The kinetic exclusion process: a tale of two fields
We introduce a general class of stochastic lattice gas models, and derive their fluctuating hydrodynamics description in the large size limit under a local equilibrium hypothesis. The model consists of energetic particles on a lattice subject to exclusion interactions, which move and collide stochas...
Saved in:
Published in | Journal of statistical mechanics Vol. 2019; no. 10; pp. 103203 - 103236 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing and SISSA
18.10.2019
|
Online Access | Get full text |
ISSN | 1742-5468 1742-5468 |
DOI | 10.1088/1742-5468/ab4587 |
Cover
Loading…
Abstract | We introduce a general class of stochastic lattice gas models, and derive their fluctuating hydrodynamics description in the large size limit under a local equilibrium hypothesis. The model consists of energetic particles on a lattice subject to exclusion interactions, which move and collide stochastically with energy-dependent rates. The resulting fluctuating hydrodynamics equations exhibit nonlinear coupled particle and energy transport, including particle currents due to temperature gradients (Soret effect) and energy flow due to concentration gradients (Dufour effect). The microscopic dynamical complexity is condensed in just two matrices of transport coefficients: the diffusivity matrix (or equivalently the Onsager matrix) generalizing Fick-Fourier's law, and the mobility matrix controlling current fluctuations. Both transport coefficients are coupled via a fluctuation-dissipation theorem, suggesting that the noise terms affecting the local currents have Gaussian properties. We further prove the positivity of entropy production in terms of the microscopic dynamics. The so-called kinetic exclusion process has as limiting cases two of the most paradigmatic models of nonequilibrium physics, namely the symmetric simple exclusion process of particle diffusion and the Kipnis-Marchioro-Presutti model of heat flow, making it the ideal testbed where to further develop modern theories of nonequilibrium behavior. |
---|---|
AbstractList | We introduce a general class of stochastic lattice gas models, and derive their fluctuating hydrodynamics description in the large size limit under a local equilibrium hypothesis. The model consists of energetic particles on a lattice subject to exclusion interactions, which move and collide stochastically with energy-dependent rates. The resulting fluctuating hydrodynamics equations exhibit nonlinear coupled particle and energy transport, including particle currents due to temperature gradients (Soret effect) and energy flow due to concentration gradients (Dufour effect). The microscopic dynamical complexity is condensed in just two matrices of transport coefficients: the diffusivity matrix (or equivalently the Onsager matrix) generalizing Fick-Fourier's law, and the mobility matrix controlling current fluctuations. Both transport coefficients are coupled via a fluctuation-dissipation theorem, suggesting that the noise terms affecting the local currents have Gaussian properties. We further prove the positivity of entropy production in terms of the microscopic dynamics. The so-called kinetic exclusion process has as limiting cases two of the most paradigmatic models of nonequilibrium physics, namely the symmetric simple exclusion process of particle diffusion and the Kipnis-Marchioro-Presutti model of heat flow, making it the ideal testbed where to further develop modern theories of nonequilibrium behavior. |
Author | Gutiérrez-Ariza, Carlos Hurtado, Pablo I |
Author_xml | – sequence: 1 givenname: Carlos surname: Gutiérrez-Ariza fullname: Gutiérrez-Ariza, Carlos email: carlos.gutierrez@csic.es organization: Universidad de Granada Instituto Carlos I de Física Teórica y Computacional, Granada 18071, Spain – sequence: 2 givenname: Pablo I surname: Hurtado fullname: Hurtado, Pablo I email: phurtado@onsager.ugr.es organization: Universidad de Granada Departamento de Electromagnetismo y Física de la Materia, Granada 18071, Spain |
BookMark | eNp9j01LAzEQhoNUsK3ePeYHuDZfm6TepPgFBS_1HGaTLKaumyVJUf-9LSsigp5mGOZ5eZ8ZmvSx9widU3JJidYLqgSraiH1AhpRa3WEpt-nyY_9BM1y3hLCGRF6ivjm2eOX0PsSLPbvttvlEHs8pGh9zlcYcIHO49ji8hZxG3zn8ik6bqHL_uxrztHT7c1mdV-tH-8eVtfrynLGSiVdrUizdExbBq0TDsBKramGhtXaKqmcE5KA5MAEUYRJ0dC2qbnnQtGl43Mkx1ybYs7Jt8aGAmXfryQInaHEHNTNwc0c3MyovgfJL3BI4RXSx3_IxYiEOJht3KV-b_b3-ydLn2oN |
CODEN | JSMTC6 |
CitedBy_id | crossref_primary_10_1103_PhysRevE_107_014137 crossref_primary_10_1007_s10955_019_02469_z crossref_primary_10_1103_PhysRevE_109_024122 crossref_primary_10_1088_1742_5468_ad8b39 crossref_primary_10_1103_PhysRevE_110_064153 crossref_primary_10_1088_1751_8121_ac7c47 crossref_primary_10_1103_PhysRevLett_128_130602 crossref_primary_10_1088_1742_5468_ac8a4d crossref_primary_10_1103_PhysRevE_107_044129 crossref_primary_10_1103_PhysRevLett_125_160601 crossref_primary_10_1103_PhysRevE_108_014107 |
Cites_doi | 10.1016/S0370-1573(98)00006-4 10.1103/PhysRevLett.107.140601 10.1103/PhysRevE.90.012107 10.1088/1751-8121/aa7175 10.1103/PhysRevLett.114.060601 10.1007/s10955-016-1575-z 10.1103/PhysRevLett.110.150401 10.1103/PhysRevLett.74.2694 10.1103/PhysRevE.86.031106 10.1088/1751-8113/42/7/075007 10.1103/PhysRevE.84.021115 10.1103/PhysRevLett.110.020601 10.1103/PhysRevLett.94.030601 10.1023/A:1014525911391 10.1088/1742-5468/2015/11/P11023 10.1007/BF02179860 10.1103/PhysRevE.89.010101 10.1103/PhysRevLett.108.060602 10.1063/1.5006924 10.1007/s10955-015-1214-0 10.1088/0305-4470/38/19/R01 10.1103/PhysRevE.87.032115 10.1103/PhysRevLett.113.240602 10.1103/PhysRevE.61.2361 10.1088/1751-8113/48/35/35FT01 10.1103/PhysRevE.85.051122 10.1088/1742-5468/2015/11/P11018 10.1016/j.physrep.2009.05.002 10.1007/978-3-540-87706-6_2 10.1103/PhysRevE.98.060102 10.1103/PhysRevLett.118.030604 10.1103/PhysRevLett.87.150601 10.1088/1742-5468/2009/02/P02032 10.1103/PhysRevE.81.041102 10.1103/PhysRevLett.119.090602 10.1103/PhysRevLett.111.230601 10.3390/e15115065 10.1103/PhysRevLett.118.180601 10.1103/PhysRevA.85.043620 10.1103/PhysRevLett.80.209 10.1103/PhysRevLett.102.250601 10.1007/s10955-011-0315-7 10.1088/1742-5468/2007/07/P07023 10.1103/PhysRevLett.104.160601 10.1088/0305-4470/37/25/L02 10.1103/PhysRevLett.107.180601 10.1088/1751-8113/40/46/R01 10.1103/PhysRevLett.119.028004 10.1007/s10955-009-9716-2 10.1126/science.1166665 10.1038/srep31161 10.1080/0001873031000093582 10.1103/PhysRevB.98.184303 10.1088/1751-8121/aadc6e 10.1103/PhysRevE.96.062108 10.1140/epje/i2016-16035-4 10.1103/PhysRevLett.109.195703 10.1103/PhysRevE.97.062109 10.1103/PhysRevLett.92.180601 10.1023/A:1022111919402 10.1103/PhysRevLett.121.130601 10.1080/00018732.2018.1519981 10.1103/PhysRevB.90.125138 10.1103/RevModPhys.87.593 10.1023/A:1004589714161 10.1038/nphys3215 10.1103/PhysRevLett.120.268003 10.1214/11-AAP826 10.1209/0295-5075/103/20001 10.1103/PhysRevE.50.1645 10.1103/PhysRevLett.98.195702 10.1073/pnas.1013209108 10.1103/PhysRevLett.114.158101 10.1088/1367-2630/17/8/083039 10.1103/PhysRevE.96.052118 10.1103/PhysRevLett.119.140604 10.1209/0295-5075/96/56002 10.1103/PhysRevLett.87.040601 10.1088/0305-4470/39/18/006 10.1088/1751-8121/aaa8f9 10.1103/PhysRevLett.118.030601 10.1088/0034-4885/74/11/116601 10.1103/PhysRevLett.86.3463 10.1023/A:1023208217925 10.1016/0001-8708(70)90034-4 10.1007/BF01011740 10.1088/0305-4470/31/16/003 10.1103/PhysRevE.72.066110 10.1088/1742-5468/2013/12/P12011 10.1007/s10955-010-9934-7 10.1007/s10955-008-9518-y 10.3934/krm.2018026 10.1007/BF02180143 10.1103/PhysRevLett.99.150602 10.1103/PhysRevE.91.030102 10.1103/PhysRevE.90.012124 10.1016/j.crhy.2007.04.014 10.1023/A:1014555927320 10.1103/PhysRevLett.71.2401 10.1103/PhysRevE.89.062108 10.1103/PhysRevE.85.060103 10.1007/s10955-005-5527-2 10.1103/PhysRevLett.117.207201 10.1146/annurev.physchem.040808.090405 10.1103/PhysRevLett.116.240603 10.1103/PhysRevE.86.031134 10.1007/s10955-006-9254-0 10.1088/1751-8113/40/7/003 10.1209/0295-5075/105/30009 10.1103/PhysRevE.88.022110 10.1007/s10955-006-9056-4 10.1103/PhysRevE.56.5018 10.1103/PhysRevE.90.022120 10.1088/0305-4470/39/41/S03 10.1088/1742-5468/2005/08/P08003 10.1103/PhysRevE.99.022134 10.1103/PhysRevLett.116.120601 10.1007/s10955-014-0933-y 10.1103/PhysRevLett.78.2690 10.1103/PhysRevX.6.041065 10.1103/PhysRevE.98.052116 10.1007/s10955-013-0908-4 10.1007/s10955-013-0894-6 10.1103/PhysRevE.97.032123 10.1063/1.2711373 10.1088/1742-5468/2016/09/093203 10.1103/PhysRevA.98.021804 10.1209/0295-5075/116/50009 |
ContentType | Journal Article |
Copyright | 2019 IOP Publishing Ltd and SISSA Medialab srl |
Copyright_xml | – notice: 2019 IOP Publishing Ltd and SISSA Medialab srl |
DBID | AAYXX CITATION |
DOI | 10.1088/1742-5468/ab4587 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | The kinetic exclusion process: a tale of two fields |
EISSN | 1742-5468 |
ExternalDocumentID | 10_1088_1742_5468_ab4587 jstatab4587 |
GroupedDBID | 1JI 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ADWVK AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO J9A KOT LAP M45 MV1 N5L N9A P2P PJBAE RIN RNS ROL RPA S3P SY9 VSI W28 XPP ZMT AAYXX ADACN ADEQX CITATION |
ID | FETCH-LOGICAL-c322t-6d570b9d28c2afd4daac68818ab258c767dd460a63a24070264b1fb53e34719d3 |
IEDL.DBID | IOP |
ISSN | 1742-5468 |
IngestDate | Tue Jul 01 03:22:30 EDT 2025 Thu Apr 24 23:03:06 EDT 2025 Wed Aug 21 03:41:09 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-6d570b9d28c2afd4daac68818ab258c767dd460a63a24070264b1fb53e34719d3 |
Notes | JSTAT_001P_0819 |
OpenAccessLink | http://hdl.handle.net/10481/70603 |
PageCount | 34 |
ParticipantIDs | crossref_primary_10_1088_1742_5468_ab4587 iop_journals_10_1088_1742_5468_ab4587 crossref_citationtrail_10_1088_1742_5468_ab4587 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-18 |
PublicationDateYYYYMMDD | 2019-10-18 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-18 day: 18 |
PublicationDecade | 2010 |
PublicationTitle | Journal of statistical mechanics |
PublicationTitleAbbrev | JSTAT |
PublicationTitleAlternate | J. Stat. Mech |
PublicationYear | 2019 |
Publisher | IOP Publishing and SISSA |
Publisher_xml | – name: IOP Publishing and SISSA |
References | 88 Plata C A (35) 2016; 2016 Ellis R S (17) 2007 110 111 112 Landau L D (122) 2013; 6 113 114 115 116 118 92 119 93 Evans M R (137) 2006; 39 95 96 97 10 98 11 99 12 13 14 15 18 19 De Groot S R (117) 2013 120 Pitard E (54) 2011; 96 121 2 123 3 124 4 125 5 126 6 127 128 8 9 20 21 Akkermans E (105) 2013; 103 22 23 Ortiz de Zarate J M (133) 2006 24 25 26 Kurchan J (7) 1998; 31 131 Hirschberg O (65) 2015; 2015 132 Chou T (30) 2011; 74 Balescu R (37) 1975 Blythe R A (28) 2007; 40 Baek Y (80) 2018; 51 Garrahan J P (48) 2009; 42 138 139 Landau L D (39) 2013; 5 Castro-Alvaredo O A (130) 2016; 6 31 Golinelli O (27) 2006; 39 32 34 36 Olla S (129) 2019 Marro J (29) 2005 Pérez-Espigares C (91) 2015; 48 140 Tsobgni Nyawo O (68) 2016; 116 141 142 Derrida B (16) 2007; 2007 Gutiérrez-Ariza C (134) 2019 Buča B (89) 2019 Zarfaty L (67) 2016 40 Lecomte V (44) 2007; 40 Spohn H (1) 2012 42 43 45 46 Lazarescu A (70) 2017; 50 47 49 Lasanta A (33) 2015; 17 Pathria R K (38) 2009 Lacoste D (94) 2015; 2015 50 51 52 53 55 56 57 58 59 Villavicencio-Sanchez R (90) 2014; 105 60 61 62 63 64 Vroylandt H (87) 2018 66 69 Evans M R (136) 2005; 38 Chleboun P (84) 2018; 51 71 72 73 74 Meerson B (104) 2013; 2013 75 76 77 78 79 Hurtado P I (101) 2009; 2009 100 102 103 Harris R J (41) 2005; 2005 106 107 81 108 Evans M R (135) 2004; 37 82 109 83 85 86 |
References_xml | – ident: 24 doi: 10.1016/S0370-1573(98)00006-4 – ident: 111 doi: 10.1103/PhysRevLett.107.140601 – ident: 116 doi: 10.1103/PhysRevE.90.012107 – volume: 50 issn: 1751-8113 year: 2017 ident: 70 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8121/aa7175 – ident: 64 doi: 10.1103/PhysRevLett.114.060601 – ident: 34 doi: 10.1007/s10955-016-1575-z – ident: 60 doi: 10.1103/PhysRevLett.110.150401 – ident: 2 doi: 10.1103/PhysRevLett.74.2694 – ident: 103 doi: 10.1103/PhysRevE.86.031106 – volume: 42 issn: 1751-8113 year: 2009 ident: 48 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/42/7/075007 – ident: 53 doi: 10.1103/PhysRevE.84.021115 – ident: 22 doi: 10.1103/PhysRevLett.110.020601 – ident: 20 doi: 10.1103/PhysRevLett.94.030601 – ident: 19 doi: 10.1023/A:1014525911391 – volume: 2015 issn: 1742-5468 year: 2015 ident: 65 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2015/11/P11023 – ident: 3 doi: 10.1007/BF02179860 – ident: 106 doi: 10.1103/PhysRevE.89.010101 – year: 1975 ident: 37 publication-title: Equilibrium and Nonequilibrium Statistical Mechanics – ident: 112 doi: 10.1103/PhysRevLett.108.060602 – ident: 78 doi: 10.1063/1.5006924 – ident: 127 doi: 10.1007/s10955-015-1214-0 – volume: 38 start-page: R195 issn: 0305-4470 year: 2005 ident: 136 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/38/19/R01 – ident: 58 doi: 10.1103/PhysRevE.87.032115 – ident: 93 doi: 10.1103/PhysRevLett.113.240602 – ident: 13 doi: 10.1103/PhysRevE.61.2361 – volume: 48 issn: 1751-8113 year: 2015 ident: 91 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/48/35/35FT01 – year: 2007 ident: 17 publication-title: Entropy, Large Deviations, and Statistical Mechanics – ident: 55 doi: 10.1103/PhysRevE.85.051122 – year: 2019 ident: 89 – volume: 2015 issn: 1742-5468 year: 2015 ident: 94 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2015/11/P11018 – ident: 15 doi: 10.1016/j.physrep.2009.05.002 – ident: 36 doi: 10.1007/978-3-540-87706-6_2 – ident: 82 doi: 10.1103/PhysRevE.98.060102 – ident: 74 doi: 10.1103/PhysRevLett.118.030604 – ident: 26 doi: 10.1103/PhysRevLett.87.150601 – volume: 2009 issn: 1742-5468 year: 2009 ident: 101 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2009/02/P02032 – ident: 102 doi: 10.1103/PhysRevE.81.041102 – ident: 75 doi: 10.1103/PhysRevLett.119.090602 – ident: 123 doi: 10.1103/PhysRevLett.111.230601 – start-page: 32 year: 2009 ident: 38 publication-title: Statistical Mechanics – ident: 59 doi: 10.3390/e15115065 – ident: 71 doi: 10.1103/PhysRevLett.118.180601 – ident: 56 doi: 10.1103/PhysRevA.85.043620 – ident: 25 doi: 10.1103/PhysRevLett.80.209 – ident: 140 doi: 10.1103/PhysRevLett.102.250601 – ident: 110 doi: 10.1007/s10955-011-0315-7 – volume: 2007 issn: 1742-5468 year: 2007 ident: 16 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2007/07/P07023 – ident: 51 doi: 10.1103/PhysRevLett.104.160601 – volume: 37 start-page: L275 issn: 0305-4470 year: 2004 ident: 135 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/37/25/L02 – ident: 52 doi: 10.1103/PhysRevLett.107.180601 – volume: 40 start-page: R333 issn: 1751-8113 year: 2007 ident: 28 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/40/46/R01 – ident: 77 doi: 10.1103/PhysRevLett.119.028004 – ident: 121 doi: 10.1007/s10955-009-9716-2 – ident: 49 doi: 10.1126/science.1166665 – ident: 69 doi: 10.1038/srep31161 – issn: 1742-5468 year: 2016 ident: 67 publication-title: J. Stat. Mech. – volume: 6 year: 2013 ident: 122 publication-title: Fluid Mechanics – ident: 32 doi: 10.1080/0001873031000093582 – ident: 88 doi: 10.1103/PhysRevB.98.184303 – volume: 51 issn: 1751-8113 year: 2018 ident: 84 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8121/aadc6e – ident: 76 doi: 10.1103/PhysRevE.96.062108 – ident: 139 doi: 10.1140/epje/i2016-16035-4 – year: 2012 ident: 1 publication-title: Large Scale Dynamics of Interacting Particles Theoretical and Mathematical Physics – year: 2005 ident: 29 publication-title: Nonequilibrium Phase Transitions in Lattice Models – ident: 57 doi: 10.1103/PhysRevLett.109.195703 – ident: 86 doi: 10.1103/PhysRevE.97.062109 – ident: 99 doi: 10.1103/PhysRevLett.92.180601 – ident: 142 doi: 10.1023/A:1022111919402 – ident: 98 doi: 10.1103/PhysRevLett.121.130601 – ident: 79 doi: 10.1080/00018732.2018.1519981 – ident: 63 doi: 10.1103/PhysRevB.90.125138 – ident: 23 doi: 10.1103/RevModPhys.87.593 – ident: 8 doi: 10.1023/A:1004589714161 – year: 2019 ident: 134 – ident: 132 doi: 10.1038/nphys3215 – ident: 31 doi: 10.1103/PhysRevLett.120.268003 – ident: 113 doi: 10.1214/11-AAP826 – volume: 103 start-page: 20001 issn: 0295-5075 year: 2013 ident: 105 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/103/20001 – ident: 6 doi: 10.1103/PhysRevE.50.1645 – ident: 46 doi: 10.1103/PhysRevLett.98.195702 – ident: 14 doi: 10.1073/pnas.1013209108 – ident: 95 doi: 10.1103/PhysRevLett.114.158101 – volume: 17 issn: 1367-2630 year: 2015 ident: 33 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/8/083039 – ident: 73 doi: 10.1103/PhysRevE.96.052118 – ident: 97 doi: 10.1103/PhysRevLett.119.140604 – volume: 96 start-page: 56002 issn: 0295-5075 year: 2011 ident: 54 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/96/56002 – ident: 18 doi: 10.1103/PhysRevLett.87.040601 – volume: 39 start-page: 4859 issn: 0305-4470 year: 2006 ident: 137 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/39/18/006 – volume: 51 issn: 1751-8113 year: 2018 ident: 80 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8121/aaa8f9 – ident: 72 doi: 10.1103/PhysRevLett.118.030601 – volume: 74 issn: 0034-4885 year: 2011 ident: 30 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/74/11/116601 – ident: 11 doi: 10.1103/PhysRevLett.86.3463 – ident: 12 doi: 10.1023/A:1023208217925 – ident: 118 doi: 10.1016/0001-8708(70)90034-4 – ident: 119 doi: 10.1007/BF01011740 – volume: 31 start-page: 3719 issn: 0305-4470 year: 1998 ident: 7 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/31/16/003 – ident: 40 doi: 10.1103/PhysRevE.72.066110 – volume: 2013 issn: 1742-5468 year: 2013 ident: 104 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2013/12/P12011 – ident: 109 doi: 10.1007/s10955-010-9934-7 – ident: 47 doi: 10.1007/s10955-008-9518-y – ident: 128 doi: 10.3934/krm.2018026 – volume: 5 year: 2013 ident: 39 publication-title: Statistical Physics – ident: 4 doi: 10.1007/BF02180143 – ident: 100 doi: 10.1103/PhysRevLett.99.150602 – ident: 92 doi: 10.1103/PhysRevE.91.030102 – ident: 125 doi: 10.1103/PhysRevE.90.012124 – ident: 43 doi: 10.1016/j.crhy.2007.04.014 – year: 2018 ident: 87 – ident: 141 doi: 10.1023/A:1014555927320 – ident: 5 doi: 10.1103/PhysRevLett.71.2401 – ident: 62 doi: 10.1103/PhysRevE.89.062108 – ident: 138 doi: 10.1103/PhysRevE.85.060103 – ident: 21 doi: 10.1007/s10955-005-5527-2 – ident: 131 doi: 10.1103/PhysRevLett.117.207201 – ident: 50 doi: 10.1146/annurev.physchem.040808.090405 – ident: 66 doi: 10.1103/PhysRevLett.116.240603 – ident: 114 doi: 10.1103/PhysRevE.86.031134 – ident: 45 doi: 10.1007/s10955-006-9254-0 – volume: 40 start-page: 1447 issn: 1751-8113 year: 2007 ident: 44 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/40/7/003 – volume: 105 start-page: 30009 issn: 0295-5075 year: 2014 ident: 90 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/105/30009 – ident: 115 doi: 10.1103/PhysRevE.88.022110 – ident: 42 doi: 10.1007/s10955-006-9056-4 – ident: 9 doi: 10.1103/PhysRevE.56.5018 – ident: 107 doi: 10.1103/PhysRevE.90.022120 – volume: 39 start-page: 12679 issn: 0305-4470 year: 2006 ident: 27 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/39/41/S03 – volume: 2005 issn: 1742-5468 year: 2005 ident: 41 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2005/08/P08003 – ident: 108 doi: 10.1103/PhysRevE.99.022134 – year: 2006 ident: 133 publication-title: Hydrodynamic Fluctuations in Fluids and Fluid Mixtures – ident: 96 doi: 10.1103/PhysRevLett.116.120601 – ident: 124 doi: 10.1007/s10955-014-0933-y – ident: 10 doi: 10.1103/PhysRevLett.78.2690 – year: 2013 ident: 117 publication-title: Non-Equilibrium Thermodynamics – year: 2019 ident: 129 – volume: 6 year: 2016 ident: 130 publication-title: Phys. Rev. doi: 10.1103/PhysRevX.6.041065 – ident: 81 doi: 10.1103/PhysRevE.98.052116 – ident: 126 doi: 10.1007/s10955-013-0908-4 – ident: 61 doi: 10.1007/s10955-013-0894-6 – ident: 85 doi: 10.1103/PhysRevE.97.032123 – ident: 120 doi: 10.1063/1.2711373 – volume: 2016 issn: 1742-5468 year: 2016 ident: 35 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2016/09/093203 – ident: 83 doi: 10.1103/PhysRevA.98.021804 – volume: 116 start-page: 50009 issn: 0295-5075 year: 2016 ident: 68 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/116/50009 |
SSID | ssj0032048 |
Score | 2.2992952 |
Snippet | We introduce a general class of stochastic lattice gas models, and derive their fluctuating hydrodynamics description in the large size limit under a local... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103203 |
Title | The kinetic exclusion process: a tale of two fields |
URI | https://iopscience.iop.org/article/10.1088/1742-5468/ab4587 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7aiuDFt1hf5KAHD9vHJpvN6klEKYKPg4UehCXPS0u32C2Kv97J7raoqIi3hZ1kw0cy32Qz8wXgmOrQdJljhfJjwKgzAfo8FjjtxbR45DT3tcO3d7zXZzeDaFCD80UtTDapXH8LH0uh4BLCKiFOtDGG9vL9XLSlYpGI67BEBdKMr967f5i7YeoVaatzye9afeKhOn7rA61cr8HTfEBlNsmwNctVS7990Wr854jXYbUKN8lFaboBNTvehOUi7VNPt4DiLCFDDDTxNbGvejTzP8_IpKweOCOSYGxuSeZI_pKRItttug3966vHy15QXaMQaFytecBNFHdUYkKhQ-kMM1JqLpCopQojoWMeG8N4R3Iq_fYON2VMdZ2KqKXIXImhO9AYZ2O7C8QKo62KFDPCMGqwu8RFoVG2IylurJImtOegprrSGPdXXYzS4qxbiNRDkXoo0hKKJpwuWkxKfY1fbE8Q4bRaZNMf7fb-aLcPKxj-JJ6JuuIAGvnzzB5iiJGro2IqvQP7s8e6 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVoEYgLO6KsPsCBQ7rESx1uCKjKVnqgUm_B66VVG9FUIL6ecZIiQICQuEXK2LFG9sybeOYNQkdEh6ZBHc2YHwNKnAnA5tHAaU-mxZnT3NcO33V4u0ev-6xf9DnNamHGSWH6q_CYEwXnKiwS4kQNMLSn7-eiJhVlollLjCuheUY4ySr47rszU0w8K21xN_ndyE--qATf--BaWivocbaoPKNkUJ2mqqpfv_A1_mPVq2i5gJ34LBdfQ3N2tI4WsvRPPdlABHYLHgDghNfYvujh1P9Ew0leRXCKJQaMbvHY4fR5jLOst8km6rUuH87bQdFOIdBwatOAG9asq8iEQofSGWqk1FyAw5YqZEI3edMYyuuSE-nDPAjOqGo4xYgl4MEiQ7ZQeTQe2W2ErTDaKqaoEYYSA9NFjoVG2bokEGBFFVSbKTbWBde4b3kxjLM7byFir47YqyPO1VFBJ-8jkpxn4xfZY9ByXBy2yY9yO3-UO0SL3YtWfHvVudlFS4CIIu-cGmIPldOnqd0H1JGqg2xnvQExw80e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+kinetic+exclusion+process%3A+a+tale+of+two+fields&rft.jtitle=Journal+of+statistical+mechanics&rft.au=Guti%C3%A9rrez-Ariza%2C+Carlos&rft.au=Hurtado%2C+Pablo+I&rft.date=2019-10-18&rft.issn=1742-5468&rft.eissn=1742-5468&rft.volume=2019&rft.issue=10&rft.spage=103203&rft_id=info:doi/10.1088%2F1742-5468%2Fab4587&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_5468_ab4587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5468&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5468&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5468&client=summon |