNamHGSWH6q_CYEwXnKiwS4kQNMLSn7-eiJhVlollLjCuheUY4ySr47rszU0w8K21xN_ndyE--qATf--BaWivocbaoPKNkUJ2mqqpfv_A1_mPVq2i5gJ34LBdfQ3N2tI4WsvRPPdlABHYLHgDghNfYvujh1P9Ew0leRXCKJQaMbvHY4fR5jLOst8km6rUuH87bQdFOIdBwatOAG9asq8iEQofSGWqk1FyAw5YqZEI3edMYyuuSE-nDPAjOqGo4xYgl4MEiQ7ZQeTQe2W2ErTDaKqaoEYYSA9NFjoVG2bokEGBFFVSbKTbWBde4b3kxjLM7byFir47YqyPO1VFBJ-8jkpxn4xfZY9ByXBy2yY9yO3-UO0SL3YtWfHvVudlFS4CIIu-cGmIPldOnqd0H1JGqg2xnvQExw80e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+kinetic+exclusion+process%3A+a+tale+of+two+fields&rft.jtitle=Journal+of+statistical+mechanics&rft.au=Guti%C3%A9rrez-Ariza%2C+Carlos&rft.au=Hurtado%2C+Pablo+I&rft.date=2019-10-18&rft.issn=1742-5468&rft.eissn=1742-5468&rft.volume=2019&rft.issue=10&rft.spage=103203&rft_id=info:doi/10.1088%2F1742-5468%2Fab4587&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_5468_ab4587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5468&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5468&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5468&client=summon